

CONVENIO DE COOPERACIÓN N° 032 DEL 2016 CELEBRADO ENTRE LA CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE – CVS Y LA FUNDACIÓN PARA EL DESARROLLO SOSTENIBLE DE LAS REGIONES COLOMBIANAS – FUNSOSTENIBLE

ACTUALIZACIÓN DEL PLAN GENERAL DE ORDENACIÓN FORESTAL DEL DEPARTAMENTO DE CÓRDOBA

INFORME FINAL

Noviembre de 2017

TABLA DE CONTENIDO

IN	RODUCCIÓN	22
1.	OBJETIVO GENERAL	23
2.	OBJETIVOS ESPECIFÍCOS	23
3.	MARCO LEGAL	23
٥. 4.	ÁREA DE ESTUDIO	
		∠²
5.	CARACTERIZACIÓN PLAN DE ORDENACIÓN FORESTAL DEL DEPARTAMENTO DE ÓRDOBA	27
	5.1. LOCALIZACIÓN GEOGRÁFICA Y POLÍTICA	
	5.1.1.1. Transporte terrestre	
	5.1.1.2. Transporte fluvial	
	5.1.1.3. Transporte aéreo	
	5.1.1.4. Extensión y Límites	
	5.2. JURISDICCIÓN AMBIENTAL	
	5.2.1. Corporación Autónoma Regional responsable de la administración	
	5.2.2. Institutos de Investigación	
	5.3. Derechos de propiedad de los bosques	
	5.3.1. Bosques de propiedad pública	
	5.3.1.1. Reservas Forestales Nacionales	
	5.3.1.2. Bosques de propiedad privada individual	
	5.3.1.3. Bosques de propiedad privada colectiva	
	5.4. Características físicas	
	5.4.1. Geología	
	5.4.1.1. Complejo Cajamarca (PZCC)	
	5.4.1.2. Ultramafitas.	45
	5.4.1.3. Complejo Cañasgordas	46
	5.4.1.4. Volcánico de la Equis (Ksvx)	47
	5.4.1.5. Formación Cansona (K2c)	47
	5.4.1.6. Formación San Cayetano (Elsc)	47
	5.4.1.7. Chert de La Candelaria (E2c)	48
	5.4.1.8. Formación La Risa (E2r)	
	5.4.1.9. Formación Tolú Viejo (E2tv)	48
	5.4.1.10. Formación Areniscas del Manantial (E2m)	
	5.4.1.11. Formación Ciénaga de Oro (E3N1co)	
	5.4.1.12. Formación Maralú (E2E3ma).	
	5.4.1.13. Brecha de Cispatá (Ebc)	
	5.4.1.14. Formación Uva (Pgu)	
	5.4.1.15. Formación Porquera (N1po)	
	5.4.1.16. Formación Pavo (N1pi)	
	5.4.1.17. Formación Campano (N1ca).	
	5.4.1.18. Formación Floresanto (N1f)	
	5.4.1.19. Formación Pajuil (N1N2pas-N1pai)	53

5.4.1.20.	Formacion Monitos (N1mn)	53
5.4.1.21.	Formación Morrocoy-El Pantano (N1mp)	53
5.4.1.22.	Formación Arenas Monas (N1am).	54
5.4.1.23.	Formación El Cerrito (N1ec)	54
5.4.1.24.	Formación Broqueles (N1N2b).	55
5.4.1.1.	Formación Sincelejo (N2Q1s).	
5.4.1.2.	· · · · · · · · · · · · · · · · · · ·	
5.4.1.3.	Formación Betulia (Q1b).	
5.4.1.4.	· ,	
5.4.2. G	Geomorfología	
5.4.2.1.	Paisaje de Lomerío	59
Lomerío	Occidental:	59
Lomerío	Sur:	59
Lomerío	Centro-Nororiental:	60
5.4.2.2.		
5.4.2.3.	·	
5.4.2.4.	Paisaje de piedemonte	61
5.4.3. E	dafologíad	
5.4.3.1.	Subregión Alto Sinú	
5.4.3.2.	Subregión Sinú Medio	
5.4.3.3.	Subregión Bajo Sinú.	64
5.4.3.4.	Subregión San Jorge (Alto)	64
5.4.3.5.	Subregión San Jorge (Bajo)	65
5.4.3.6.	Subregión Canalete y otros Arroyos	
5.4.4. C	Suencas hidrográficas	
5.4.4.1.	Cuenca Río Sinú	65
5.4.4.2.	Cuencas Río San Jorge	66
5.4.4.3.	Cuenca Río Canalete	66
5.4.5. H	idrografía e hidrología	66
5.4.5.1.	Aspectos climatológicos	67
5.5. USO AC	CTUAL DE LAS TIERRAS EN ACTIVIDADES NO FORESTALES	
5.5.1. U	sos de suelos de la subregión Alto Sinú	75
	sos de suelos de la Subregión Bajo Sinú	
5.5.3. U	sos de suelos de la subregión Sinú Medio	77
5.5.4. U	sos de suelos de la subregión Sabana	78
5.5.5. U	sos de Suelos de la subregión San Jorge	79
5.5.6. U	sos de suelos de la subregión Costera	80
5.5.7. Á	reas en Cultivos agrícolas y pecuarios	81
5.5.8. Á	reas convertidas para usos no forestales permanentes (áreas con	
	ntos humanos, cultivos ilícitos, vías, embalses y otras infraestructuras)	83
5.5.9. Á	reas en cultivos hidrobiológicos	85
5.5.10. P	roducción agropecuaria e hidrobiológica	86
5.5.10.1.	Producción agrícola	86
5.5.10.2.	Producción Pecuaria	96
5.5.10.3.	Producción hidrobiológica y pesquera	97
5.1. COBER	Tura y uso de la tierra	98

5.2. CONFL	LICTO DE USOS DE SUELOS POR SUBREGIONES AMBIENTALES	102
5.2.1. U	lso potencial por subregiones ambientales	105
5.2.2. U	lso actual por subregiones ambientales	110
	Conflicto de uso de suelos por subregiones ambientales	
5.3. DESCR	IPCIÓN DE LOS ECOSISTEMAS Y ESPECIES IMPORTANTES	123
5.3.1. A	Antecedentes	123
5.3.1.1.	Ecosistemas forestales naturales	.125
5.3.1.2.	Causas que afectan la oferta de los bosques naturales	.136
5.3.2. Á	Areas forestales	136
5.4. ÁREAS	BOSCOSAS DEL DEPARTAMENTO DE CÓRDOBA	139
5.5. INVENT	ario forestal	141
5.5.1. A	Netodología	141
5.5.1.1.	Premuestreo	.144
5.5.1.2.	Muestreo	.145
5.5.1.3.	Análisis estadístico	.155
5.5.2. R	Pesultados del Inventario forestal	165
5.5.2.1.	Composición florística de las coberturas presentes en el Departamer	ito de
Córdob	G	.165
5.5.2.2.	Cobertura de Bosque Abierto Alto de Tierra Firme	.173
5.5.2.3.	Cobertura de Bosque Abierto Bajo de Tierra Firme	
5.5.2.4.	Cobertura de Bosque Abierto Bajo Inundable	.272
5.5.2.5.	Cobertura de Bosque Denso Alto de Tierra Firme	
5.5.2.6.	Cobertura de Bosque Denso Bajo de Tierra Firme	.325
5.5.2.7.	Cobertura Bosque Denso Bajo Inundable	
5.5.2.8.	Cobertura de Bosque Fragmentado	
5.5.2.9.	Cobertura de Bosque Fragmentado con Pastos y Cultivos	
5.5.2.10.	. Cobertura de Bosque Fragmentado con Vegetación Secundaria	
	. Cobertura de Bosque de Galería	
	. Cobertura de Vegetación Secundaria	
	. Cobertura de Vegetación Secundaria Alta	
	. Cobertura de Vegetación Secundaria Baja	
	dentificación de especies amenazadas e invasoras encontrada en el	
inventario	forestal	623
5.5.4. E	species de importancia económica, ecológica y/o cultural en cuanto	al
	especies.	
5.6. FAUNA	SILVESTRE	645
5.6.1. A	Netodología	647
5.6.2. Ir	nventario de Fauna	654
5.6.2.1.	Aves	.656
5.6.2.2.	Mamíferos	.661
5.6.2.3.	Reptiles	.666
5.6.2.4.	·	
5.6.3. A	Aspectos ecológicos de la Fauna Silvestre	673
5.6.3.1.	Problemática de la fauna silvestre en el departamento de Córdoba.	
5.6.3.2.	COBERTURAS VEGETALES COMO HABITATS PARA LAS ESPECIES DE F	
SILVESTR	?E	

5.6.3.3.	Conectividad Ecologica	6/8
5.7. ASPEC	TOS SOCIALES Y CULTURALES	679
5.7.1. F	Procesos de conformación del territorio	680
5.7.1.1.	Derechos legales y/o tradicionales de la población establecida	682
5.7.1.2.	Procesos de colonización	682
5.7.1.3.	Características socioculturales de la región	685
5.7.1.4.	Áreas de interés arqueológico, cultural y paisajístico	685
5.7.2. F	Población humana	686
5.7.2.1.	Localización espacial de los asentamientos humanos	687
5.7.2.2.	Movilidad y migraciones de la población	687
5.7.2.3.	Tasa de crecimiento demográfico	689
5.7.3. S	Cervicios e infraestructura social	690
5.7.3.1.	Salud	690
5.7.3.2.	Sistemas tradicionales de producción y seguridad alimentaria	693
5.7.3.3.	Tasa de morbilidad	
5.7.3.4.	Educación y analfabetismo	694
5.7.3.5.	Cultura y recreación	
5.7.3.6.	Servicios públicos e infraestructura física	697
5.7.3.7.	Saneamiento básico	
5.7.3.8.	Energía Eléctrica de Córdoba	
5.7.3.9.	Comunicaciones	
	. Transporte aéreo	
	. Conectividad digital	
	. Emisoras	
	. Índice de Necesidades Básicas insatisfechas	
	Presencia y coordinación institucional	
	Autoridades nacionales	
	Autoridades departamentales	
5.7.4.3.	Autoridades municipales	
5.7.4.4.	Cabildos indígenas	
5.7.4.5.	Consejos comunitarios	
	Planificación regional y ambiental	
5.7.5.1.		
	Planes de Ordenamiento Territorial	
	Planes, programas y/o proyectos institucionales que apoyan la order	
	stenible	
5.7.6.1.	Instituciones gubernamentales	
5.7.6.2.	Instituciones no gubernamentales	
5.7.6.3.	Inversión regional	
5.7.6.3.1.	Investigación y transferencia de tecnología	
	TOS ECONÓMICOS	
	Producción forestal	
5.8.1.1.	Antecedentes	
5.8.1.2.	Información general en las empresas forestales	
5.8.1.3.	Industrias forestales de transformación primaria y secundaria	
5.8.1.4.	Capacidad instalada y utilizada	760

5.8.1.5. Clase y cantidad de productos	765
5.8.1.6. Ingresos potenciales anuales de las empresas forestales	767
5.8.1.7. Sitios y centros de acopio de los productos forestales	
5.8.1.8. Volumen de madera anuales	769
5.8.1.9. Posibilidad de aprovechamiento de los residuos vegetales	770
5.8.1.10. Generación de empleo del sector forestal y seguridad industria	l772
5.8.2. Producción hidrobiológica y pesquera	<i>77</i> 6
5.8.3. Producción Artesanal	<i>77</i> 6
6. REGIMEN DE ORDENACIÓN FORESTAL	785
6.1. Zonificación forestal	785
6.1.1. Metodología para la elaboración de la zonificación forestal	<i>7</i> 86
6.1.1.1. Fase de recopilación, generación y sistematización de	información
temática	786
6.1.1.2. Fase de Análisis	
6.1.2. Resultados de la Zonificación forestal por Unidad Administrativa d	e Manejo
790	700
6.1.2.1. Unidad administrativa I – Sinú Medio	
6.1.2.3. Unidad administrativa III – Sabana	
6.1.2.5. Unidad administrativa V – Bajo Sinú	
6.2. LINEAMIENTOS DE MANEJO PARA LAS ÁREAS FORESTALES CON FINES DE USO MÚLTIPLE Y	
CONSERVACIÓN Y PROTECCIÓN AMBIENTAL.	
6.2.1. Conservación y protección ambiental	
6.2.1.1. Áreas forestales protectoras	
6.2.1.2. Áreas forestales de restauración para la conservación	
6.2.2. Uso múltiple	
6.2.2.1. Áreas forestales productoras condicionadas	
6.2.2.2. Áreas de restauración para la producción	
6.2.2.3. Áreas de residulación	
7. BIBLIOGRAFÍA	O DEFINIDO.
LISTADO DE FIGURAS	
FIGURA 1. SUBREGIONES DEL DEPARTAMENTO DE CÓRDOBA.	24
FIGURA 2. SISTEMA VIAL DEL DEPARTAMENTO DE CÓRDOBA.	
FIGURA 3. MAPA DE LA DIVISIÓN POLÍTICA ADMINISTRATIVA DEL DEPARTAMENTO DE CÓRDOBA	
FIGURA 4. ORGANIGRAMA CORPORATIVO	
FIGURA 5. DERECHO DE PROPIEDAD DE LOS BOSQUES	
FIGURA 6. MAPA GEOLÓGICO DEL DEPARTAMENTO DE CÓRDOBA	
FIGURA 7. MAPA GEOMORFOLÓGICO DEL DEPARTAMENTO DE CÓRDOBA	
FIGURA 8. MAPA DE LA DISTRIBUCIÓN DE PRECIPITACIÓN EN EL DEPARTAMENTO DE CÓRDOBA	
TIOUNTO, 111 II TO ELITOINIDOCION DE FRECII HACION EN LE DEI ARTAMENTO DE CORDODA,	

FIGURA 9. MAPA DE TEMPERATURAS PROMEDIOS EN EL DEPARTAMENTO DE CÓRDOBA	72
FIGURA 10. PORCENTAJES DE LAS ÁREAS NO FORESTALES EN LAS SUBREGIONES DEL DEPARTAMENTO DE	
Córdoba	75
FIGURA 11. COBERTURAS DE LA TIERRA DEL DEPARTAMENTO DE CÓRDOBA	.101
FIGURA 12. MAPA USO POTENCIAL DE SUELOS POR SUBREGIONES AMBIENTALES	.109
FIGURA 13. MAPA USO ACTUAL DE SUELOS POR SUBREGIONES AMBIENTALES	
FIGURA 14. METODOLOGÍA GENERAL PARA EVALUAR LOS CONFLICTOS DE USO DE LAS TIERRAS EN COLOMB	lΑ
FIGURA 15. MAPA DE CONFLICTO DE USO DE SUELOS POR SUBREGIONES AMBIENTALES	
FIGURA 16. DISTRIBUCIÓN DE ÁREAS FORESTALES	.137
FIGURA 17. ÁREAS FORESTALES EN JURISDICCIÓN DE LA CVS EN EL DEPARTAMENTO DE CÓRDOBA	
FIGURA 18. COBERTURAS BOSCOSAS DEL DEPARTAMENTO DE CÓRDOBA	
FIGURA 19. DISEÑO DE UNIDAD DE MUESTREO.	
FIGURA 20. MAPA DE COBERTURAS VEGETALES.	
FIGURA 21. PUNTOS DE MUESTREO EN EL DEPARTAMENTO DE CÓRDOBA	
FIGURA 22. DISTRIBUCIÓN DE ESPECIES POR FAMILIA	
FIGURA 23. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS EN EL BOSQUE ABIERTO ALTO DE TIERRA	
FIRME	
FIGURA 24. DISTRIBUCIÓN DE N° DE INDIVIDUOS POR ESPECIE.	
FIGURA 25. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	
FIGURA 26. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	
FIGURA 27. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	
FIGURA 28. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA EL BOSQUE ABIERTO ALTO DE TIERRA FIRME	
FIGURA 29. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA EL BOSQUE ABIERTO ALTO DE TIERRA FIRME	
FIGURA 30. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA EL BOSQUE ABIERTO ALTO DE TIERRA FIRME	
FIGURA 31. DISTRIBUCIÓN DEL IVI PARA EL BOSQUE ABIERTO ALTO DE TIERRA FIRME	
Figura 32. Distribución de la posición sociológica de las especies del bosque abierto alto de tie	
FIRME	
FIGURA 33. DISTRIBUCIÓN DEL SOTOBOSQUE DEL BOSQUE ABIERTO ALTO DE TIERRA FIRME	
FIGURA 34. DISTRIBUCIÓN DEL IVIA PARA EL BOSQUE ABIERTO ALTO DE TIERRA FIRME	
FIGURA 35. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS EN EL BOSQUE ABIERTO BAJO DE TIERRA	
FIRME	
FIGURA 36. DISTRIBUCIÓN DE N° DE INDIVIDUOS POR ESPECIE.	
FIGURA 37. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	
FIGURA 38. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	
FIGURA 39. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	
FIGURA 40. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA EL BOSQUE ABIERTO BAJO DE TIERRA FIRME	
FIGURA 41. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA EL BOSQUE ABIERTO BAJO DE TIERRA FIRME	
FIGURA 42. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA EL BOSQUE ABIERTO BAJO DE TIERRA FIRME	
FIGURA 43. DISTRIBUCIÓN DEL IVI PARA EL BOSQUE ABIERTO BAJO DE TIERRA FIRME	
FIGURA 44. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE ABIERTO BAJO DE TIE	
FIRME	
FIGURA 45. DISTRIBUCIÓN DEL SOTOBOSQUE DEL BOSQUE ABIERTO BAJO DE TIERRA FIRME	
FIGURA 46. DISTRIBUCIÓN DEL IVIA PARA EL BOSQUE ABIERTO BAJO DE TIERRA FIRME	
FIGURA 47. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS EN EL BOSQUE ABIERTO BAJO INUNDAB	
THE COUNTY IS DISTRIBUTED TO THE COUNTY IN T	

FIGURA 48. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	274
FIGURA 49. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	276
FIGURA 50. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	279
FIGURA 51. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA EL BOSQUE ABIERTO BAJO INUNDABLE	284
FIGURA 52. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA EL BOSQUE ABIERTO BAJO INUNDABLE	284
FIGURA 53. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA EL BOSQUE ABIERTO BAJO INUNDABLE	
FIGURA 54. DISTRIBUCIÓN DEL IVI PARA EL BOSQUE ABIERTO BAJO INUNDABLE	
FIGURA 55. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE ABIERTO BAJO	
INUNDABLE	287
FIGURA 56. DISTRIBUCIÓN DEL SOTOBOSQUE DEL BOSQUE ABIERTO BAJO INUNDABLE	
FIGURA 57. DISTRIBUCIÓN DEL IVIA PARA EL BOSQUE ABIERTO BAJO INUNDABLE	
FIGURA 58. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS EN EL BOSQUE DENSO ALTO DE TIERR.	
FIRME	
FIGURA 59. DISTRIBUCIÓN DE N° DE INDIVIDUOS POR ESPECIE	
FIGURA 60. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	
FIGURA 61. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	
FIGURA 62. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	
FIGURA 63. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA EL BOSQUE DENSO ALTO DE TIERRA FIRME	
FIGURA 64. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA EL BOSQUE DENSO ALTO DE TIERRA FIRME	
FIGURA 65. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA EL BOSQUE DENSO ALTO DE TIERRA FIRME	
FIGURA 66. DISTRIBUCIÓN DEL IVI PARA EL BOSQUE DENSO ALTO DE TIERRA FIRME	
FIGURA 67. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE DENSO ALTO DE TI	
FIRME	
FIGURA 68. DISTRIBUCIÓN DEL SOTOBOSQUE DEL BOSQUE DENSO ALTO DE TIERRA FIRME	
FIGURA 69. DISTRIBUCIÓN DEL IVIA PARA EL BOSQUE DENSO ALTO DE TIERRA FIRME	324
FIGURA 70. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS EN EL BOSQUE DENSO BAJO DE TIERR	A
FIRME	326
FIGURA 71. DISTRIBUCIÓN DE Nº DE INDIVIDUOS POR ESPECIE	328
FIGURA 72. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	330
FIGURA 73. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	334
FIGURA 74. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	338
FIGURA 75. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA EL BOSQUE DENSO BAJO DE TIERRA FIRME	347
FIGURA 76. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA EL BOSQUE DENSO BAJO DE TIERRA FIRME	348
FIGURA 77. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA EL BOSQUE DENSO BAJO DE TIERRA FIRME	348
FIGURA 78. DISTRIBUCIÓN DEL IVI PARA EL BOSQUE DENSO BAJO DE TIERRA FIRME	349
FIGURA 79. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE DENSO BAJO DE TI	
FIRME	
FIGURA 80. DISTRIBUCIÓN DEL SOTOBOSQUE DEL BOSQUE DENSO BAJO DE TIERRA FIRME	
FIGURA 81. DISTRIBUCIÓN DEL IVIA PARA EL BOSQUE DENSO BAJO DE TIERRA FIRME	
FIGURA 82. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS EN EL BOSQUE DENSO BAJO INUNDA	
TIGURA 62. DISTRIBUCION FLORISTICA DE LAS FAMILIAS IDENTIFICADAS EN EL BOSQUE DENSO BAJO INUNDA	
FIGURA 83. DISTRIBUCIÓN DE N° DE INDIVIDUOS POR ESPECIE	
FIGURA 84. DISTRIBUCIÓN DE IN DE INDIVIDUOS POR ESPECIE	
FIGURA 85. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	
FIGURA 86. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	
FIGURA 87. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA EL BOSQUE DENSO BAJO INUNDABLE	3/2

FIGURA 88. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA EL BOSQUE DENSO BAJO INUNDABLE	373
FIGURA 89. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA EL BOSQUE DENSO BAJO INUNDABLE	374
FIGURA 90. DISTRIBUCIÓN DEL IVI PARA EL BOSQUE DENSO BAJO INUNDABLE	374
FIGURA 91. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE DENSO BAJO INUNC	ABLE
	376
FIGURA 92. DISTRIBUCIÓN DEL SOTOBOSQUE DEL BOSQUE DENSO BAJO INUNDABLE	378
FIGURA 93. DISTRIBUCIÓN DEL IVIA PARA EL BOSQUE DENSO BAJO INUNDABLE	380
FIGURA 94. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS EN EL BOSQUE FRAGMENTADO	382
FIGURA 95. DISTRIBUCIÓN DE Nº DE INDIVIDUOS POR ESPECIE	383
FIGURA 96. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	385
FIGURA 97. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	389
FIGURA 98. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	393
FIGURA 99. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA EL BOSQUE FRAGMENTADO	401
FIGURA 100. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA EL BOSQUE FRAGMENTADO	402
FIGURA 101. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA EL BOSQUE FRAGMENTADO	403
FIGURA 102. DISTRIBUCIÓN DEL IVI PARA EL BOSQUE FRAGMENTADO	404
FIGURA 103. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE FRAGMENTADO	406
FIGURA 104. DISTRIBUCIÓN DEL SOTOBOSQUE DEL BOSQUE FRAGMENTADO	407
FIGURA 105. DISTRIBUCIÓN DEL IVIA PARA EL BOSQUE FRAGMENTADO	409
FIGURA 106. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS EN EL BOSQUE FRAGMENTADO CON	
PASTOS Y CULTIVOS	412
FIGURA 107. DISTRIBUCIÓN DE N° DE INDIVIDUOS POR ESPECIE	414
FIGURA 108. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	416
FIGURA 109. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	421
FIGURA 110. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	427
FIGURA 111. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA EL BOSQUE FRAGMENTADO CON PASTOS Y	
CULTIVOS	439
FIGURA 112. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA EL BOSQUE FRAGMENTADO CON PASTOS Y CULT	
	439
FIGURA 113. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA EL BOSQUE FRAGMENTADO CON PASTOS Y	
CULTIVOS	
FIGURA 114. DISTRIBUCIÓN DEL IVI PARA EL BOSQUE FRAGMENTADO CON PASTOS Y CULTIVOS	
FIGURA 115. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE FRAGMENTADO C	
PASTOS Y CULTIVOS	
FIGURA 116. DISTRIBUCIÓN DEL SOTOBOSQUE DEL BOSQUE FRAGMENTADO CON PASTOS Y CULTIVOS	
FIGURA 117. DISTRIBUCIÓN DEL IVIA PARA EL BOSQUE FRAGMENTADO CON PASTOS Y CULTIVOS	448
FIGURA 118. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS EN EL BOSQUE FRAGMENTADO CON	
VEGETACIÓN SECUNDARIA	
FIGURA 119. DISTRIBUCIÓN DE Nº DE INDIVIDUOS POR ESPECIE	
FIGURA 120. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	
FIGURA 121. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	
FIGURA 122. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	
FIGURA 123. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA EL BOSQUE FRAGMENTADO CON VEGETACIONES DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DEL CONTRA DEL CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DEL CONTRA DEL CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA	
SECUNDARIA	476
FIGURA 124. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA EL BOSQUE FRAGMENTADO CON VEGETACIÓN	
SECUNDARIA	476

FIGURA 125. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA EL BOSQUE FRAGMENTADO CON VEGETACI	
SECUNDARIA	
FIGURA 126. DISTRIBUCIÓN DEL IVI PARA EL BOSQUE FRAGMENTADO CON VEGETACIÓN SECUNDARIA	
FIGURA 127. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE FRAGMENTADO C	ON
VEGETACIÓN SECUNDARIA	
FIGURA 128. DISTRIBUCIÓN DEL SOTOBOSQUE DEL BOSQUE FRAGMENTADO CON VEGETACIÓN SECUNDARIA	482
FIGURA 129. DISTRIBUCIÓN DEL IVIA PARA EL BOSQUE FRAGMENTADO CON VEGETACIÓN SECUNDARIA	485
FIGURA 130. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS EN EL BOSQUE DE GALERÍA	
FIGURA 131. DISTRIBUCIÓN DE Nº DE INDIVIDUOS POR ESPECIE	
FIGURA 132. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	
FIGURA 133. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	496
FIGURA 134. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	
FIGURA 135. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA EL BOSQUE DE GALERÍA	
FIGURA 136. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA EL BOSQUE DE GALERÍA	
FIGURA 137. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA EL BOSQUE DE GALERÍA	513
FIGURA 138. DISTRIBUCIÓN DEL IVI PARA EL BOSQUE DE GALERÍA	
FIGURA 139. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE DE GALERÍA	516
FIGURA 140. DISTRIBUCIÓN DEL SOTOBOSQUE DEL BOSQUE DE GALERÍA	518
FIGURA 141. DISTRIBUCIÓN DEL IVIA PARA EL BOSQUE DE GALERÍA	521
FIGURA 142. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS EN LA COBERTURA DE VEGETACIÓN	
SECUNDARIA	524
FIGURA 143. DISTRIBUCIÓN DE Nº DE INDIVIDUOS POR ESPECIE	526
FIGURA 144. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	528
FIGURA 145. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	533
FIGURA 146. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	537
FIGURA 147. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA LA COBERTURA DE VEGETACIÓN SECUNDAR	ΊA
	548
FIGURA 148. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA LA COBERTURA DE VEGETACIÓN SECUNDARIA	549
FIGURA 149. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA LA COBERTURA DE VEGETACIÓN SECUNDAR	ďΑ
	549
FIGURA 150. DISTRIBUCIÓN DEL IVI PARA LA COBERTURA DE VEGETACIÓN SECUNDARIA	550
FIGURA 151. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DE LA COBERTURA DE VEGETAC	NÒI
SECUNDARIA	552
FIGURA 152. DISTRIBUCIÓN DEL SOTOBOSQUE LA COBERTURA DE VEGETACIÓN SECUNDARIA	554
FIGURA 153. DISTRIBUCIÓN DEL IVIA PARA LA COBERTURA DE VEGETACIÓN SECUNDARIA	557
FIGURA 154. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADAS DE COBERTURA DE VEGETACIÓN	
SECUNDARIA ALTA	559
FIGURA 155. DISTRIBUCIÓN DE Nº DE INDIVIDUOS POR ESPECIE	561
FIGURA 156. DISTRIBUCIÓN DEL VOLUMEN TOTAL POR CLASE DIAMÉTRICA	563
FIGURA 157. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	566
FIGURA 158. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	570
FIGURA 159. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA DE LA COBERTURA DE VEGETACIÓN SECUNE	DARIA
ALTA	578
FIGURA 160. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA DE LA COBERTURA DE VEGETACIÓN SECUNDARIA.	Α
ALTA	578

FIGURA 161. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA LA COBERTURA DE VEGETACIÓN SEC	UNDARIA
ALTA	579
FIGURA 162. DISTRIBUCIÓN DEL IVI PARA LA COBERTURA DE VEGETACIÓN SECUNDARIA ALTA	580
FIGURA 163. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DE LA COBERTURA DE VE	GETACIÓN
SECUNDARIA ALTA	582
FIGURA 164. DISTRIBUCIÓN DEL SOTOBOSQUE DE LA COBERTURA DE VEGETACIÓN SECUNDARIA ALTA.	
FIGURA 165. DISTRIBUCIÓN DEL IVIA PARA LA COBERTURA DE VEGETACIÓN SECUNDARIA ALTA	
FIGURA 166. DISTRIBUCIÓN FLORÍSTICA DE LAS FAMILIAS IDENTIFICADA PARA LA COBERTURA DE VEGE	
SECUNDARIA BAJA	
FIGURA 167. DISTRIBUCIÓN DE Nº DE INDIVIDUOS POR ESPECIE	
Figura 168. Distribución del volumen total por clase diamétrica	
FIGURA 169. DISTRIBUCIÓN DEL VOLUMEN DEL FUSTE POR CLASE DIAMÉTRICA	
FIGURA 170. DISTRIBUCIÓN DEL VOLUMEN COMERCIAL POR CLASE DIAMÉTRICA	
FIGURA 171. DISTRIBUCIÓN DE LA ABUNDANCIA RELATIVA PARA EL BOSQUE DE VEGETACIÓN SECUND	
Found 170 Distriction of the specific of the s	
FIGURA 172. DISTRIBUCIÓN DE FRECUENCIA RELATIVA PARA LA COBERTURA DE VEGETACIÓN SECUND	
5	
FIGURA 173. DISTRIBUCIÓN DE LA DOMINANCIA RELATIVA PARA LA COBERTURA DE VEGETACIÓN SEC	
BAJA	
FIGURA 174. DISTRIBUCIÓN DEL IVI PARA LA COBERTURA DE VEGETACIÓN SECUNDARIA BAJA	
FIGURA 175. DISTRIBUCIÓN DE LA POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DE LA COBERTURA DE VE	
SECUNDARIA BAJA	
FIGURA 176. DISTRIBUCIÓN DEL SOTOBOSQUE DE LA COBERTURA DE VEGETACIÓN SECUNDARIA BAJA	619
FIGURA 177. ÍNDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA LA COBERTURA DE VEGETACIÓN SI	ECUNDARIA
BAJA	622
FIGURA 178. FORMATO DE REGISTRO DE IDENTIFICACIÓN DE ESPECIES EN CAMPO DEL COMPONENTE	FAUNA.649
FIGURA 179. FORMATO DE ENCUESTA DEL COMPONENTE FAUNA	651
FIGURA 180. COMPOSICIÓN DE LA FAUNA DE ACUERDO AL NÚMERO DE ESPECIES CARACTERIZADAS	EN EL
DEPARTAMENTO DE CÓRDOBA A PARTIR DE LA INFORMACIÓN DE CAMPO	654
FIGURA 181. AVIFAUNA REGISTRADA PARA LAS DIFERENTES COBERTURAS VEGETALES EN EL DEPARTAM	
Córdoba; A) Theristicus caudatus B) Psarocolius decumanus C) Buteogallus urubit	
FIGURA 182. DISTRIBUCIÓN (%) DE LAS ESPECIES DE AVES CON RESPECTO AL ORDEN AL QUE PERTENE	
FIGURA 183. DISTRIBUCIÓN (%) DE LAS ESPECIES DE AVES CON RESPECTO A LAS FAMILIAS A LAS QUE	.02007
PERTENECEN	660
FIGURA 184. MAMÍFEROS REGISTRADOS PARA LAS DIFERENTES COBERTURAS VEGETALES EN EL DEPARTA	
CÓRDOBA; A) SAGUINUS OEDIPUS B) GALICTIS VITTATA C) BRADYPUS VARIEGATUS	
FIGURA 185. DISTRIBUCIÓN DE MAMÍFEROS CON RESPECTO A LAS FAMILIAS A LAS QUE PERTENECEN	
FIGURA 186. REPTILES REGISTRADOS PARA LAS DIFERENTES COBERTURAS VEGETALES EN EL DEPARTAME	
CÓRDOBA; A) GONATODES ALBOGULARIS B) LEPOSOMA RUGICEPS C) CHIRONIUS CARINATUS	
FIGURA 187. DISTRIBUCIÓN DE REPTILES CON RESPECTO A LAS FAMILIAS A LAS QUE PERTENECEN	
FIGURA 188. ANFIBIOS REGISTRADOS PARA LAS DIFERENTES COBERTURAS VEGETALES EN EL DEPARTAM	
CÓRDOBA; A) RHINELLA MARINA.	
FIGURA 189. DISTRIBUCIÓN DE ANFIBIOS CON RESPECTO A LAS FAMILIAS A LAS QUE PERTENECEN	
FIGURA 190. PERTURBACIONES POR DEFORESTACIÓN REGISTRADAS EN EL DEPARTAMENTO DE CÓRDO	
FIGURA 191. DEFORESTACIÓN CAUSADA POR LA AMPLIACIÓN DE LA FRONTERA AGROPECUARIA	
FIGURA 192. DISTRIBUCIÓN DE ESPECIES DE FAUNA SILVESTRE (%) REGISTRADAS POR COBERTURA VEG	ETAL678

FIGURA 193. DISTRIBUCIÓN DEL BOSQUE DE GALERÍA EN EL DEPARTAMENTO DE CÓRDOBA	679
FIGURA 194. PORCENTAJE DE EMPRESAS FORESTALES QUE CUENTAN CON RUT Y CÁMARA DE COMERCIO E	N EL
DEPARTAMENTO DE CÓRDOBA.	756
FIGURA 195. EMPRESAS FORESTALES QUE CUENTAN CON RUT Y CÁMARA DE COMERCIO POR SUBREGIÓN E	N EL
DEPARTAMENTO DE CÓRDOBA.	757
FIGURA 196. EMPRESAS FORESTALES QUE CUENTAN CON LIBRO DE OPERACIONES ES EL DEPARTAMENTO DE	
Córdoba	757
FIGURA 197. EMPRESAS FORESTALES QUE CUENTAN CON LIBRO DE OPERACIONES POR SUBREGIÓN EN EL	
DEPARTAMENTO DE CÓRDOBA	758
FIGURA 198. EMPRESAS FORESTALES DE ACUERDO A SU CLASIFICACIÓN	759
FIGURA 199. EMPRESAS FORESTALES DE ACUERDO A SU CLASIFICACIÓN — PRIMARIA Y/O SECUNDARIA -	
distribuidas por subregiones en el departamento de Córdoba	759
FIGURA 200. NUMERO DE MÁQUINAS PRESENTES POR EMPRESA FORESTAL EN EL DEPARTAMENTO DE CÓRDO	
Figura 201. Numero de máquinas presentes por empresa forestal distribuidas por subregión en e	
DEPARTAMENTO DE CÓRDOBA.	
FIGURA 202. TIPOS DE MÁQUINAS UTILIZADAS POR LAS EMPRESAS FORESTALES EN EL DEPARTAMENTO DE	
Córdoba	762
FIGURA 203. PORCENTAJE DE LAS MÁQUINAS UTILIZADAS POR LAS EMPRESAS FORESTALES EN EL DEPARTAME	NTO
de Córdoba	762
FIGURA 204. PORCENTAJE DE LAS MAQUINAS UTILIZADAS POR LAS EMPRESAS FORESTALES DISTRIBUIDAS POR	
SUBREGIONES EN EL DEPARTAMENTO DE CÓRDOBA	763
FIGURA 205. SUFICIENCIA DE MÁQUINAS PARA LA DEMANDA DE PRODUCTOS FORESTALES	764
FIGURA 206. ANÁLISIS POR SUBREGIONES DE LA SUFICIENCIA DE MÁQUINAS EN LAS EMPRESAS FORESTALES	764
FIGURA 207. PRINCIPALES PRODUCTOS QUE SE COMERCIALIZAN EN EL DEPARTAMENTO DE CÓRDOBA	765
FIGURA 208. PRINCIPALES ESPECIES FORESTALES UTILIZADAS EN EL DEPARTAMENTO DE CÓRDOBA	766
FIGURA 209. MESES DE MAYOR VARIACIÓN EN LA PRODUCCIÓN DE PRODUCTOS MADERABLES EN EL	
DEPARTAMENTO DE CÓRDOBA	766
FIGURA 210. RANGOS DE COMERCIALIZACIÓN DE PRODUCTOS MADERABLES EN EL DEPARTAMENTO DE	
Córdoba	767
FIGURA 211. RELACIÓN ENTRE LOS RANGOS DE COMERCIALIZACIÓN Y LAS SUBREGIONES	768
FIGURA 212. PRINCIPALES DESTINOS DE PRODUCTOS MADERABLES EN EL DEPARTAMENTO DE CÓRDOBA	768
FIGURA 213. VOLUMEN DE MADERA ANUAL	769
FIGURA 214. ANÁLISIS DE VOLUMEN ANUAL POR SUBREGIONES AMBIENTALES	770
FIGURA 215. APROVECHAMIENTO DE RESIDUOS MADERABLES EN EL DEPARTAMENTO DE CÓRDOBA	770
FIGURA 216. RELACIÓN ENTRE EL APROVECHAMIENTO DE LOS RESIDUOS MADERABLES Y LAS SUBREGIONES	771
FIGURA 217. USOS DE LOS RESIDUOS MADERABLES EN EL DEPARTAMENTO DE CÓRDOBA	
FIGURA 218. N° DE EMPLEOS QUE GENERAN LAS EMPRESAS FORESTALES	772
FIGURA 219. ANÁLISIS DE GENERACIÓN DE EMPLEOS POR SUBREGIONES AMBIENTALES	
FIGURA 220. VARIACIÓN MENSUAL DE GENERACIÓN DE EMPLEOS.	
FIGURA 221. UTILIZACIÓN DE EQUIPOS DE PROTECCIÓN EN LAS EMPRESAS FORESTALES	
FIGURA 222. ANÁLISIS POR SUBREGIÓN DE SEGURIDAD INDUSTRIAL	
FIGURA 223. CESTO ELABORADO EN BIHAO	
FIGURA 224. TEJIDO CAÑA FLECHA	
Figura 225. Artesano tejiendo una estera con fibra de Enea, Córdoba	
•	

Figura 226. Artesano tejiendo una estera con fibra de Enea, Córdoba	782
FIGURA 227. CESTOS ELABORADOS EN PALMA ESTERA	783
Figura 228. Cesto en fibra de calceta de plátano, Urabá	784
Figura 229. Esquema metodológico de zonificación forestal	787
Figura 230. Zonificación forestal del Departamento de Córdoba	
FIGURA 231. PATRÓN ESPACIAL A IMPLEMENTAR MEDIANTE GENERACIÓN DE NÚCLEOS DE DIVERSIDAD	
Figura 232. Detalle del arreglo nuclear	
LISTADO DE TABLAS	
Tabla 1. Área por subregión ambiental	24
Tabla 2. Municipios y corregimiento del Departamento de Córdoba.	
Tabla 3. Planta de personal	37
Tabla 4. Geoformas del departamento de Córdoba.	
Tabla 5. Áreas no Forestales en las Subregiones del Departamento de Córdoba	75
Tabla 6. Usos de suelos de la Subregión Alto Sinú	76
Tabla 7. Usos de Suelos Subregión Bajo Sinú	77
Tabla 8. Usos de Suelos de la Subregión Sinú Medio	78
Tabla 9. Usos de Suelos de la Subregión Sabana	79
Tabla 10. Usos de Suelos de la Subregión San Jorge	
Tabla 11. Usos de Suelos Subregión Costera	81
Tabla 12. Áreas convertidas en usos no forestales (Asentamientos humanos)	83
Tabla 13 . Áreas vías por Subregión Ambiental	84
Tabla 14. Área con coca en el departamento de Córdoba (2008-2015)	
Tabla 15. Cantidad de granjas, estanques y jaulones y espejo de agua en hectáreas utilizado	
UTILIZADOS EN LA PRODUCCIÓN PISCÍCOLA.	
Tabla 16. Producción cultivos permanentes subregión Alto Sinú	
Tabla 17. Producción de cultivos transitorios Subregión Alto Sinú	
Tabla 18. Producción de cultivos anuales Subregión Alto Sinú	87
Tabla 19. Producción de cultivos permanentes Subregión Bajo Sinú	88
Tabla 20. Producción de cultivos transitorios Subregión Bajo Sinú	
Tabla 21. Producción de cultivos anuales Subregión Bajo Sinú	
Tabla 22. Producción de cultivos permanentes Subregión Costera	89
Tabla 23. Producción de cultivos transitorios Subregión Costera	91
Tabla 24. Producción cultivos anuales Subregión Costera	91
Tabla 25 Producción de cultivos permanentes Subregión Sabana	92
Tabla 26. Producción de cultivos transitorios Subregión Sabana	92
Tabla 27. Producción de cultivos anuales Subregión Sabana	93
Tabla 28. Producción de cultivos permanentes Subregión San Jorge	93
Tabla 29. Producción de cultivos transitorios Subregión San Jorge	94
Tabla 30. Producción de cultivos anuales Subregión San Jorge	94
Tabla 31. Producción de cultivos permanentes Subregión Sinú Medio	95
Tabla 32. Producción de cultivos transitorios Subregión Sinú medio	95
Tabla 33. Producción de cultivos anuales Subregión Sinú Medio	96
Tabla 34. Producción Pecuaria por Subregiones Ambientales	97
Tabla 35. Producción Hidrobiológica y pesquera en Córdoba	98

Tabla 36. Cobertura de la tierra	98
TABLA 37. USO POTENCIAL DE SUELOS EN LA SUBREGIÓN ALTO SINÚ	105
TABLA 38. USO POTENCIAL DE SUELOS EN LA SUBREGIÓN BAJO SINÚ	106
TABLA 39 USO POTENCIAL DE SUELOS EN LA SUBREGIÓN COSTERA	106
TABLA 40. USO POTENCIAL DE SUELOS EN LA SUBREGIÓN SABANA	107
TABLA 41. USO POTENCIAL DE SUELOS EN LA SUBREGIÓN SAN JORGE	108
TABLA 42. USO POTENCIAL DE SUELOS EN LA SUBREGIÓN SINÚ MEDIO	108
TABLA 43. USO ACTUAL DE SUELOS EN LA SUBREGIÓN ALTO SINÚ	111
Tabla 44. Uso actual de suelos en la subregión Bajo Sinú	112
TABLA 45. USO ACTUAL DE SUELOS EN LA SUBREGIÓN COSTERA	112
TABLA 46. USO ACTUAL DE SUELOS EN LA SUBREGIÓN SINÚ MEDIO	113
TABLA 47. USO ACTUAL DE SUELOS EN LA SUBREGIÓN SABANA	114
TABLA 48. USO ACTUAL DE SUELOS EN LA SUBREGIÓN SAN JORGE	115
TABLA 49. CLAVE PARA LA ASIGNACIÓN DE CONFLICTOS DE USO DE LA TIERRA	118
TABLA 50. CONFLICTO DE USOS DE SUELOS DE LA SUBREGIÓN ALTO SINÚ	120
TABLA 51. CONFLICTO DE USOS DE SUELOS DE LA SUBREGIÓN BAJO SINÚ	120
TABLA 52 CONFLICTO DE USOS DE SUELOS DE LA SUBREGIÓN SABANA	121
TABLA 53. CONFLICTO DE USOS DE SUELOS DE LA SUBREGIÓN SAN JORGE	122
TABLA 54. CONFLICTO DE USOS DE SUELOS DE LA SUBREGIÓN SINÚ MEDIO	122
TABLA 55. CONFLICTO DE USOS DE SUELOS DE LA SUBREGIÓN COSTERA	123
TABLA 56. DISTRIBUCIÓN PORCENTUAL DE LOS BIOMAS PRESENTES EN CADA SUBREGIÓN DEL DEPARTAMENTO) DE
Córdoba	124
TABLA 57. PRINCIPALES EMPRESAS DE REFORESTACIÓN COMERCIAL.	130
TABLA 58. EXTENSIÓN Y ESPECIES DE LAS PLANTACIONES FORESTALES EN CÓRDOBA	131
TABLA 59. EXTENSIÓN Y ESPECIES DE LAS PLANTACIONES FORESTALES EN CÓRDOBA REGISTRADAS EN EL ICA	131
TABLA 60. ESPECIES DE FLORA EN CATEGORÍA DE AMENAZA EN EL DEPARTAMENTO DE CÓRDOBA	135
TABLA 61. ÁREAS FORESTALES POR SUBREGIÓN	137
TABLA 62. COBERTURAS BOSCOSAS DEL DEPARTAMENTO DE CÓDOBA.	139
Tabla 63. Integrantes de cuadrilla de campo	.142
TABLA 64. ESTADÍGRAFOS DEL PREMUESTREO ESTRATIFICADO AL AZAR	144
Tabla 65. Estadígrafos del muestreo aleatorio simple	.144
TABLA 66. DISTRIBUCIÓN DE PARCELAS POR TIPO DE COBERTURA.	.145
TABLA 67. UBICACIÓN DE PARCELAS DE MUESTREO	146
TABLA 68. VARIABLES DE CADA TIPO DE COBERTURA	153
TABLA 69. VARIABLES DE LA MEDIA DE LA MUESTRA ESTRATIFICADA	.154
TABLA 70. ESTADÍGRAFOS DEL MUESTREO ALEATORIO SIMPLE EN MUESTREO	155
TABLA 71. INTERVALOS DE ALTURA	.159
TABLA 72. ESTRATOS DE REGENERACIÓN NATURAL	.161
TABLA 73. COMPOSICIÓN FLORÍSTICA DE LAS COBERTURAS DEL DEPARTAMENTO DE CÓRDOBA	.165
TABLA 74. COMPOSICIÓN FLORÍSTICA DEL BOSQUE ABIERTO ALTO DE TIERRA FIRME	173
TABLA 75. N° DE INDIVIDUOS/ESPECIE/HA DEL BOSQUE ABIERTO ALTO DE TIERRA FIRME	.175
Tabla 76. Indicadores por especie de área basal	177
TABLA 77. INDICADORES POR ESPECIE DE VOLUMEN TOTAL	
TABLA 78. DISTRIBUCIÓN DE VOLUMEN TOTAL POR ESPECIE Y POR CLASE DIAMÉTRICA	181
TABLA 79. INDICADORES POR ESPECIE DE VOLUMEN DE FUSTE	
TABLA 80. DISTRIBUCIÓN DE VOLUMEN DEL FUSTE POR ESPECIE Y POR CLASE DIAMÉTRICA	186

Tabla 81. Indicadores por especie de volumen comercial	190
TABLA 82. DISTRIBUCIÓN DE VOLUMEN COMERCIAL POR ESPECIE Y POR CLASE DIAMÉTRICA	191
TABLA 83. INDICADORES POR ESPECIE DE VOLUMEN COSECHABLE	195
TABLA 84. DISTRIBUCIÓN DE VOLUMEN COSECHABLE POR ESPECIE Y POR CLASE DIAMÉTRICA	196
TABLA 85. ESTRUCTURA HORIZONTAL PARA EL BOSQUE ABIERTO ALTO DE TIERRA FIRME	200
TABLA 86. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE ABIERTO ALTO DE TIERRA FIRME	
TABLA 87. CÁLCULO DE LA ESTRUCTURA DE SOTOBOSQUE EN EL BOSQUE ABIERTO ALTO DE TIERRA FIRME	
TABLA 88. ÍNDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA EL BOSQUE ABIERTO ALTO DE TIERRA FIRME.	209
TABLA 89. ÍNDICES DE BIODIVERSIDAD ALFA DEL BOSQUE ABIERTO ALTO DE TIERRA FIRME	
TABLA 90. COMPOSICIÓN FLORÍSTICA DEL BOSQUE ABIERTO BAJO DE TIERRA FIRME	
TABLA 91. N° DE INDIVIDUOS/ESPECIE/HA DEL BOSQUE ABIERTO BAJO DE TIERRA FIRME	
Tabla 92. Indicadores por especie de área basal	
Tabla 93. Indicadores por especie de volumen total	
Tabla 94. Distribución de volumen total por especie y por clase diamétrica	
Tabla 95. Indicadores por especie de volumen de fuste	
Tabla 96. Distribución de volumen del fuste por especie y por clase diamétrica	
TABLA 97. INDICADORES POR ESPECIE DE VOLUMEN COMERCIAL	
Tabla 98. Distribución de volumen comercial por especie y por clase diamétrica	
Tabla 99. Indicadores por especie de volumen cosechable	
Tabla 100. Distribución de volumen cosechable por especie y por clase diamétrica	
TABLA 101. ESTRUCTURA HORIZONTAL PARA EL BOSQUE ABIERTO ALTO DE TIERRA FIRME	
TABLA 102. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE ABIERTO BAJO DE TIERRA FIRME	
TABLA 103. CÁLCULO DE LA ESTRUCTURA DE SOTOBOSQUE EN EL BOSQUE ABIERTO BAJO DE TIERRA FIRME	
TABLA 104. ÍNDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA EL BOSQUE ABIERTO BAJO DE TIERRA FIRME	
TABLA 104. INDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA EL BOSQUE ABIERTO BAJO DE HERRA FIRME	
TABLA 106. COMPOSICIÓN FLORÍSTICA DEL BOSQUE ABIERTO BAJO DE HERRA FIRME	
TABLA 105, COMPOSICION FLORISTICA DEL BOSQUE ABIERTO BAJO INUNDABLE	
TABLA 108. INDICADORES POR ESPECIE DE VOLUMEN TOTAL	
Tabla 109. Distribución de volumen total por especie y por clase diamétrica	
TABLA 110. INDICADORES POR ESPECIE DE VOLUMEN DE FUSTE	
TABLA 111. DISTRIBUCIÓN DE VOLUMEN DEL FUSTE POR ESPECIE Y POR CLASE DIAMÉTRICA	
TABLA 113. DISTRIBUCIÓN DE VOLUMEN COMERCIAL POR ESPECIE Y POR CLASE DIAMÉTRICA	
TABLA 114. INDICADORES POR ESPECIE DE VOLUMEN COSECHABLE	
TABLA 115. DISTRIBUCIÓN DE VOLUMEN COSECHABLE POR ESPECIE Y POR CLASE DIAMÉTRICA	
TABLA 116. ESTRUCTURA HORIZONTAL PARA EL BOSQUE ABIERTO BAJO INUNDABLE	
TABLA 117. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE ABIERTO BAJO INUNDABLE	
TABLA 118. CÁLCULO DE LA ESTRUCTURA DE SOTOBOSQUE EN EL BOSQUE ABIERTO BAJO INUNDABLE	
TABLA 119. ÍNDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA EL BOSQUE ABIERTO BAJO INUNDABLE	
TABLA 120. ÍNDICES DE BIODIVERSIDAD ALFA DEL BOSQUE ABIERTO BAJO INUNDABLE	
TABLA 121. COMPOSICIÓN FLORÍSTICA DEL BOSQUE DENSO ALTO DE TIERRA FIRME	
TABLA 122. N° DE INDIVIDUOS/ESPECIE/HA DEL BOSQUE DENSO ALTO DE TIERRA FIRME	
Tabla 123. Indicadores por especie de área basal	
TABLA 124.INDICADORES POR ESPECIE DE VOLUMEN TOTAL	
TABLA 125. DISTRIBUCIÓN DE VOLUMEN TOTAL POR ESPECIE Y POR CLASE DIAMÉTRICA	
Tabla 126. Indicadores por especie de volumen de fuste	301

TABLA 127. DISTRIBUCIÓN DE VOLUMEN DEL FUSTE POR ESPECIE Y POR CLASE DIAMÉTRICA	303
Tabla 128.Indicadores por especie de volumen comercial	306
TABLA 129. DISTRIBUCIÓN DE VOLUMEN COMERCIAL POR ESPECIE Y POR CLASE DIAMÉTRICA	307
TABLA 130. INDICADORES POR ESPECIE DE VOLUMEN COSECHABLE	310
TABLA 131. DISTRIBUCIÓN DE VOLUMEN COSECHABLE POR ESPECIE Y POR CLASE DIAMÉTRICA	311
TABLA 132. ESTRUCTURA HORIZONTAL PARA EL BOSQUE DENSO ALTO DE TIERRA FIRME	314
TABLA 133. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE DENSO ALTO DE TIERRA FIRME	
TABLA 134. CÁLCULO DE LA ESTRUCTURA DE SOTOBOSQUE EN EL BOSQUE DENSO ALTO DE TIERRA FIRME	
TABLA 135. ÍNDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA EL BOSQUE DENSO ALTO DE TIERRA FIME	
Tabla 136. Índices de biodiversidad denso alto de tierra firme	
TABLA 137. COMPOSICIÓN FLORÍSTICA DEL BOSQUE DENSO BAJO DE TIERRA FIRME	
TABLA 138. N° DE INDIVIDUOS/ESPECIE/HA DEL BOSQUE DENSO BAJO DE TIERRA FIRME	
Tabla 139. Indicadores por especie de área basal	
Tabla 140. Indicadores por especie de volumen total	
TABLA 141. DISTRIBUCIÓN DE VOLUMEN TOTAL POR ESPECIE Y POR CLASE DIAMÉTRICA	
Tabla 142. Indicadores por especie de volumen de fuste	
Tabla 143. Distribución de volumen del fuste por especie y por clase diamétrica	
Tabla 144. Indicadores por especie de volumen comercial	
Tabla 145. Distribución de volumen comercial por especie y por clase diamétrica	
TABLA 146. INDICADORES POR ESPECIE DE VOLUMEN COSECHABLE	
Tabla 147. Distribución de volumen cosechable por especie y por clase diamétrica	
TABLA 148. ESTRUCTURA HORIZONTAL PARA EL BOSQUE DENSO BAJO DE TIERRA FIRME	
TABLA 149. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE DENSO BAJO DE TIERRA FIRME	
Tabla 150. Cálculo de la estructura de sotobosque en el bosque denso bajo de tierra firme	
TABLA 151. ÍNDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA EL BOSQUE DENSO BAJO DE TIERRA FIRME	
TABLA 152. ÍNDICES DE BIODIVERSIDAD ALFA DEL BOSQUE DENSO BAJO DE TIERRA FIRME	
TABLA 153. COMPOSICIÓN FLORÍSTICA DEL BOSQUE DENSO BAJO INUNDABLE	
TABLA 154. N° DE INDIVIDUOS/ESPECIE/HA DEL BOSQUE DENSO BAJO INUNDABLE	
Tabla 155. Indicadores por especie de área basal	
TABLA 156. INDICADORES POR ESPECIE DE VOLUMEN TOTAL	
Tabla 157. Distribución de volumen total por especie y por clase diamétrica	
TABLA 158. INDICADORES POR ESPECIE DE VOLUMEN DE FUSTE	
Tabla 159. Distribución de volumen del fuste por especie y por clase diamétrica	
Tabla 160. Indicadores por especie de volumen comercial	
Tabla 161. Distribución de Volumen comercial por especie y por clase diamétrica	367
TABLA 162. INDICADORES POR ESPECIE DE VOLUMEN COSECHABLE	
Tabla 163. Distribución de volumen cosechable por especie y por clase diamétrica	
TABLA 164. ESTRUCTURA HORIZONTAL PARA EL BOSQUE DENSO BAJO INUNDABLE	
TABLA 165. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE DENSO BAJO INUNDABLE	
TABLA 166. CÁLCULO DE LA ESTRUCTURA DE SOTOBOSQUE EN EL BOSQUE DENSO BAJO INUNDABLE	
TABLA 167. ÍNDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA EL BOSQUE DENSO BAJO INUNDABLE	
TABLA 168. ÍNDICES DE BIODIVERSIDAD ALFA DEL BOSQUE DENSO BAJO INUNDABLE	
Tabla 169. Composición florística del bosque fragmentado	
TABLA 170. N° DE INDIVIDUOS/ESPECIE/HA DEL BOSQUE FRAGMENTADO	
TABLA 171. INDICADORES POR ESPECIE DE ÁREA BASAL	
TABLA 172. INDICADORES POR ESPECIE DE VOLUMEN TOTAL	

TABLA 173. DISTRIBUCIÓN DE VOLUMEN TOTAL POR ESPECIE Y POR CLASE DIAMÉTRICA	386
TABLA 174. INDICADORES POR ESPECIE DE VOLUMEN DE FUSTE	
Tabla 175. Distribución de volumen del fuste por especie y por clase diamétrica	
Tabla 176. Indicadores por especie de volumen comercial	
Tabla 177. Distribución de volumen comercial por especie y por clase diamétrica	
Tabla 178. Indicadores por especie de volumen cosechable	
Tabla 179. Distribución de volumen cosechable por especie y por clase diamétrica	
TABLA 180. ESTRUCTURA HORIZONTAL PARA EL BOSQUE FRAGMENTADO	
TABLA 181. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE FRAGMENTADO	405
TABLA 182. CÁLCULO DE LA ESTRUCTURA DE SOTOBOSQUE EN EL BOSQUE FRAGMENTADO	
TABLA 183. ÍNDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA EL BOSQUE FRAGMENTADO	
TABLA 184. ÍNDICES DE BIODIVERSIDAD ALFA DEL BOSQUE FRAGMENTADO	410
TABLA 185. COMPOSICIÓN FLORÍSTICA DEL BOSQUE FRAGMENTADO CON PASTOS Y CULTIVOS	
TABLA 186. N° DE INDIVIDUOS/ESPECIE/HA DEL BOSQUE FRAGMENTADO CON PASTOS Y CULTIVOS	
TABLA 187. INDICADORES POR ESPECIE DE ÁREA BASAL	
TABLA 188. INDICADORES POR ESPECIE DE VOLUMEN TOTAL	
TABLA 189. DISTRIBUCIÓN DE VOLUMEN TOTAL POR ESPECIE Y POR CLASE DIAMÉTRICA	417
TABLA 190. INDICADORES POR ESPECIE DE VOLUMEN DE FUSTE	421
TABLA 191. DISTRIBUCIÓN DE VOLUMEN DEL FUSTE POR ESPECIE Y POR CLASE DIAMÉTRICA	
TABLA 192. INDICADORES POR ESPECIE DE VOLUMEN COMERCIAL	427
TABLA 193. DISTRIBUCIÓN DE VOLUMEN COMERCIAL POR ESPECIE Y POR CLASE DIAMÉTRICA	
TABLA 194. INDICADORES POR ESPECIE DE VOLUMEN COSECHABLE	432
TABLA 195. DISTRIBUCIÓN DE VOLUMEN COSECHABLE POR ESPECIE Y POR CLASE DIAMÉTRICA	433
TABLA 196. ESTRUCTURA HORIZONTAL PARA EL BOSQUE FRAGMENTADO CON PASTOS Y CULTIVOS	437
TABLA 197. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE FRAGMENTADO CON PASTOS Y CULTIVO	os 442
TABLA 198. CÁLCULO DE LA ESTRUCTURA DE SOTOBOSQUE EN EL BOSQUE FRAGMENTADO CON PASTOS Y	
CULTIVOS	444
TABLA 199. ÍNDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA EL BOSQUE FRAGMENTADO CON PASTOS	Υ
CULTIVOS	446
TABLA 200. ÍNDICES DE BIODIVERSIDAD ALFA DEL BOSQUE FRAGMENTADO CON PASTOS Y CULTIVOS	448
TABLA 201. COMPOSICIÓN FLORÍSTICA DEL BOSQUE FRAGMENTADO CON VEGETACIÓN SECUNDARIA	449
Tabla 202. N° de individuos/especie/ha del bosque fragmentado con vegetación secundaria .	451
Tabla 203. Indicadores por especie de área basal	453
TABLA 204. INDICADORES POR ESPECIE DE VOLUMEN TOTAL	455
TABLA 205. DISTRIBUCIÓN DE VOLUMEN TOTAL POR ESPECIE Y POR CLASE DIAMÉTRICA	457
Tabla 206. Indicadores por especie de volumen de fuste	460
TABLA 207. DISTRIBUCIÓN DE VOLUMEN DEL FUSTE POR ESPECIE Y POR CLASE DIAMÉTRICA	461
Tabla 208. Indicadores por especie de volumen comercial	465
TABLA 209. DISTRIBUCIÓN DE VOLUMEN COMERCIAL POR ESPECIE Y POR CLASE DIAMÉTRICA	466
Tabla 210. Indicadores por especie de volumen cosechable	469
Tabla 211. Distribución de volumen cosechable por especie y por clase diamétrica	471
Tabla 212. Estructura horizontal para el bosque fragmentado con vegetación secundaria	474
Tabla 213. Posición sociológica de las especies del bosque fragmentado con vegetación	
SECUNDARIA	479
TABLA 214. CÁLCULO DE LA ESTRUCTURA DE SOTOBOSQUE EN EL BOSQUE FRAGMENTADO CON VEGETACIÓ	NČ
SECUNDARIA	481

Tabla 215. Índice de valor de importancia ampliado para el bosque fragmentado con vegeta	(CIÓN
SECUNDARIA	482
Tabla 216.Índices de biodiversidad alfa del bosque fragmentado con vegetación secundaria	485
TABLA 217. COMPOSICIÓN FLORÍSTICA DEL BOSQUE DE GALERIA	486
TABLA 218. N° DE INDIVIDUOS/ESPECIE/HA DEL BOSQUE DE GALERIA	488
TABLA 219. INDICADORES POR ESPECIE DE ÁREA BASAL	490
TABLA 220. INDICADORES POR ESPECIE DE VOLUMEN TOTAL	491
TABLA 221. DISTRIBUCIÓN DE VOLUMEN TOTAL POR ESPECIE Y POR CLASE DIAMÉTRICA	493
TABLA 222. INDICADORES POR ESPECIE DE VOLUMEN DE FUSTE	496
TABLA 223. DISTRIBUCIÓN DE VOLUMEN DEL FUSTE POR ESPECIE Y POR CLASE DIAMÉTRICA	498
TABLA 224. INDICADORES POR ESPECIE DE VOLUMEN COMERCIAL	501
Tabla 225. Distribución de volumen comercial por especie y por clase diamétrica	503
TABLA 226. INDICADORES POR ESPECIE DE VOLUMEN COSECHABLE	506
TABLA 227. INDICADORES POR ESPECIE DE VOLUMEN COSECHABLE	507
TABLA 228. ESTRUCTURA HORIZONTAL PARA EL BOSQUE DE GALERIA	510
TABLA 229. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE DE GALERIA	515
TABLA 230. CÁLCULO DE LA ESTRUCTURA DE SOTOBOSQUE EN EL BOSQUE DE GALERIA	517
TABLA 231. ÍNDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA EL BOSQUE DE GALERIA	519
Tabla 232. Índices de biodiversidad alfa del bosque de galería	521
TABLA 233. COMPOSICIÓN FLORÍSTICA DEL BOSQUE DE VEGETACIÓN SECUNDARIA	522
TABLA 234. N° DE INDIVIDUOS/ESPECIE/HA DE LA COBERTURA DE VEGETACIÓN SECUNDARIA	
TABLA 235. INDICADORES POR ESPECIE DE ÁREA BASAL	
TABLA 236. INDICADORES POR ESPECIE DE VOLUMEN TOTAL	528
TABLA 237. DISTRIBUCIÓN DE VOLUMEN TOTAL POR ESPECIE Y POR CLASE DIAMÉTRICA	
TABLA 238. INDICADORES POR ESPECIE DE VOLUMEN DE FUSTE	
TABLA 239. DISTRIBUCIÓN DE VOLUMEN DEL FUSTE POR ESPECIE Y POR CLASE DIAMÉTRICA	
TABLA 240. INDICADORES POR ESPECIE DE VOLUMEN COMERCIAL	
TABLA 241. DISTRIBUCIÓN DE VOLUMEN COMERCIAL POR ESPECIE Y POR CLASE DIAMÉTRICA	
Tabla 242. Indicadores por especie de volumen cosechable	
Tabla 243. Distribución de volumen cosechable por especie y por clase diamétrica	
TABLA 244. ESTRUCTURA HORIZONTAL PARA EL BOSQUE DE VEGETACIÓN SECUNDARIA	
TABLA 245. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DEL BOSQUE DE VEGETACIÓN SECUNDARIA	
Tabla 246. Cálculo de la estructura de sotobosque en el bosque de vetagetación secundaria	
Tabla 247. Índice de valor de importancia ampliado para la cobertura de vegetación secund.	
Tabla 248. Indices de biodiversidad alfa de la cobertura de vegetación secundaria	
Tabla 249. Composición florística de la cobertura vegetación secundaria alta	
Tabla 250. N° de individuos/especie/ha de la cobertura de vegetación secundaria alta	
Tabla 251. Indicadores por especie de área basal	
Tabla 252. Indicadores por especie de volumen total	
Tabla 253. Distribución de volumen total por especie y por clase diamétrica	
TABLA 254. INDICADORES POR ESPECIE DE VOLUMEN DE FUSTE	
TABLA 255. DISTRIBUCIÓN DE VOLUMEN DEL FUSTE POR ESPECIE Y POR CLASE DIAMÉTRICA	
TABLA 256. INDICADORES POR ESPECIE DE VOLUMEN COMERCIAL	
Tabla 257. Distribución de volumen comercial por especie y por clase diamétrica	
TABLA 258. INDICADORES POR ESPECIE DE VOLUMEN COSECHABLE	
TABLA 200, INDICADONES I ON ESI ECIE DE VOLUIVILIN COSECHABLE	0/ 0

TABLA 259. DISTRIBUCIÓN DE VOLUMEN COSECHABLE POR ESPECIE Y POR CLASE DIAMÉTRICA	.574
TABLA 260. ESTRUCTURA HORIZONTAL PARA LA COBERTURA DE VEGETACIÓN SECUNDARIA ALTA	.576
TABLA 261. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DE LA COBERTURA DE VEGETACIÓN SECUNDARIA ALTA	4
	.581
TABLA 262. CÁLCULO DE LA ESTRUCTURA DE SOTOBOSQUE EN EL BOSQUE DE VEGETACIÓN SECUNDARIA ALTA	Α
	.582
TABLA 263. ÍNDICE DE VALOR DE IMPORTANCIA AMPLIADO PARA LA COBERTURA DE VEGETACIÓN SECUNDAF	RIA
ALTA	.584
Tabla 264. Índices de biodiversidad alfa del bosque vegetación secundaria alta	.586
TABLA 265. COMPOSICIÓN FLORÍSTICA DE LA COBERTURA DE VEGETACIÓN SECUNDARIA BAJA	.586
Tabla 266. N° de individuos/especie/ha de la cobertura de vegetación secundaria baja	.589
Tabla 267. Indicadores por especie de área basal	.590
Tabla 268. Indicadores por especie de volumen total	.593
TABLA 269. DISTRIBUCIÓN DE VOLUMEN TOTAL POR ESPECIE Y POR CLASE DIAMÉTRICA	.594
Tabla 270. Indicadores por especie de volumen de fuste	.597
TABLA 271. DISTRIBUCIÓN DE VOLUMEN DEL FUSTE POR ESPECIE Y POR CLASE DIAMÉTRICA	.599
Tabla 272. Indicadores por especie de volumen comercial	.602
TABLA 273. DISTRIBUCIÓN DE VOLUMEN COMERCIAL POR ESPECIE Y POR CLASE DIAMÉTRICA	.604
Tabla 274. Indicadores por especie de volumen cosechable	.606
TABLA 275. DISTRIBUCIÓN DE VOLUMEN COSECHABLE POR ESPECIE Y POR CLASE DIAMÉTRICA	.608
TABLA 276. ESTRUCTURA HORIZONTAL PARA EL BOSQUE DE VEGETACIPON SECUNDARIA BAJA	.611
TABLA 277. POSICIÓN SOCIOLÓGICA DE LAS ESPECIES DE LA COBERTURA DE VEGETACIÓN SECUNDARIA BAJA	A
	.616
TABLA 278. CÁLCULO DE LA ESTRUCTURA DE SOTOBOSQUE EN EL BOSQUE DE VEGETACIÓN SECUNDARIA BAJ.	Α
	.618
Tabla 279. Índice de valor de importancia ampliado para la cobertura de vegetación secundar	RIA
BAJA	.620
Tabla 280. Indices de biodiversidad alfa del bosque de vegetación secundaria baja	.622
TABLA 281. ESPECIES EN CATEGORÍA DE AMENAZA REGISTRADAS EN EL INVENTARIO FORESTAL	.623
Tabla 282. Usos reportados por las comunidades y revisión secundaria	
TABLA 283. CARACTERIZACIÓN DE LA FAUNA DEL DEPARTAMENTO DE CÓRDOBA	.645
Tabla 284. Fauna registrada para los municipios del departamento del departamento de Córdo	DBA.
	.646
Tabla 285. Número de Encuestas para el componente Fauna por Cobertura.	.652
TABLA 286. DISTRIBUCIÓN TAXONÓMICA DE LAS ESPECIES DE AVES REGISTRADAS EN LAS DIFERENTES COBERTU	JRAS
vegetales del departamento de Córdoba.	.656
TABLA 287. ASOCIACIÓN DE ESPECIES DE AVES CON LAS COBERTURAS VEGETALES ESTUDIADAS	.660
Tabla 288. Rango del número de especies registradas por cobertura.	.661
Tabla 289. Distribución taxonómica de las especies de mamíferos registrados en las diferentes	
COBERTURAS VEGETALES DEL DEPARTAMENTO DE CÓRDOBA.	
TABLA 290. DISTRIBUCIÓN (%) DE LAS ESPECIES DE MAMÍFEROS CON RESPECTO AL ORDEN AL QUE PERTENEC	CEN.
TABLA 291. ASOCIACIÓN DE ESPECIES DE MAMÍFEROS CON LAS COBERTURAS VEGETALES ESTUDIADAS	
Tabla 292. Rango del número de especies registradas por cobertura.	.666
Tabla 293. Distribución taxonómica de las especies de reptiles registrados en las diferentes	
COBERTURAS VEGETALES DEL DEPARTAMENTO DE CÓRDOBA.	.667

TABLA 294. DISTRIBUCIÓN (%) DE LAS ESPECIES DE REPTILES CON RESPECTO AL ORDEN AL QUE PERTENECEN	. 668
TABLA 295. ASOCIACIÓN DE ESPECIES DE REPTILES CON LAS COBERTURAS VEGETALES ESTUDIADAS	669
Tabla 296. Rango del número de especies registradas por cobertura.	670
Tabla 297. Distribución taxonómica de las especies de anfibios registrados en las diferentes	
COBERTURAS VEGETALES DEL DEPARTAMENTO DE CÓRDOBA.	671
TABLA 298. ASOCIACIÓN DE ESPECIES DE ANFIBIOS CON LAS COBERTURAS VEGETALES ESTUDIADAS	672
Tabla 299. Rango del número de especies registradas por cobertura.	673
TABLA 300 SITIOS ARQUEOLÓGICOS POR CUENCAS Y MUNICIPIOS	686
Tabla 301. Personas afectadas por la violencia en el departamento de Córdoba	688
Tabla 302. Población etérea de Córdoba	
TABLA 303 COBERTURA SALUD DEPARTAMENTO DE CÓRDOBA	
TABLA 304. POBLACIÓN REGISTRADA EN SISBEN POR MUNICIPIOS EN EL DEPARTAMENTO DE CÓRDOBA	
TABLA 305. INSTITUCIONES EDUCATIVAS EN LA ENTIDAD TERRITORIAL CERTIFICADA DE CÓRDOBA, PROYECO	
Año 2014	694
Tabla 306. Infraestructura generadora de Energía en Córdoba	
TABLA 307. COBERTURA DE ENERGÍA ELÉCTRICA EN EL DEPARTAMENTO DE CÓRDOBA	
Tabla 308. Red Vial de Vías Primarias que atraviesan el Departamento	
Tabla 309. Red Vial Secundaria - Distribución por Subregiones	703
Tabla 310. Distribución de Áreas Digitales, Programa Vive Digital, por subregiones	
Tabla 311. Distribución de Áreas Digitales, Programa Vive Digital, por subregiones	706
TABLA 312. NBI MUNICIPIOS DE CÓRDOBA POR SUBREGIONES.	
Tabla 313. Índices de Necesidades Básicas Insatisfechas NBI/ respecto a servicios	
Tabla 314. Autoridades municipales del departamento de Córdoba.	713
TABLA 315. COMUNIDADES INDÍGENAS EN LA SUBREGIÓN DEL ALTO SINÚ	
Tabla 316. Comunidades indígenas de la Subregión Sinú Medio.	
Tabla 317. Comunidades indígenas de la Subregión del Bajo Sinú.	
Tabla 318. Comunidad Indígena de la Subregión Costera.	
TABLA 319. COMUNIDAD INDÍGENA DE LA SUBREGIÓN SABANA	
Tabla 320. Cabildos indígenas del municipio de Chinú.	
TABLA 321. DISTRIBUCIÓN DE LA POBLACIÓN INDÍGENA EN EL MUNICIPIO DE SAN ANDRÉS DE SOTAVENTO.	729
Tabla 322. Composición Porcentual de Población Indígena censada por sexo e índice de	
MASCULINIDAD.	
TABLA 323. COMUNIDAD INDÍGENA DE LA SUBREGIÓN DEL SAN JORGE.	730
Tabla 324. Planes de desarrollo	
TABLA 325. PLANES DE ORDENAMIENTO TERRITORIAL DEL DEPARTAMENTO DE CÓRDOBA	
Tabla 326. Proyectos de inversión regional en el área forestal	
TABLA 327. PRODUCCIÓN HIDROBIOLÓGICA Y PESQUERA EN CÓRDOBA	
Tabla 328. Zonificación forestal UAO I	
TABLA 329. ZONIFICACIÓN FORESTAL UAO II	
Tabla 330. Zonificación forestal UAO III	
Tabla 331. Zonificación forestal UAO IV	
Tabla 332. Zonificación forestal UAO V	
TABLA 333. ZONIFICACIÓN FORESTAL UAO VI	
TABLA 334. FAJA FORESTAL PROTECTORA DE ACUERDO AL ORDEN DE LA CORRIENTE	
TABLA 335. ESPECIES POTENCIALES DE EXTRACCIÓN DE PFNM	799

TABLA 336. ESPECIES ARB	óreas nativas sugerida:	S PARA LA RESTAURACIÓ	ÓN ECOLÓGICA DE	LOS BOSQUES DE
GALFRÍA				803

INTRODUCCIÓN

El presente documento comprende la actualización del PLAN GENERAL DE ORDENACION FORESTAL DEL DEPARTAMENTO DE CORDOBA con el cual la Corporación Autónoma Regional de los Valles del Sinú y del San Jorge – CVS- tendrá un instrumento de planificación que le permitirá establecer acciones orientadas a favorecer y dinamizar los procesos naturales de la vegetación en toda el área de su jurisdicción, con el fin de lograr la reactivación de dinámicas que logren llevar el conjunto hacia estados más evolucionados de bancos de semillas, en la recomposición de suelos, en la conectividad de fragmentos vegetales entre otros.

Como beneficio del proyecto se busca garantizar la permanencia de las áreas boscosas en cuanto a su extensión, composición y características, permitiendo por una parte, adelantar el manejo y aprovechamiento forestal sostenible sin reducir significativamente la posibilidad económica de producción permanente de bienes y servicios y por otra, conservar la estabilidad del ecosistema natural y la biodiversidad incluyendo el patrimonio forestal. En este sentido, la ordenación forestal sustentada sobre la base de la zonificación forestal que se realice en el territorio con una visión holístico y ecosistemica, constituirá uno de los pilares fundamentales que soportan, desde lo físico, biótico, cultural y socioeconómico, la incorporación de unidades ecológicas homogeneas diferenciables en el terreno y que tendrán una apropiación directa por parte de los pobladores y usuarios de los recursos, así como la posibilidad de que brinden lineamientos para la gestión del territorio por parte de la autoridad ambiental.

La zonificación forestal traerá consigo un enfoque espacial hacia la planificación del territorio con un importante componente forestal, donde se agruparán unidades globales y homogéneas hacia el manejo de los bosques, así como de las tierras aptas para el establecimiento de plantaciones, áreas de restauración e indiscutiblemente aquellos espacios donde sea necesario y factible implementar estrategias de preservación; en otras palabras, las áreas naturales protegidas.

La definición de zonas homogéneas desde el punto de vista de potencial de los recursos, facilitará la planificación del desarrollo regional y el uso racional de éstos satisfaciendo las necesidades del hombre en el territorio, integrando las propuestas de desarrollo de los actores sociales e institucionales a partir del conocimiento y valoración de sus riquezas naturales así como las posibilidades de aprovechamientos sostenibles.

Con el conocimiento para establecer sistemas productivos alternativos que conjuguen las plantaciones forestales con actividades agropecuarias mediante sistemas agrosilvopastoriles, podrán incrementarse los rendimientos por hectárea y los beneficios sociales y ambientales que generan estos cultivos-sistemas, por ejemplo en su aporte a la regulación de las lluvias torrenciales que permitan infiltrar el agua en el suelo y evitando las inundaciones y desbordes periódicos de los ríos Sinú y San Jorge, que anualmente ocasionan enormes daños económicos y materiales, con el adecuado manejo de los suelos se mejorarían los rendimientos económicos que se puedan percibir de ellos por sus potencialidades.

La sociedad en general depende en mayor o menor grado para satisfacer las necesidades básicas de los ecosistemas forestales, de las especies y variedades que albergan, de sus valores culturales y escénicos, de la diversidad biótica que los conforman y de los servicios ambientales que ofrecen entre otros beneficios.

La ordenación forestal sostenible contribuye a mantener la producción permanente de bienes y servicios de los cuales depende la población humana, las características y el funcionamiento de los ecosistemas forestales, orientando sus acciones principalmente al desarrollo económico, la conservación de la diversidad biológica y del recurso forestal para beneficio de la sociedad.

1. Objetivo general

Actualizar el Plan General de Ordenación Forestal del departamento de Córdoba.

2. Objetivos especifícos

- Actualizar el PGOF del departamento de Córdoba
- Actualizar la zonificación ambiental y la zonificación de áreas forestales en el departamento de Córdoba

3. Marco legal

La ordenación forestal integral y sostenible desarrolla lineamientos de diferentes políticas ambientales nacionales sustentandose en un conjunto de normas que deben ser consultadas, consideradas y aplicadas para la formulación e implementación de la ordenación forestal. El marco normativo de la ordenación forestal actual de Colombia parte con la expedición de la Ley 2 de 1959 con la cual se dictan normas sobre economía forestal de la Nación y conservación de recursos naturales renovables. Así mismo, el Código Nacional de Recursos Naturales Renovables y de Protección al Medio Ambiente (CNRN) Decreto Ley 2811 de 1974 consagra regulaciones con respecto al manejo de los suelos forestales y bosques, denominados áreas forestales, categorizándolas en productoras, protectoras y protectoras-productoras.

Existe también el Régimen Transitorio de Aprovechamiento Forestal expedido en el Decreto 1791 de 1996 a partir de la Política de Bosques con el documento CONPES 2834 de 1996, dentro del cual se decreta que las Corporaciones deben planificar la ordenación y manejo de los bosques y reservaran, alinderaran y declararan las áreas forestales productoras y protectoras productoras aprovechadas en sus jurisdicciones, basados en un plan de ordenación forestal que será elaborado por la entidad administradora del recurso. El plan de ordenación forestal debe ser aprobado por el Consejo Directivo de cada corporación según el artículo 29 de la Ley 99 de 1993 (MADS, 2017). Basado en lo mencionado, se formularon dos instrumentos técnicos para ser aplicados por las autoridades ambientales: Guías Técnicas para la Ordenación y el Manejo Sostenible de los Bosques Naturales en el 2002 y Guía Metodológica para la Elaboración del Plan General de Ordenación Forestal, PGOF en el 2007.

A partir de las diferentes iniciativas legales, en el año 2000 el Consejo Nacional Ambiental aprobó el Plan Nacional de Desarrollo Forestal – PNDF de un plazo de acción de 25 años donde se proponen programas para el desarrollo económico y sostenible del sector forestal, existiendo "Ordenación, Conservación y Restauración de Ecosistemas" como primer programa del PNDF, con el Subprograma de Ordenación y Zonificación Forestal, definiendo pautas para la planificación de los ecosistemas, categorías de uso para la conservación y la producción, ordenamiento territorial municipal con componente forestal, delimitación de las reservas forestales, definición del régimen de propiedad de los bosques, titulación de tierras colectivas y resguardos para comunidades negras e indígenas, e inventario forestal nacional y regional (CARDER, 2011).

Por su parte, la Ley 1450 de 2011, elimina las áreas protectoras – productoras, y encarga a las CAR la clasificación, ordenamiento y zonificación y determinación del régimen de usos de las áreas forestales en el territorio nacional (MADS, 2017). El Decreto 1076 de 2015 condensa y compila lo anteriormente mencionado en un único decreto sobre el sector.

4. Área de estudio

La planificación y análisis de la información se aborda a partir de las subregiones ambientales definidas por la CVS según características físicas del Departamento (CVS, CARSUCRE y ECOVERSA, 2016) (Figura 1).

Tabla 1. Área por subregión ambiental

Subregión Ambiental	Municipio	Área	Porcentaje (%)
Alto Sinú	Valencia	91909,47	15,7
	Tierralta	493780,7	84,3
	Total	585690,17	100
Bajo Sinú	Cotorra	8775,51	5,4
	Chima	32420,95	19,8
	Lorica	95129,79	58
	Momil	15867,78	9,7
	Purísima	11751,77	7,2
	Total	163945,79	100
Costera	Canalete	42002,89	21,8
	Los Córdobas	36606,13	19
	Puerto Escondido	41113,08	21,4
	Moñitos	20340,1	10,6
	San Antero	20813,89	10,8
	San Bernardo del Viento	31580,76	16,4
	Total	192456,84	100
Sabana	Pueblo Nuevo	84928,59	30,8
	Sahagún	96473,29	35

Subregión Ambiental	Municipio	Área	Porcentaje (%)	
	Chinú	62626,71	22,7	
	San Andrés de Sotavento	20681,07	7,5	
	Tuchín	10648,38	3,9	
	Total	275358,05	100	
San Jorge	Buenavista	83489,51	10,5	
	Ayapel	198117,13	24,9	
	San José de Ure	52560,82	6,6	
	Puerto Libertador	164749,66	20,7	
	La Apartada	28702,93	3,6	
	Montelíbano	155108,59	19,5	
	Planeta Rica	114039,38	14,3	
	Total	796768,02	100	
Sinú medio	San Carlos	44653,32	9	
	Montería	313747,75	63,2	
	Cerete	29048,1	5,9	
	Ciénaga de Oro	64123,96	12,9	
	San Pelayo	44561,72	9	
	Total	496134,86	100	

Fuente: Elaboración equipo técnico.

Figura 1. Subregiones del Departamento de Córdoba.

Fuente: (CVS , 2016)

5. Caracterización Plan de Ordenación Forestal del Departamento de Córdoba

5.1. Localización geográfica y política

Políticamente, el departamento de Córdoba está dividido en 30 municipios y 260 corregimientos (CVS, 2016) ver (Tabla 2).

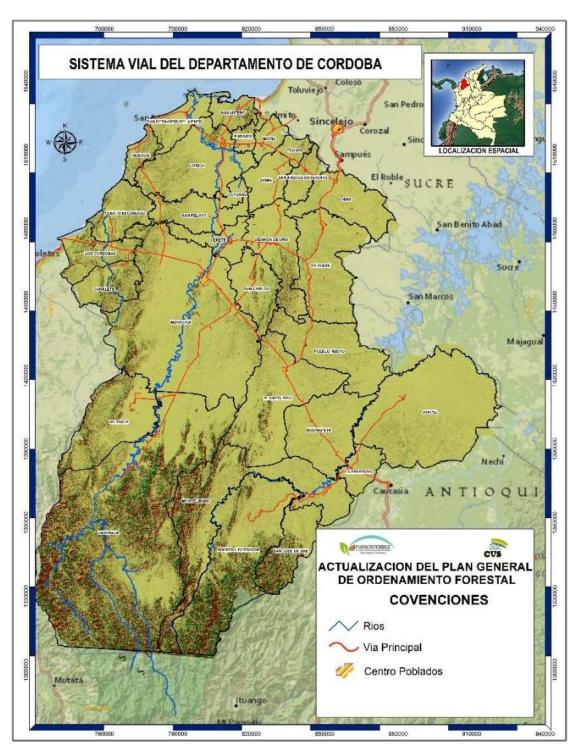
Tabla 2. Municipios y corregimiento del Departamento de Córdoba.

MUNICIPIOS	CORREGIMIENTO
Ayapel	10 corregimientos: Palotal, Las Delicias, Marralú, El Cedro, Playa
	Blanca, Pueblo Nuevo, Alfonso López, Sincelejito, El Totumo y
	Cecilia.
Buenavista	9 corregimientos: Belén, El Paraíso, El Viajano, Mejor Esquina,
	Nueva Estación, Puerto Córdoba, Santa Fe del Arcial, Tierra Santa
	y Villa Fátima.
Canalete	11 corregimientos: Urango, Limón, Guineo, Cordobita
	Fronteras, Buenos Aires las Pavas, Sisevan, Popayán, Tierra
	Dentro, El Tomate, Cordobita Central y Cadillo.
Cerete	7 corregimientos: Cuero Curtido, El retiro, Los Venados,
	Manguelito, Martínez, Mateo Gómez y Rabolargo.
Chima	7 corregimientos: Arache, Campo Bello, Carolina, Corozalito,
	Pimental, punta Verde y Sitio Viejo.
Chinú	40 corregimientos: Aguas Vivas, Andalucía, Arrimadero, Bocas
	del Monte, Cacahotal, Cacahuate, Carbonero, Ceja Grande, El
	Chorrillo, El Deseo, El Paraíso, El Pital, El Tigre, Flecha Sabana,
	Flecha Sevilla, Garbado, Heredia, Jericó, La Floresta, La Panamá,
	La Piloma, Las Lomas, Los Algarrobos, Los Ángeles, Los Jarava,
	Nova, Nuevo Oriente, Pajonal, Palmital, Pisa Bonito, Retiro de los
	Pérez, San Mateo, San Quirre, San Rafael, Santa Cecilia, Santa Fe,
	Santa Rosa, Termoelectrica, Tierra Grata y Villa Fátima.
Ciénaga de	10 corregimientos: Berástegui, Bugre, El Siglo, Laguneta, Los
Oro	Mimbres, Pijiguayal, Las Palmitas, Punta de Yánez, San Antonio
	del Táchira y Santiago Pobre.
Cotorra	8 corregimientos: Abrojal, La Culebra, Las Arepas, Los Cedros,
	Los Gómez, Moralito, Paso de las Flores y Trementino
La Apartada	4 corregimientos: Puerto Córdoba, Puente San Jorge, Campo
	Alegre y La Balsa.
Los Córdobas	9 corregimientos : Buenavista, El Ébano, Guaímaro, Jalisco, La
	Ponderancia, Morindó Santana, Nuevo Nariño, Puerto Rey y

MUNICIPIOS	CORREGIMIENTO	
	Santa Rosa de la Caña.	
Momil	4 corregimientos: Betulia, Guaymaral, Sabaneta y Sacana.	
Montelibano	8 corregimientos: El Anclar, El Palmar, Parcelas, Pica Pica	
	Nuevo, Puerto Anchica, Puerto Nuevo, San Francisco del Rayo y	
	Tierra Dentro.	
Montería	27 corregimientos: Morindo, Santa Lucia, Santa Clara, Caño	
	Viejo Palotal, Nuevo Paraíso, Martinica, Leticia, pueblo Bujo,	
	Loma Verde, Jaraquiel, Las Palomas, Guasimal, El sabanal, El	
	Cerrito, Patio Bonito, La Victoria, Guateque, San Isidro, San	
Moñitos	Anterito, Nueva Lucia, Santa Isabel, Tres Palmas, Tres Piedras,	
	Buenos Aires, La Manta, Nueva Esperanza y Los Garzones.	
	7 corregimientos : San José de Bella Cohita, La Rada, El Perpetuo	
	Socorro, Broqueles, Las Mujeres, Río Cedro y Santander de La Cruz	
Planeta Rica	9 corregimientos: Arenoso, Campo Bello, Carolina, Centro	
	Alegre, El Almendro, Las Pelonas, Marañonal, Plaza Bonita y	
	Providencia.	
Pueblo Nuevo	20 corregimientos: Cintura, El Poblado, Puerto Santo, El Varal,	
	Palmira, La Magdalena, El campano, Neiva, El Contento, arenas	
	del Sur, Arroyo de Arena, Los Limones, Betania, La granjita,	
	Corcovao, Nueva esperanza, Arcial, El Chipal, Pueblo Regao y La	
	Esperanza.	
Puerto Escondido	13 corregimientos: Arizal, Caña de Canalete, Cristo Rey, El	
Escoridido	Contento Arriba, El Pantano, El Silencio, Jaramagal, Morindó las	
	Mujeres, San José de Canalete, San Luis de Sevilla, San Miguel,	
	Santa Isabel y Villa Esther.	
Puerto Libertador	9 corregimientos: El Brillante, Juan José, La Rica, Pica Pica	
	(Viejo), Puerto Belén, San Juan, Santa Fe Las Claras (Río Verde),	
	Torno Rojo y Villa Nueva.	
Purísima	4 corregimientos: Aserradero, Corrales, Hueso y San Pedro de Arroyon.	
Sahagún	23 corregimientos: Rodania, Morrocoy, Colomboy, El Viajano,	
	Salitral, Dividivi, El Olivo, Aguas Vivas, Las Bocas, Arenas del	
	Norte, La Ye, Llanadas, Sabaneta, Salguerito, Catalina, Pisa Flores,	
	Santiago Abajo, Bajo Grande, Los Galanes, Guaimaro, San	
	Antonio, Las Manuelitas y El Crucero	

MUNICIPIOS	CORREGIMIENTO
de Sotavento	Banco, El Hoyal, Las Casitas, Los Carretos, Los castillos, Plaza
	Bonita y Pueblecito.
San Antero	8 corregimientos: Nuevo Agrado, Las Nubes, Bijaito, Porvenir,
	Cerro Petrona, Santa Cruz, Santa Rosa y Tijereta.
San Bernardo del viento	17 corregimientos: Barbascal de Asturias, Barcelona, Caño
	Grande, El Chiqui, El Paraíso, José Manuel de Altamira, Nueva
	Estrella, Pajonal, Paso Nuevo, Playas del Viento, San Blas Junín,
	San José de las Cañas, Santa Rosa del Castillo Damasco, Sicará-
	Limón, Tinajones de Compostela, Trementino y Villa Clara.
San Carlos	7 corregimientos: Callemar, Carrizal, Cieneguita Pozón, El hato,
	Guacharacal, San Miguel y Santa Rosa.
San Úre	7 corregimientos: Batatalito, Bocas de Ure, Doradas, Flechas, La
	Cristalina, Versalles y Viera Bajo.
San Pelayo	12 corregimientos: Bongamella, Buenos Aires, Caño Viejo
	, Carrillo, El Chiqui, El Obligado, La Madera, Las
	Guamas, Pelayito, Puerto Nuevo, Sabana nueva y San Isidro.
Santa Cruz de	25 corregimientos: Campo Alegre, Castilleral, Cotoca Arriba, El
lorica	
iorica	Guanábano, El Lazo, El Rodeo, La Doctrina, La Peinada, La Subida,
iorica	Guanábano, El Lazo, El Rodeo, La Doctrina, La Peinada, La Subida, Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales,
ioned	
iorica	Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales,
	Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales, Manantial, Mata de Caña, Nariño, Palo de Agua, Remolino, San Anterito, San Nicolás de Bari, San Sebastián, Santa Lucia, Tierralta y Villa Concepción.
Tierralta	Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales, Manantial, Mata de Caña, Nariño, Palo de Agua, Remolino, San Anterito, San Nicolás de Bari, San Sebastián, Santa Lucia, Tierralta y Villa Concepción. 21 corregimientos: Barrancón, Batata, Bonito Viento, Callejas,
	Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales, Manantial, Mata de Caña, Nariño, Palo de Agua, Remolino, San Anterito, San Nicolás de Bari, San Sebastián, Santa Lucia, Tierralta y Villa Concepción.
	Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales, Manantial, Mata de Caña, Nariño, Palo de Agua, Remolino, San Anterito, San Nicolás de Bari, San Sebastián, Santa Lucia, Tierralta y Villa Concepción. 21 corregimientos: Barrancón, Batata, Bonito Viento, Callejas,
	Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales, Manantial, Mata de Caña, Nariño, Palo de Agua, Remolino, San Anterito, San Nicolás de Bari, San Sebastián, Santa Lucia, Tierralta y Villa Concepción. 21 corregimientos: Barrancón, Batata, Bonito Viento, Callejas, Caramelo, Crucito, Florida, La Gloria Uno, La Ossa, Los Morales,
	Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales, Manantial, Mata de Caña, Nariño, Palo de Agua, Remolino, San Anterito, San Nicolás de Bari, San Sebastián, Santa Lucia, Tierralta y Villa Concepción. 21 corregimientos: Barrancón, Batata, Bonito Viento, Callejas, Caramelo, Crucito, Florida, La Gloria Uno, La Ossa, Los Morales, Mantagordal, Nueva Granada, Palmira, saiza, San Felipe de
	Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales, Manantial, Mata de Caña, Nariño, Palo de Agua, Remolino, San Anterito, San Nicolás de Bari, San Sebastián, Santa Lucia, Tierralta y Villa Concepción. 21 corregimientos: Barrancón, Batata, Bonito Viento, Callejas, Caramelo, Crucito, Florida, La Gloria Uno, La Ossa, Los Morales, Mantagordal, Nueva Granada, Palmira, saiza, San Felipe de Cadillo, Santa Fe del Ralito, Santa Isabel, Santa Marta, Severinera,
Tierralta	Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales, Manantial, Mata de Caña, Nariño, Palo de Agua, Remolino, San Anterito, San Nicolás de Bari, San Sebastián, Santa Lucia, Tierralta y Villa Concepción. 21 corregimientos: Barrancón, Batata, Bonito Viento, Callejas, Caramelo, Crucito, Florida, La Gloria Uno, La Ossa, Los Morales, Mantagordal, Nueva Granada, Palmira, saiza, San Felipe de Cadillo, Santa Fe del Ralito, Santa Isabel, Santa Marta, Severinera, Villa Providencia y Volador.
Tierralta	Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales, Manantial, Mata de Caña, Nariño, Palo de Agua, Remolino, San Anterito, San Nicolás de Bari, San Sebastián, Santa Lucia, Tierralta y Villa Concepción. 21 corregimientos: Barrancón, Batata, Bonito Viento, Callejas, Caramelo, Crucito, Florida, La Gloria Uno, La Ossa, Los Morales, Mantagordal, Nueva Granada, Palmira, saiza, San Felipe de Cadillo, Santa Fe del Ralito, Santa Isabel, Santa Marta, Severinera, Villa Providencia y Volador. 8 corregimientos: Algodoncillo, Barbacoas, Flechas, Guaimaral,
Tierralta Tuchín	Las Flores, Los Gómez, Los Higales, Los Monos, Los Morales, Manantial, Mata de Caña, Nariño, Palo de Agua, Remolino, San Anterito, San Nicolás de Bari, San Sebastián, Santa Lucia, Tierralta y Villa Concepción. 21 corregimientos: Barrancón, Batata, Bonito Viento, Callejas, Caramelo, Crucito, Florida, La Gloria Uno, La Ossa, Los Morales, Mantagordal, Nueva Granada, Palmira, saiza, San Felipe de Cadillo, Santa Fe del Ralito, Santa Isabel, Santa Marta, Severinera, Villa Providencia y Volador. 8 corregimientos: Algodoncillo, Barbacoas, Flechas, Guaimaral, Molina, Nueva Estrella, San Juan de la Cruz y Vidales.

Fuente: Elaboración equipo técnico tomado a partir de (Gobernación de Cordoba; UNGRD, PNUD, 2012)


5.1.1. Vías de Acceso y comunicaciones

El departamento se comunica con el resto del país por vías terrestres, fluviales y aéreas. La red terrestre comunica a la capital del departamento con Medellín y la capital del país, a través de la troncal del Magdalena y con la costa caribe a través de la transversal del Caribe, por Sincelejo se une con la troncal del Magdalena. A todos los municipios y centros poblados pequeños se llega por vía carreteable o por caminos de herradura, algunos transitables únicamente en periodo seco, o en ocasiones es necesario utilizar los pasos en planchón a través del río Sinú para continuar por vía terrestre (Figura 2).

Figura 2. Sistema Vial del Departamento de Córdoba.

Fuente: Elaboración equipo técnico tomado a partir de (IGAC, 2009)

El transporte fluvial se lleva a cabo a través de los ríos Sinú y San Jorge en embarcaciones pequeñas, estableciendo comunicación entre las cabeceras municipales que se encuentran sobre la ribera del río y de las ciénagas. El transporte marítimo en los municipios costeros permite la conexión con las cabeceras municipales que presentan esta misma característica del departamento y los departamentos de Antioquia y Sucre.

5.1.1.1. Transporte terrestre

La malla vial del departamento cuenta con 7.009,29 km. de vías, de los cuales 1.548,94 km., corresponden a las vías de orden nacional y su mantenimiento está a cargo de la nación; se incluyen 971,14 km. de vías terciarias que anteriormente eran de responsabilidad de caminos vecinales. El departamento tiene a su cargo 589,46 km. de vías secundarias, de las cuales 358,07 km. (60,75%) se encuentran en estado regular a malo; con respecto a las vías terciarias municipales, que corresponden a 4.877,51 km. se encuentran en estado regular a malo 4.173,09 km (IGAC, 2009).

5.1.1.2. Transporte fluvial

En el departamento, 460 km son navegables. Se destacan, principalmente, los tramos de los ríos Sinú y San Jorge. Sobre el primero, pasando la ciudad de Montería, se encuentra el puerto con inspección fluvial, esta inspección ejerce el control y regula las actividades del tráfico fluvial. El trayecto navegable del río San Jorge por embarcaciones menores, en periodo seco, recorre desde su boca hasta la población de Ayapel con un calado de 2 pies y en época de lluvias las embarcaciones pueden navegar hasta Montelíbano. Este río es navegable por embarcaciones hasta de 4 pies de calado, llega a la población de San Marcos, lugar donde se efectúan embarques de ganado. El río pasa por las poblaciones de Ayapel (km. 193), Chipal, Tierra Santa (km. 200), Villa Fátima y Montelíbano (km. 300).

El río Sinú que tiene su desembocadura en la Boca de Tinajones (km. 00), posee una longitud aproximada de 336 Km, siendo navegables 270 km. La mayor navegabilidad del río se encuentra desde su desembocadura hasta la población de Lorica (km. 80). Desde este punto y hasta Tierralta (km. 270), pasando por El Playón, Mateo Gómez, Garzones y Montería, disminuye su navegabilidad (IGAC, 2009).

5.1.1.3. Transporte aéreo

El departamento cuenta con el aeropuerto Los Garzones, clasificado según la Aeronáutica Civil en la categoría B, el cual está ubicado a 17 km del centro de la ciudad de Montería y es utilizado por cerca de 25 mil pasajeros al mes. Desde este terminal aéreo se tienen destinos hacia Bogotá, Medellín, Cartagena y Barranquilla. A él prestan servicio comercial aerolíneas como ADA, Avianca, LATAM Colombia, Viva Colombia y EASYFLY (La Razon, 2016).

5.1.1.4. Extensión y Límites

El Departamento de Córdoba situado al Norte del país, en la región de la llanura del Caribe; El Departamento de Córdoba situado al Norte del país, en la región de la llanura del Caribe; se encuentra localizado entre los 09°26'16'' y 07°22'05'' de latitud Norte, y los


74°47'43'' y 76°30'01'' de longitud Oeste, Limita por el Norte con el mar Caribe y el departamento de Sucre, por el Este con los departamentos de Sucre, Bolívar y Antioquia; por el Sur con el departamento de Antioquia y por el Oeste con el departamento de Antioquia y el mar Caribe (Figura 3) (IGAC, 2009).

La distribución político administrativa del departamento, a lo largo de sus 25.020 km², ofrece una línea de costa de 124 Km desde Arboletes, limítrofe con Antioquia, hasta Punta de Piedra en límites con el departamento de Sucre.

Figura 3. Mapa de la división política administrativa del departamento de Córdoba

Fuente: Elaboración equipo técnico tomado a partir de (IGAC, 2009)

5.2. Jurisdicción ambiental

5.2.1. Corporación Autónoma Regional responsable de la administración

La corporación Autónoma Regional de los Valles del Sinú y San Jorge, fue creada como establecimiento público mediante la Ley 13 de 1973, posteriormente pasa a ser un ente Corporativo de carácter público a través de la ley 99 de 1993, con jurisdicción sobre todas las entidades territoriales del Departamento de Córdoba. Está dotada de autonomía administrativa y financiera, con patrimonio propio y personería jurídica y le corresponde por ley, administrar, dentro del área de su jurisdicción el medio ambiente y los recursos naturales renovables y propendiendo por el desarrollo sostenible, de conformidad con las disposiciones legales y las políticas del Ministerio de Ambiente y Desarrollo Sostenible, por lo tanto, no está adscrita ni vinculada a ningún Ministerio o Departamento Administrativo. Forma parte del Sistema Nacional Ambiental (SINA), en cuya cabeza está el Ministerio de Ambiente y Desarrollo Sostenible, quien orienta y coordina su acción de manera que resulte acorde con la política ambiental nacional (CVS, 2016).

Asimismo, en la zona sur del departamento entre los municipios de Tierralta, Montelibano y Puerto Libertados, se encuentra el Parque Nacional Natural de Paramillo, administrado por la Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales (UAESPNN). La CVS cuenta con una sede central y tres subsedes, la sede principal se encuentra en Montería – córdoba, en donde se encuentra centralizada la dirección, operación y la administración de la entidad.

1.2.1.1 Estructura Administrativa

La estructura organizacional de la Corporación Autónoma Regional de los Valles del Sinú y del San Jorge CVS está establecido por la ley 99 de 1993 y el acuerdo 302 de 2016, en el cual se determinó a través de su Consejo Directivo como máximo órgano de administración, su estructura y plantas de cargo para el cumplimiento de sus funciones (Figura 4).

Figura 4. Organigrama Corporativo

Fuente: (CVS, 2016)

1.2.1.2 Planta Global De Personal De La Corporación CVS

En concordancia con la estructura prevista en el acuerdo 303 de 2016 del Concejo Directivo de la CVS en ejercicios de sus competencias legales se adoptó la siguiente planta de personal de la corporación ver (Tabla 3).

Tabla 3. Planta de personal

PLANTA ACTUAL	
Director	5
Asesor	2
Profesional Especializado	26
Profesional Universitario	15
Técnicos	10
Asistenciales	19
Total Cargos	77

Fuente: Elaboración equipo técnico tomado a partir de (CVS, 2016)

5.2.2. Institutos de Investigación

Los institutos de investigación son entidades científicas vinculadas al sistema de información ambiental para Colombia SIAC y adscritas al Ministerio de Ambiente y Desarrollo Sostenible en su calidad de asesoras, se encuentran integrados por: IDEAM, INVEMAR, INSTITUTO DE INVESTIGACIÓN DE RECURSOS BIOLÓGICOS ALEXANDER VON HUMBOLT, INSTITUTO AMAZÓNICOS DE INVESTIGACIONES CIENTÍFICOS SINCHI e INSTITUTOS DE INVESTIGACIONES DEL PACIFICO "JHON VON NEUMANN, de los cuales el instituto amazónico de investigaciones científico SINCHI no han tenido presencia en el departamento de córdoba (Organización de las Naciones Unidas para la Agricultura y la Alimentación, 2002).

El Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis"- INVEMAR, es un instituto de investigación aplicada de los recursos naturales renovables y del medio ambiente en los litorales y ecosistemas marinos y oceánicos de interés nacional con el fin de proporcionar el conocimiento científico necesario para la formulación de políticas, la toma de decisiones y la elaboración de planes y proyectos que conduzcan al desarrollo de estas, dirigidos al manejo sostenible de los recursos, a la recuperación del medio ambiente marino y costero y al mejoramiento de la calidad de vida de los colombianos. Entre sus proyectos más reciente en el departamento de córdoba se destaca REDD+ Cispata, La Balsa Y Tinajones (INVEMAR, 2016).

El Instituto de Hidrología, Meteorología y Estudios Ambientales –IDEAM, es una institución pública de apoyo técnico y científico al Sistema Nacional Ambiental, que genera conocimiento, produce información confiable, consistente y oportuna, sobre el estado y las dinámicas de los recursos naturales y del medio ambiente, que facilite la definición y ajustes de las políticas ambientales y la toma de decisiones por parte de los sectores público, privado y la ciudadanía en genera entre sus proyectos se destaca el Fortalecimiento de las Capacidades Institucionales para la Implementación de Prácticas Locales de Gestión del Riesgo como Medida de Adaptación al Cambio Climático en el Caribe (IDEAM, 2017).

INSTITUTO DE INVESTIGACIÓN DE RECURSOS BIOLÓGICOS ALEXANDER VON HUMBOLT se encarga de realizar, en el territorio continental de la Nación, la investigación científica

sobre biodiversidad, incluyendo los recursos hidrobiológicos y genéticos. Así mismo, coordina el Sistema Nacional de Información sobre Biodiversidad (SIB Colombia) y la conformación del inventario nacional de la biodiversidad. Entre sus proyectos más destacados en el departamento se encuentra: Crocodylus acutus, conservación de la especie para la superación de la pobreza (Instituto humboldt, 2017).

INSTITUTOS DE INVESTIGACIONES DEL PACIFICO "JHON VON NEUMANN: El Instituto tiene como misión desarrollar investigación dirigida a la producción de información y conocimiento del Chocó Biogeográfico, que al tiempo que fundamente la toma de decisiones y las políticas públicas nacionales, regionales y locales en materia ambiental y de desarrollo sostenible; promueva el progreso colectivo de los habitantes de la región y consolide la identidad cultural de sus pueblos negros e indígenas. En términos político administrativo, la región del Chocó Biogeográfico comprende los departamentos de Chocó, Cauca, Nariño, Valle del Cauca, Córdoba, Antioquia, Risaralda. Hacen parte de la estructura organizativa del IIAP miembros o representantes de comunidades negras e indígenas, lo que fortalece el que hacer institucional. Entre sus documentos más desatacado en el departamento de Córdoba se encuentra: Caracterización Ecológica Del Componente Faunístico En Los Bosques Relictuales De Córdoba – Nororiente Del Choco Biogeográfico, colombiano (IIAP, 2010).

5.3. Derechos de propiedad de los bosques

5.3.1. <u>Bosques de propiedad pública</u>

5.3.1.1. Reservas Forestales Nacionales

A partir de la Ley 2 de 1959 se dictan normas sobre economía forestal y conservación de los recursos naturales renovables, creando ocho Zonas Forestales Protectoras y Bosques de interés general para el país.

En Jurisdicción de la CVS se encuentra la Reserva Forestal del Pacifico con un área de 535.199, 37 hectáreas, ubicada en el sector sur occidental del departamento en la parte alta de la Cuenca de los ríos Sinú y San Jorge. La Zona de Reserva Forestal se encuentra en superposición con el Parque Nacional Natural Paramillo, siendo el parque una categoría de mayor jerarquía para protección y preservación de los recursos naturales (CVS - CONIF, 2008) excluyendo el área del parque de la zonificación por ser una zona con previa decisión de ordenamiento (Resolución 1936, 2013).

En la zonificación se establece tres zonas de manejo y ordenamiento para la Zona de Reserva Forestal del Pacifico, específicamente para el departamento de Córdoba se realiza la zonificación de un área de 114.654,96 hectáreas divididas en tres zonas: Tipo A, Tipo B y Tipo C (Resolución 1936, 2013).

Las zonas tipo A están referidas a garantizar el mantenimiento de los procesos ecológicos básicos para asegurar la oferta de servicios ecosistemicos, encontrando en el departamento de Córdoba un área de 41.201,04 hectáreas, ubicadas en los municipios de Tierralta, Valencia y Montelíbano. La zona tipo B se caracteriza por poseer unas

coberturas favorables para el manejo sostenible del recurso forestal mediante un enfoque de ordenación forestal integral, encontradas en los municipios de Tierralta y Valencia con un área de 40.832,33 hectáreas. En último lugar, la zona tipo C presenta características biofísicas ofreciendo condiciones para el desarrollo de actividades productivas agroforestales, silvopastoriles y otras compatibles con los objetos de la Reserva Forestal que no implique la disminución de áreas de bosque natural en sus diferentes estados Sucesionales, presentando en el departamento de Córdoba un área de 32.621,59 hectáreas, ubicadas en los municipios de Tierralta y Valencia (Resolución 1936, 2013).

Cabe resaltar que en las zonas que se presenten modificaciones de características de función, estructura y composición debido a causas naturales o antrópicas, deben ser priorizadas para la realización de procesos de restauración ecológica, rehabilitación o recuperación. Adicionalmente, los procesos de ordenación forestal deberán realizarse en las zonas tipo B, con el fin de generar los instrumentos de planificación para el manejo sostenible del recurso forestal.

5.3.1.2. Bosques de propiedad privada individual

Bienes rurales de propiedad privada

Los bienes rurales de propiedad privada con cobertura boscosa en el departamento de Córdoba se asocian a las zonas declaradas por la Unidad Administrativa de Parques Nacionales como Reserva Nacional de la Sociedad Civil, con una extensión de 2.058 hectáreas en 8 Reservas.

Inicialmente la Reserva Nacional de la Sociedad Civil Campo Alegre fue declarada mediante Resolución 0238 del 2005 con una extensión de 594,85 hectáreas en el municipio de Los Córdobas específicamente en los corregimientos de Nuevo Nariño y Santa Rosa de la Caña de la vereda el Floral; el predio es de propiedad de la señora Clara Inés Borrero de Velásquez. Se encuentra en la zona de vida del Bosque Seco tropical secundario con procesos de sucesión avanzados, sin embargo, ha sufrido procesos de transformación antrópica asociado a la extracción de productos maderables, por lo que el área remanente equivale a 59 hectáreas. A su vez presenta coberturas de bosque ripario en un área de 42 ha y áreas de amortiguación asociadas a rastrojos altos y reforestación con Teca (Tectona grandis), Roble (Tabebuia rosea) y Cedro (Cedrela odorata) con un área de 90,82 ha. Finalmente la mayor cantidad del área de la reserva se concentra en una zona de agrosistemas enfocados a la actividad de ganadería extensiva y cultivos de productos de pan coger y las zonas de uso intensivo e infraestructura, teniendo un área de 403, 0309 hectáreas (Resolución 0238, 2005).

La Reserva de la Sociedad Civil Horizontes hace parte del Municipio de Valencia en el departamento de Córdoba y San Pedro de Urabá en Antioquia; nace como resultado de un esfuerzo hecho por un grupo de propietarios. Posee un área total de 1.376,09 hectáreas donde 491,1874 hectáreas pertenecen al municipio de Valencia, ubicadas en el corregimiento de Jaraguay y Mata de Maíz. La cobertura presente en los predios pertenecen a la zona de vida de Bosque Húmedo Tropical donde se reportan

aproximadamente 71 especies de Flora como: Aceituno (Vitex cooperi), Algarrobo (Hymenaea courbaril), Almendro (Dipteryx oleífera), Anime (Protium sp.), Guayacan Hobo (Centrolobium paraense), Bálsamo (Myroxylon balsamum), Barbasco (Lonchocarpus sp.), Canime (Copaifera canime), Caoba (Swietenia macrophylla), Caracoli (Anacardium excelsum), Ceiba blanca (Ceiba pentandra), Ceiba tolua (Pachira quinata), Culo de hierro (Aspidosperma polyneuron), entre otras (Resolución 0202, 2005).

La Reserva de la Sociedad Civil Santa fe declarada en el año 2006 por la resolución 0124 con una extensión de 179 hectáreas y de propiedad del señor Hernán de Jesús Velásquez Palacio, ubicada en el Municipio de Planeta Rica, Vereda los Almendros, Corregimiento de Maroñal. Se destaca esta reserva por encontrarse dos fragmentos de bosque pertenecientes a la zona de vida de Bosque Seco Tropical y Bosque Húmedo Tropical con presencia de especies de Fauna y Flora en Amenaza.

Los fragmentos de bosque encontradas en la reserva Santa Fe poseen una extensión de 112 hectáreas, con especies características como: Ceiba tolua (*Pachira quinata*), Vara de Humo (*Cordia alliodora*), Roble (*Tabebuia rosea*), Caracoli (*Anacardium excelsum*), entre otras (*Resolución* 0124, 2006).

Mediante la resolución 0233 del 2007 se declara la Reserva de la Sociedad Civil El Paraíso de Los Deseos, de propiedad del señor Alfredo Manuel Perez Rivero con una extensión de 32,5 hectáreas ubicada en el Municipio de Montería; caracterizada por un relicto de Bosque Seco Tropical y que posee pendientes superiores de 40° donde nacen quebradas llamadas Los Deseos y El Paraíso con un área de 8,25 hectáreas. De igual manera, presenta una zona de rastrojos altos y bajos con presencia de especies maderables con un área de 2 hectáreas; las demás zonas se configuran en sistemas silvopastoriles, cultivos y ganadería extensiva propiamente (Resolución 0233, 2007).

La Reserva de la Sociedad Civil Santa Rosa declarada con un área de 13,5 hectáreas y de propiedad de la señora Carmen Alicia Aguilar Flórez; caracterizada por un fragmento de cobertura transicional entre Bosque Seco Tropical y Bosque Húmedo Tropical ubicada en el Municipio de Chima. La cobertura boscosa encontrada tiene predominancia hacia el Bosque Seco Tropical, reportándose 30 especies de Flora y una variedad de Fauna asociada. A su vez presenta especies en categoría de amenaza como Cedro (Cedrela odorata), Rana venenosa (Dendrobates truncatus), Tortuga carranchina (Mesoclemmys dahli), Tortuga hicotea (Trachemys callirostris), Guaza (Bradypus variegatus), Guacharaca (Ortalis garrula). El área de cobertura boscosa es de aproximadamente 7,76 ha (Resolución 025, 2014).

La Reserva de la sociedad Civil Santa Isabel posee un área de 212 hectáreas con un fragmento de Bosque Seco Tropical con un área de 10 hectáreas, de igual manera presenta una zona de amortiguación de combinación de potreros con gran cantidad de árboles nativos en sistemas de silvopastoreo con un área de 95,3 hectáreas. La reserva se encuentra ubicada en el corregimiento de Patio Bonito del Municipio de Montería, de propiedad de los señores Daniel Ochoa Mejía, Alejandro Ochoa Mejía y Clemencia Mejía (Resolución 026, 2012).

Por medio de la Asociación Red Colombiana de Reservas Naturales de la Sociedad Civil (Resnatur), fue declarada dos reservas de la Sociedad Civil en el departamento de Córdoba con un área de 534,50 hectáreas distribuidas en la Reserva de la Sociedad Civil Viento Solar con un área de 12 hectáreas de Bosque Seco Tropical y la Reserva de la Sociedad Civil Betanci – Guacamayas con 522,5 hectáreas.

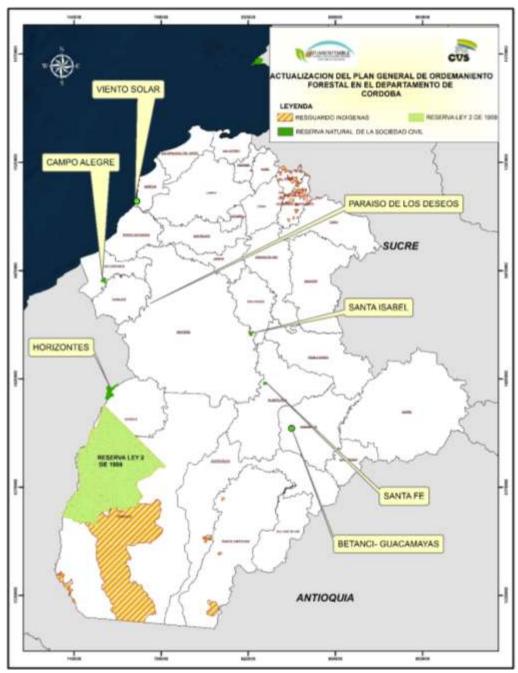
5.3.1.3. Bosques de propiedad privada colectiva

Resguardos indígenas

En el departamento de Córdoba se encuentra 3 resguardos indígenas legalmente constituidos, con una población aproximada de 75.000 habitantes (MinCultura, 2015); distribuidos en: Resguardo de San Andrés de Sotavento (Indígenas zenúes), Resguardo Karagabi Alto Sinú (Indígenas Embera) Katios, Resguardo de Quebrada Cañaveral Alto San Jorge (Indígenas Embera Katio).

El Resguardo de San Andrés de Sotavento se encuentra ubicado al noroeste de Colombia y cuenta con una extensión territorial de 83.000 hectáreas, con presencia de asentamientos indígenas en los departamentos de Córdoba y Sucre. Los municipios del departamento de Córdoba con representación de asentamientos indígenas son: San Andrés de Sotavento, Tuchin, Chimá, Purísima, Momil, Ciénaga de Oro, Chinu, San Antero y Sahagún (Resolución 007, 2010).

El resguardo Embera Katío del Alto Sinú se ubica en la cuenca alta del Rio Sinú y sus afluentes de los ríos Verdes, Esmeralda y Manso, teniendo Jurisdicción en los Municipios de Tierralta en Córdoba e Ituango en el departamento de Antioquia, además, se traslapa con el Parque Nacional Natural Paramillo; el resguardo posee una población aproximada de 2.266 personas distribuidos en 334 familias (Observatorio Etnico, 2012).


El resguardo indígena Cañaveral del Alto San Jorge, se ubica en las inmediaciones del Parque Nacional Natural del Paramillo, las Serranía de San Jerónimo y la Serranía de Ayapel; con jurisdicción en los Municipios de Montelíbano y Puerto Libertador del departamento de Córdoba; posee un territorio aproximado de 2.815 hectáreas y asentamientos que equivalen a aproximadamente 477 familias (Defensoria del Pueblo, 2003).

En la Figura 5 se muestra los derechos de propiedad de los bosques, distribuidos en los bosques de propiedad pública, de propiedad privada y de propiedad colectiva.

Figura 5. Derecho de propiedad de los bosques

Fuente: Elaboración equipo técnico tomado de (Ministerio de Ambiente, 2017) (IGAC, 2017)

5.4. Características físicas

5.4.1. Geología

Las unidades geológicas que afloran en el departamento de Córdoba, hacen parte en su gran mayoría de los cinturones Terciarios del noroccidente Colombiano (Cinturones plegados de San Jacinto y Sinú), de la Cadena Andina Centro-Occidental (Cordilleras Occidental y Central) y de la Cuenca de Urabá en su extremo sur (Figura 6) (INGEOMINAS, 2004).

Las unidades litoestratigráficas al sur del departamento, hacen parte del extremo septentrional de la Cordillera Occidental y su límite con la Cordillera Central, separadas entre sí por la Falla Cauca-Almaguer. La Cordillera Occidental está constituida por rocas volcánicas de afinidad oceánica y edad Cretácica, mientras que la Cordillera Central lo está por un complejo polimetamórfico Paleozoico intruído por stocks gabriodes cretácicos; la parte occidental del departamento limita con la Cuenca de Urabá, la cual hace parte del Bloque Chocó, caracterizado por la presencia de rocas sedimentarias marinas del Oligoceno al Plioceno y depósitos aluviales del Cuaternario (INGEOMINAS, 2004).

En el cinturón plegado de San Jacinto, las rocas más antiguas corresponden a rocas sedimentarias del Cretácico Superior (Formación Cansona) asociados muy localmente a afloramientos limitados de rocas volcánicas. Encima de las anteriores rocas se presentan sedimentitas del Paleógeno (Formaciones San Cayetano, Tolú viejo, Porquera y Ciénaga de Oro), cuya deformación y fallamiento, disminuye a medida que se asciende estratigráficamente, de manera que las unidades del Neógeno (Formaciones El Cerrito y Sincelejo) presentan menor deformación (INGEOMINAS, 2004).

El cinturón de Sinú se caracteriza por la presencia de estructuras diapíricas de lodo, denominados volcanes de lodo, con formas cónicas que emergen a lo largo de las zonas mayores de falla como colinas aisladas siguiendo el rumbo general del cinturón. Las rocas presentes en este cinturón son esencialmente sedimentitas que comprenden edades desde el Eoceno hasta el Plioceno (INGEOMINAS, 2004).

Las principales formaciones geológicas del departamento, de acuerdo a las subregiones son:

Figura 6. Mapa geológico del departamento de Córdoba

Fuente: Elaboración equipo técnico tomado de INGEOMINAS, 2004.

5.4.1.1. Complejo Cajamarca (PZCC)

Aflora en la parte más sur oriental del departamento, en las estribaciones más septentrionales de la Cordillera Central al sur del municipio de Puerto Libertador. En forma general, este complejo consta de esquistos micáceos intercalados con cuarcitas, localmente mármoles, neises y cuerpos lenticulares de anfibolitas. Al norte, este complejo es cubierto discordantemente por rocas y depósitos sedimentarios del Terciario al Reciente; al oriente y occidente limita en contacto fallado con cuerpos intrusivos máficos a ultramáficos y con las Volcanitas del Barroso (INGEOMINAS, 1999).

5.4.1.2. Ultramafitas.

Se agrupan bajo este nombre a una serie de rocas ultramáficas a veces asociadas a rocas gabroides y basaltos de afinidad oceánica, distribuidas de manera discontinua a lo largo de la Falla de Romeral, algunos autores las describen separadamente con base en el área donde mayor exposición presentan, como Planeta Rica (Kp), Cerro Matoso (Ksucm), Uré (Ksuu) y Gabros y microgabros (Kg) (Londoño & Gonzalez, 1997).

Peridotitas de Planeta Rica (Kp).

Estas rocas afloran al suroccidente de Planeta Rica, conformando los cerros de Las Mulas y Las Lomas de Corozal y Las Queresas, constituidas por peridotitas y en menor proporción dunitas, localmente transformados a serpentinitas y asociados a rocas volcánicas básicas y gabros (Londoño & Gonzalez, 1997). Para esta unidad se indica un límite fallado con rocas volcánicas (Basaltos de Nuevo Paraíso) y sedimentarias (Formaciones Cansona y San Cayetano Superior). En ellas se hallan los Chert y Porcelanitas de la Formación San Cayetano Inferior (Dueñas & Duque-Caro, 1981).

Ultramafitas de Cerro Matoso (Ksucm).

Con este nombre se designan las rocas ultramáficas que afloran en el área de Cerro Matoso, al oriente de Puerto Libertador. Se sugiere para esta unidad una edad Jurásico-Cretácico Superior (Londoño & Gonzalez, 1997). Está constituida principalmente por peridotitas piroxénicas (harzburgita), mineralógicamente compuestas por olivino, ortopiroxeno, serpentina y como accesorios principales picotita, magnetita y cromita. En el departamento de Córdoba se observa sobre estas rocas, las sedimentitas de la Formación El Cerrito. Por sus características petrográficas se sugiere que estas rocas son el equivalente litológico de las Peridotitas de Planeta Rica (INGEOMINAS, 1999).

<u>Ultramafitas de Uré (Ksuu).</u>

Se ha designado con este nombre a las rocas ultramáficas que afloran al suroriente del departamento en los alrededores de la población de Uré. Conforman una serie de cuerpos alargados y alineados tectónicamente en dirección norte-sur, denominados La Viera, Alto de Oso, San Juan y Mogambo. Litológicamente están constituidas principalmente por hanzburgitas, serpentinitas, dunitas y piroxenitas de color verde oscuro. Por datación radiométrica en gabros asociados, se determina para esta unidad una edad Jurásico-Cretácico Superior y la correlacionan con las rocas ultramáficas asociadas al sistema de fallas de Romeral (Londoño & Gonzalez, 1997).

Gabros y microgabros (Kg).

Estos cuerpos están relacionados a rocas volcánicos básicas espilitizadas y a peridotitas serpentinizadas, a lo largo de la zona de falla Romeral, haciendo parte del Complejo Ofiolítico del Cauca y a rocas básicas de la Cordillera Occidental (INGEOMINAS, 1999).

5.4.1.3. Complejo Cañasgordas.

Se refiere a las rocas del denominado como Grupo Cañasgordas que agrupa a las unidades, Volcánico del Barroso (Ksvb) y lodolitas silíceas asociadas (Kslb), a la Formación Penderisco con sus miembros Urrao y Nutibara (INGEOMINAS, 1999).

Volcánico del Barroso (Ksvb-Lb).

Afloran en la Cordillera Occidental al occidente del río Cauca y que se extienden hacia el sur desde la parte meridional del departamento de Córdoba. La unidad está constituida por basaltos y andesitas de color gris oscuro y verde respectivamente. Hacia la parte superior de la unidad se encuentran aglomerados, brechas y tobas vítreas de composición basáltica asociadas a sedimentitas silíceas. Intercaladas entre los cuerpos de basaltos y hacia el tope del Volcánico del Barroso, se halla la subunidad denominada Lodolitas silíceas (Kslb), la cual consta de chert gris a negro finamente laminados y limolitas silíceas y ocasionalmente areniscas litícas de color oscuro (Londoño & Gonzalez, 1997).

Basaltos de Nuevo Paraíso (Kb).

Se refiere a las rocas volcánicas que conforman las colinas bajas y suavemente onduladas de Nuevo Paraíso y Buenavista. La unidad está compuesta por basaltos asociados localmente a diabasas y tobas, que se hallan fuertemente alteradas, siendo común la ocurrencia de una gruesa costras de oxidación (Dueñas & Duque-Caro, 1981).

Formación Penderisco.

Se denomina con este nombre a las rocas predominantemente sedimentarias del Complejo Cañasgordas, que afloran en la parte axial y occidental de la Cordillera Occidental. La formación se ha dividido en dos miembros, uno principalmente areno-arcilloso denominado Miembro Urrao y otra calcáreo-lidítico llamado Miembro Nutibara (INGEOMINAS, 1999).

Miembro Urrao: Este miembro aflora en la parte suroriental del departamento de Córdoba, en los cerros de Chimurro y Mutatá, en límites con el departamento de Antioquia, donde se extiende más hacia el sur. Litológicamente se trata de una serie de interestratificaciones de limolitas con abundante materia orgánica, arcillolitas con algunos horizontes de areniscas sucias (grauvacas) y conglomerados polimícticos con cantos redondeados de basaltos, chert, cuarzo y areniscas. Se distingue una variación composicional y un grano de crecimiento en el tamaño de los cantos dentro de los conglomerados que permite separarlos en dos tipos: un conglomerado basal donde predominan fragmentos volcánicos y piroclásticos y un conglomerado intraformacional donde prevalecen cantos de sedimentitas de menor tamaño. La estratificación de las

limolitas varia de macizas a finamente estratificadas. De manera similar los horizontes de grauvacas varían de espesor desde capas delgadas a gruesas (5-200 cm) en donde se intercalan delgadas capas de lodolitas (INGEOMINAS, 1999).

Miembro Nutibara (Ksn): Ocupa una franja delgada orientada en sentido noroeste en el extremo más suroccidental del departamento de Córdoba. Está constituido prevalecientemente por capas delgadas de chert negro con abundante microfauna planctónica y calizas silíceas de apariencia litográfica. Localmente presenta intercalaciones de limolitas silíceas, arcillolitas, grauvacas y silos de diabasa. Las calizas litográficas representan hasta un 40% de esta unidad, estando intercaladas con bancos de chert hacia la base e intercaladas con limolitas, chert y grauvacas hacia el tope (INGEOMINAS, 1999).

5.4.1.4. Volcánico de la Equis (Ksvx).

Ocupa una franja delgada a manera de cuña, orientada en sentido noroeste en el extremo más suroccidental del departamento de Córdoba, constituido principalmente por basaltos, andesitas, aglomerados, brechas y tobas lítico-cristalinas con algunas coladas de lavas ácidas y localmente limolitas y chert. Estas rocas hacen parte de un arco magmático en una zona de subducción. Están limitadas al oriente por la Falla de Uramita que las separa del Miembro Nutibara de la Formación Penderisco, mientras que al occidente parece estar suprayacido inconformemente por sedimentitas de la cuenca de Urabá (Londoño & Gonzalez, 1997).

5.4.1.5. Formación Cansona (K2c).

Aflora como una amplia faja de más de 25 kilómetros de amplitud en la parte sur del departamento, en la parte alta del Río Sinú y pequeños cuerpos de dirección aproximada norte-sur al oriente de Tierra Alta, sur de Montería y oriente de Lorica. En el sur entre Tierra Alta y Crucito, la formación está compuesta por capas de chert, arcillolitas y limolitas siliceas con delgadas intercalaciones de chert, areniscas con intercalaciones calcáreas, silos de basaltos y capas de lodolitas calcáreas con foraminíferos (Londoño & Gonzalez, 1997). Descansa discordantemente sobre las Peridotitas de Planeta Rica y considera su contacto superior también discordante (Dueñas & Duque-Caro, 1981).

5.4.1.6. Formación San Cayetano (Elsc).

Ocupa una franja dispuesta norte-sur en la parte central del sector más meridional del departamento otras franjas de menor amplitud en la parte suroriental, central y norte. Los mejores afloramientos se hallan expuestos en la vía Cereté-La Yé (Londoño & Gonzalez, 1997), diferenciando dos miembros: Los Conglomerados de El Curial y las Areniscas del Trementino (Dueñas & Duque-Caro, 1981).

En general se trata de una sucesión granodecreciente de areniscas grauváquicas compuestas principalmente por cuarzo, líticos de chert y rocas volcánicas y abundantes micas (muscovita y biotita), de grano medio a conglomeráticas, mal seleccionado y friable de color amarillo oscuro, de consistencia blanda intercaladas con niveles arcillosos (Londoño & Gonzalez, 1997). La unidad varía facialmente hacia el norte, donde es menos

arcillosa y su tamaño de grano es predominantemente conglomerático (INGEOMINAS, 1999).

5.4.1.7. Chert de La Candelaria (E2c).

Aflora en forma irregular en algunos sectores del departamento, en la cantera al sur de Campano de los Indios, al suroccidente de Lorica y las canteras La Candelaria y Santa Rosa del Chiquero (GEOTEC, 1997). La unidad consta principalmente de chert y/o radiolaritas y locales interposiciones de material tobáceo. Se asigna a esta unidad una edad Eoceno Temprano - Eoceno Tardío, sugiriendo un ambiente marino batial a nerítico externo, con aporte de cenizas volcánicas silíceas suministradas por vulcanismo regional (INGEOMINAS, 1999).

5.4.1.8. Formación La Risa (E2r).

Los mejores afloramientos de esta unidad se encuentran expuestos al suroccidente de Lorica, en los alrededores de la Hacienda La Flojera y La Tragedia. Se trata de una secuencia predominantemente calcárea, la cual subdividieron en dos subunidades, la primera consta predominantemente de margas arcillo- limosas de color gris amarillento a amarillo claro en capas delgadas a muy gruesas, bioturbadas, intercaladas con calizas bioespariticas localmente arenosas o conglomeráticas, en capas delgadas a gruesas, con abundantes bioclastos de ostreas, equinodernos y remanentes de algas. La segunda subunidad está casi enteramente constituida por calizas bioclásticas que gradan tanto lateral como verticalmente a calizas terrígenas, blancas, gris amarillentas a gris oliva, masivas y muy compactas, de muy baja porosidad y permeabilidad (INGEOMINAS, 1999).

Las subunidades de margas y calizas se formaron bajo un ámbito de plataforma lodosacalcárea donde la energía del medio era muy baja. La segunda subunidad se depositó en un ambiente de plataforma muy somero donde se generó un cinturón arrecifal o una barra de llanura arrecifal. Dataciones micropaleontológicas permiten asignarle a esta Formación una edad Eoceno Medio a Tardío (INGEOMINAS, 1999).

5.4.1.9. Formación Tolú Viejo (E2tv).

Está presente en la parte norte del departamento, conformando pequeñas colinas elongadas en sentido Norte-Este, entre Momil y San Andrés de Sotavento. Litológicamente consta hacia la base de areniscas conglomeráticas cuarzosas, hacia la parte media y alta está compuesta principalmente por una sucesión de calizas color crema con bioclástos de algas, macroforaminíferos y algunas conchas de bivalvos, interestratificadas con lodolitas grises que hacia el sur gradan a areniscas (INGEOMINAS, 1999).

Se reporta un espesor de aproximadamente 350 metros en la sección comprendida entre San Andrés de Sotavento y Tuchin, depositada en un ambiente marino somero de aguas tranquilas. La edad de esta formación ocurrió en el Eoceno Medio (Londoño & Gonzalez, 1997).

5.4.1.10. Formación Areniscas del Manantial (E2m).

Se presenta a manera de cordoncillos, a partir de la localidad de Rabo Pelao al suroccidente de Lorica, hasta su culminación en cercanías de la localidad de Pareja, al

suroccidente de Lorica, o como grandes bloques alóctonos en la parte superior de la cuchilla La Alcancía. Aparece también formando parte de brechas polimícticas en el cordón montañosos de Cispatá, al noroccidente de Lorica y Oeste de San Antero y en El Cerrito en los alrededores de San Antero (INGEOMINAS, 1999).

Está constituida por una secuencia granodecreciente que a la base presenta un paquete muy macizo de areniscas conglomeráticas a localmente conglomerados arenosos de guijos de cuarzo lechoso principalmente de 5 cm de diámetro, en una matriz arenosa de grano medio a muy grueso y gránulos redondeados a subangulares pobremente seleccionados, que varía tanto lateral como verticalmente a capas medianas a muy gruesas, predominantemente macizas, de areniscas ligeramente conglomeráticas y areniscas de grano medio a grueso que disminuye a fino y medio hacia la parte superior, donde la estratificación es en capas delgadas a gruesas de areniscas y lutitas hacia el techo (INGEOMINAS, 1999).

La edad de esta unidad es Eoceno Superior, con un ambiente cercano a la línea de costa que parece haberse iniciado en el Eoceno Medio-Tardio con una posible transgresión que progresó hacia el este en el Oligoceno Temprano. El espesor de la unidad es variable en las diversas localidades aflorantes, el máximo espesor medido fue de 107 metros en el sector de Manatial Abajo, pero estiman que en la Cuchilla de La Alcancía a pesar de estar afectado por fenómenos diapíricos, puede alcanzar los 200 metros (GEOTEC, 1997).

5.4.1.11. Formación Ciénaga de Oro (E3N1co).

Las mejores exposiciones de esta formación se encuentran en la carretera Montería-Planeta Rica (Km. 28 a 39), en la vía Ciénaga de Oro-La Yé, en la parte central del departamento. Esta formación también se encuentra expuesta en la región del alto San Jorge. En términos generales, litológicamente se trata de una formación predominantemente arenosa (areniscas sublíticas, pobremente seleccionadas con cemento ferruginoso) a conglomerática con intercalaciones de shales arenosos, shales algo calcáreos, shales carbonosos y mantos de carbón (Londoño & Gonzalez, 1997).

La parte inferior de la unidad está formada por una secuencia alternante de areniscas de cuarzo de grano fino a medio, gris claras, con niveles ocasionales de areniscas conglomeráticas en capas ondulosas y convergentes con intercalaciones laminares de arcillolitas grises y lodolitas ricas en materia orgánica y lentes de carbón. La parte media consta de areniscas de grano medio a conglomerático de cuarzo, feldespato y chert, de color gris claro que se torna rojizo por meteorización, estratificada en capas muy gruesas. En la parte superior, las areniscas poseen cemento calcáreo y contienen bioclastos (gasterópodos y bivalvos) desarrollándose al norte en el cerro Cantagallo, un cuerpo coralino de un espesor aproximado de 30 metros (Acosta, Barrera, & Guzman, 1993).

La edad para esta formación es definida como Oligoceno - Mioceno Inferior. El ambiente de la formación es de depositación con influencia marina somera en su parte media e influencia continental, probablemente deltáica en su techo y base. Esta formación suprayace de manera inconforme la Formación San Cayetano Superior, en algunas partes este límite inferior está marcado por una notoria discordancia angular (Dueñas & Duque-Caro, 1981).

5.4.1.12. Formación Maralú (E2E3ma).

Esta formación conforma colinas suavemente onduladas en la parte suroccidental del departamento. Se diferencian dos conjuntos para esta unidad, uno constituido principalmente por margas con abundantes foraminíferos, donde se intercalan localmente capas delgadas de areniscas líticas y otro conjunto donde predominan lutitas con foraminíferos de color gris claro a crema en muestra fresca y gris medio a gris verdoso en muestra alterada, ligeramente limosas o carbonosas. En el sector de la quebrada La Resbalosa los shales gradan a margas interestratificadas con capas muy gruesas de micrita nodulares de color gris que al parecer hacen parte o se asocian a secuencias rítmicas de areniscas líticas de grano fino que localmente tienen fuerte olor a hidrocarburos (GEOTEC, 1997).

5.4.1.13. Brecha de Cispatá (Ebc).

Con este nombre se agrupa una serie de rocas cuya disposición estructural es caótica y que afloran en la vía Lorica - La Doctrina y principalmente las rocas que conforman la cuchilla de Cispatá al occidente de San Antero. En términos generales se trata de una brecha tectónica compuesta de clastos angulares, de liditas, chert, conglomerados, areniscas y arcillolitas muy cizalladas post-paleógena, con espesores entre 200 y 300 m., que fueron generadas por una fuerte actividad tectónica (INGEOMINAS, 1999).

5.4.1.14. Formación Uva (Pgu).

Está conformada por capas de calizas interestratificadas con lodolitas color gris y areniscas de grano medio a grueso, con fragmentos calcáreos con presencia de foraminíferos y radiolarios. Las areniscas son más frecuentes en el lado oriental del Río Atrato y más comunes hacia el techo. Las calizas predominan en la base y son ricas en foraminíferos. En algunas localidades, la formación presenta horizontes conglomeráticos, intercaladas con capas de calizas. El espesor es variable, se han reportado 1600 metros en el Río Salaquí; 600 metros en el Río Trunadó; 1300 metros en el Río Napipí (contacto inferior fallado), 1200 metros en el Río Nauritá; 2000 metros en la carretera Quibdó – Medellín y 2300 metros en el Río Mumbaradó (INGEOMINAS, 1999).

La edad de la Formación Uva es Oligoceno a Mioceno Inferior, basado en la determinación de foraminíferos; se encuentra delimitada paraconformemente en el techo por la Formación Mapipí (Duque-Caro, 1996).

5.4.1.15. Formación Porquera (N1po).

Se presenta en zonas suavemente onduladas o topográficamente más bajas asociadas a las colinas que de sur a norte se encuentran en la parte centro-oriental del departamento. Las mejores exposiciones se hallan en la vía Montería - Planeta Rica entre las localidades de Los Cerros y la finca Almagra (Dueñas & Duque-Caro, 1981).

Esta formación consta principalmente de lodolitas pardo amarillentas con abundante microfauna (foraminíferos planctónicos), shales calcáreos pardo amarillentos y grises, plásticos, con poco yeso. Ocasionalmente presenta concreciones calcáreas y macrofósiles hacia el tope de la unidad. Se le asigna un ambiente de depositación en

condiciones marinas entre 200 y 600 metros de profundidad ocurrido en el Mioceno Inferior; con espesor de 400 metros en la sección Planeta Rica – Montería (INGEOMINAS, 1999).

5.4.1.16. Formación Pavo (N1pi).

Se distribuye ampliamente en la parte más suroccidental del departamento de Córdoba, destacándose morfológicamente por formar los cerros más elevados que configuran los cierres de las estructuras sinclinales del sur del departamento (INGEOMINAS, 1999).

Se subdivide en dos subunidades, una predominantemente arenosa hacia la parte inferior y otra superior predominantemente lutítica. La subunidad arenosa presenta entre un 60% - 70% areniscas líticas a sublíticas compactas de color gris azulosas a gris medio en capas gruesas a muy gruesas interestratificadas con capas delgadas a medianas de lutitas gris verdosas a marrones. La subunidad superior consta en un 70% a 80% de lutitas varicoloreadas (marrón claro a rojizo, gris verdoso, gris claro, violeta y rojo), macizas con abundante materia orgánica, con esporádicos lentejones de carbón entre 0.2 y 1.0 m de espesor y costras endurecidas de limolitas. En esta subunidad se intercalan con las lutitas, capas de areniscas de grano fino (GEOTEC, 1997).

Esta unidad refleja un registro de facies superiores de un episodio deltáico con espesores estimados de hasta 4.000 metros, depositados durante Mioceno Inferior a Medio, probablemente Mioceno Superior-Plioceno Inferior (INGEOMINAS, 1999).

5.4.1.17. Formación Campano (N1ca).

Se presenta como una franja N-S limitada por el cordón dómico del Cispatá al oeste y la falla de San Antero al este encontrándose algunos afloramientos en la localidad de Nuevo Agrado, la sección tipo de la unidad se ubica en el pueblo de Campano de Los Indios. Está constituida por una secuencia de areniscas de colores rojizos, marrones o amarillos en muestra meteorizada, gris amarillento o naranja rojizo claro en muestra fresca, que se intercalan con lutitas de los mismos colores o de color verde oliva (INGEOMINAS, 1999).

La secuencia granodecreciente consiste en capas medianas a gruesas de areniscas de grano mediano predominante, que en sectores y a la base llegan a ser guijosas, decreciendo a grano fino y a capas delgadas a medianas de lutitas. Las areniscas se componen principalmente de cuarzo, también se presenta chert negro, fragmentos de rocas "blancas" al parecer porcelanitas, interclastos de lutitas verdes, restos carbonosos, ocasionalmente dientes de peces (Mobulidae) y fragmentos de foraminiferos. En la localidad de Campano de Los Indios reportan más de 70 m de espesor, pero estima que tenga un espesor superior a los 300 m. Se asigna una edad aproximada del Mioceno medio temprano (GEOTEC, 1997).

5.4.1.18. Formación Floresanto (N1f).

Esta formación se distribuye al centro-occidente y noroccidente del departamento, al occidente y noroccidente de Montería, en los alrededores de Cucharal, entre Montería y Arboletes y al Occidente de San Antero y Nuevo Agrado, al oriente de la cuchilla de

Cispatá. Hacia la parte inferior consta de areniscas de grano medio, grano de crecientes tanto en tamaño de grano como en el espesor de las capas, ligeramente calcáreas de colores rojizos, marrones o amarillos en muestra alterada y gris amarillento o naranja rojizo. La parte superior está compuesta por capas delgadas a muy gruesas de lutitas intercaladas con limolitas calcáreas y areniscas líticas (INGEOMINAS, 1999). Tiene una edad Mioceno Temprano a Medio (Londoño & Gonzalez, 1997). Se estima para esta un espesor de 2600 metros, a través del cual se refleja un ambiente de depositación marino con profundidades batiales superiores a neríticas (GEOTEC, 1997).

5.4.1.19. Formación Pajuil (N1N2pas-N1pai).

Las mejores secciones estratigráficas de esta formación se encuentran en las quebradas Córdoba y El Brillante Sur, otros afloramientos se hallan en la quebrada Aguas Prieticas, cerca de Cocuelo, quebradas El Brillante Norte y Prisco y las quebradas Matamoros y Paraguay. La parte inferior está constituida por areniscas calcáreas de grano fino a medio, bien cementadas, dispuestas en capas gruesas a muy gruesas de aspecto macizo. Se intercalan o varían a areniscas líticas friables, de grano fino a grueso, regularmente seleccionadas, en capas delgadas a muy gruesas (INGEOMINAS, 1999).

Localmente se presentan Interestratificaciones de capas delgadas a gruesas de lutitas, algunas arenosas, con presencia local de nódulos calcáreos y abundantes restos de plantas; generalmente muy meteorizadas con colores gris verdoso claro, gris verdoso oscuro y marrón oliva. Hacia la parte superior, predominan las lutitas en capas delgadas no mayores de 15 cm de espesor, intercaladas rítmicamente con limolitas calcáreas en capas medianas no mayores de 30 cm, ocasionalmente se encuentran capas delgadas a medianas de areniscas líticas, finogranulares que lateralmente cambian a limolitas o lutitas (INGEOMINAS, 1999).

La edad de esta unidad con base en la microfauna presentes es Mioceno Medio. Con ambiente marino de profundidades batiales superiores a neríticas, e indicativas de un depósito en zonas de plataforma altamente subsistentes, que recibía constantemente aportes de un continente próximo, donde se desarrollan manglares extensos (GEOTEC, 1997).

5.4.1.20. Formación Moñitos (N1mn).

Afloramientos de esta unidad se encuentran a lo largo de la carretera que de la localidad del Manguito conduce a San Anterito y del ramal al Perpetuo Socorro. Las secciones tipo de esta formación se encuentran en cercanías al caserío Pajonal y en la Quebrada Membrillal y el Río Broqueles (GEOTEC, 1997). Está constituida por una secuencia predominantemente lutítica (50%-60%), con intercalaciones de areniscas de grano muy fino a mediano, en capas delgadas a medianas, intercaladas rítmicamente con las lutitas o en capas gruesas a muy gruesas de aspecto macizo y limolitas a calizas terrígenas. El espesor total de esta formación podría alcanzar los 2000 m. con ambiente de depositación marino de baja energía en aguas relativamente tranquilas, ocurrido durante el Mioceno Medio al Mioceno Superior (INGEOMINAS, 1999).

5.4.1.21. Formación Morrocoy-El Pantano (N1mp).

Unidad bien representada en el flanco oriental del sinclinal del Pantano, constituida por capas gruesas a muy gruesas de areniscas líticas friables a localmente calcáreas, que incluso llegan a ser micrítas arenosas; frecuentemente gradan a limolitas, lodolitas y arcillolitas en láminas gruesas, capas delgadas a medianas. El color de las areniscas en muestra fresca es amarillo grisáceo claro a gris verde claro, meteorizadas son amarillo oscuro a marrón amarillento; las lutitas son gris claras, verde oliva, gris amarillento y negras. Para esta unidad se estima un espesor de 2000 m y le asigna una edad Mioceno superior-Plioceno inferior (GEOTEC, 1997).

5.4.1.22. Formación Arenas Monas (N1am).

Con este nombre se agrupan las unidades denominadas como El Pantano y Arenas Monas, las cuales se hallan ampliamente distribuidas al oriente de Punta Arboletes, en los alrededores de Los Córdobas, Canalete y Puerto Escondido (GEOTEC, 1997).

La parte inferior de la formación presenta un espesor cercano a los 2000 m. y corresponde a la Unidad Morrocoy-El Pantano, compuesta en general por areniscas líticas de grano fino a medio, que gradan a lutitas, con algunas interposiciones de conglomerados arenosos bioclásticos. La parte superior o unidad Arenas Monas, con espesor aproximado de 900 m., consta de conglomerados arenosos que varían a areniscas con intercalaciones de lutitas. Se le asigna una edad Mioceno Superior-Plioceno Inferior; define un ambiente de depositación deltáico para la facies inferior y un depósito resultante de alguna fase importante del tectonismo para las facies de la parte superior (GEOTEC, 1997).

5.4.1.23. Formación El Cerrito (N1ec).

Se extiende como una franja de amplitud variable con dirección Norte - Sur, en la parte centro-oriental del Departamento. Hacia el sur, esta franja, cambia su dirección en sentido SW-NE y se torna un poco más amplia (INGEOMINAS, 1999).

Dueñas y Duque (1981), delimitan la base de esta formación en el Departamento de Córdoba por un nivel calcáreo, que en al área de Planeta Rica (Km. 6 vía Planeta Rica-Montería) es un nivel de 20 metros de espesor de caliza maciza, compacta y dura de color amarillo oscuro, con abundante contenido de moluscos. En el área de Colomboy – Bajo Grande, la base consiste en arenas calcáreas blanco-amarillentas con nódulos arcillosos incluidos.

Londoño & González (1997), indican que hacia la base se compone de una alternancia de capas delgadas de lodolitas y areniscas de grano fino de color gris en ocasiones muy bioclásticas. Hacia la parte media y superior consta de lodolitas grises y areniscas finas, con niveles ocasionales de areniscas calcáreas lumaquélicas, predominando hacia el techo arcillolitas de color gris verde oliva con algunas intercalaciones de areniscas y turbas que son más frecuentes hacia la parte superior.

Para el área del Alto San Jorge, al sur del Departamento, la unidad consta de conglomerados, areniscas calcáreas finas y calizas. Los conglomerados contienen cantos subredondeados a redondeados de cuarzo, chert, areniscas y limolitas. Hacia la parte media de la unidad se presentan lodolitas con intercalaciones de areniscas de grano fino a medio y mantos de carbón con espesores mayores de 0,6 metros (INGEOMINAS, 1999).

Para esta formación se postula un ambiente de depositación marino con profundidades menores a los 600 metros hacia la base y somero a continental en la parte media a superior ocurrido en el Mioceno medio - Plioceno inferior (INGEOMINAS, 1999).

Dueñas & Duque (1981), indican para estas rocas un espesor de 1000 metros en la vía Planeta Rica - Montería. Londoño & González (1997) indican para la misma, un espesor de 1500 metros en el área del Alto San Jorge.

5.4.1.24. Formación Broqueles (N1N2b).

Se propone como secciones tipo para esta unidad, las secciones expuestas en la Quebrada

Membrillal y el Río Broqueles (GEOTEC, 1997).

En general consta de limolítas grisáceas y lodolítas azulosas. Con presencia de intercalaciones de areniscas de grano grueso entre las lodolítas y hacia la base conglomerados (Londoño & Gonzalez, 1997). Se diferencia una parte inferior donde predominan limolítas de color gris azuloso medio a gris marrón en muestra fresca, variando a gris crema o marrón claro en muestra meteorizada, de aspecto macizo o blocoso, en capas medianas a muy gruesas que ocasionalmente gradan a areniscas muy finas limosas. Una parte superior constituida por lodolitas que gradan parcialmente a arcillolitas de color gris azuloso en muestra fresca y de color gris claro a castaño claro en muestra meteorizada, presenta hacia el tope un nivel de areniscas a calizas terrígenas, intercaladas con areniscas friables de grano fino, que se distinguen morfológicamente por presentar un relieve abrupto (GEOTEC, 1997).

El espesor de esta formación en el área de Broqueles alcanza los 1.400 m., para la parte inferior y media; se estima que la parte superior puede alcanzar 1.000 m. de espesor. El contacto inferior de la formación en mención es inconforme sobre la Formación Moñitos. El contacto superior es inconforme con depósitos cuaternarios (INGEOMINAS, 1999).

5.4.1.1. Formación Sincelejo (N2Q1s).

Esta formación se extiende como una franja continua de dirección aproximadamente N-S, que atraviesa prácticamente toda la parte nororiental del departamento, desde el oriente de Buenavista en el sur hasta Chinú en el norte (INGEOMINAS, 1999).

Está constituida por areniscas en capas muy gruesas, sin estratificación aparente, de grano grueso, compuestas por cuarzo, feldespatos y líticos, color gris claro amarillento con niveles esporádicos de guijos y presencia de nódulos de areniscas de composición similar pero más compactas, con cemento calcáreo. Restos de troncos silicificados hasta de un metro de diámetro están presentes en algunos de estos afloramientos (INGEOMINAS, 1999).

En su parte inferior es más arcillosa que arenosa, presentando shales grises claros con cantidades menores de arenas que localmente pueden ser calcáreos. El espesor estimado para el Grupo Sincelejo, es superior a los 2.000 metros y la edad de depositación

según Werenfels (1926), ocurrió durante el Plioceno. Dueñas y Duque (1981), indican que esta formación suprayace discordantemente la Formación Cerrito.

Las características sedimentológicas observadas en la Formación Sincelejo parecen indicar un ambiente de depósitos fluviales de ríos trenzados y hacia el tope zonas de llanura de inundación (INGEOMINAS, 1999).

5.4.1.2. Formación Corpa (N2Q1co).

Ocupa el núcleo de dos estructuras sinclinales importantes al noroeste y suroeste de Tierralta, denominadas por Geotec (1997) como los sinclinales de Jaraguay y Tucurá, encontrándose buenos afloramientos en un sector de la carretera Valencia - San Pedro de Urabá y cerca al volcán de lodo Cachaco por el camino de Paraguay (INGEOMINAS, 1999).

Esta formación, que puede alcanzar espesores hasta de 700 m, está constituida esencialmente por conglomerados polimícticos clastosoportados de guijarros y guijos subredondeados, moderadamente consolidados, lo que les confiere una moderada porosidad y permeabilidad, varían a areniscas de grano medio a grueso, ligeramente conglomeráticas, en capas muy gruesas y macizas de color gris claro a gris amarillento con tonos rojizos a marrones (INGEOMINAS, 1999).

Se postulan ambientes de conos aluviales proximales a medios, propios de un área emergida rápidamente, la cual suministró un volumen importante de sedimentos que rellenaron las zonas deprimidas existentes. Con edad Plioceno Inferior-Plioceno Superior. El contacto inferior es inconforme en el Sinclinal de Jaraguay, yaciendo sobre la Formación Pajuil. En el Sinclinal de Tucurá yace paraconforme sobre la Formación Arenas Monas. El límite superior es inconforme con los depósitos aluviales recientes (GEOTEC, 1997).

5.4.1.3. Formación Betulia (Q1b).

Está expuesta en el extremo oriental del departamento y son muy frecuentes sus cambios faciales. Específicamente se diferenciaron sedimentos débilmente consolidados que por su posición estratigráfica y litología son equivalentes a la Formación Betulia del departamento de Sucre (INGEOMINAS, 1999).

Los afloramientos de esta formación en general están profundamente meteorizados. Hacia la parte inferior presenta una serie monótona de arcillas ligeramente arenosas de color gris oliva a marrón amarillento, plásticas con algunos niveles delgados de gravas que incluyen gránulos y guijos de chert y fragmentos de caliche. Localmente presenta areniscas friables similares a la parte superior de la Formación Sincelejo. Encima de la serie monótoma de arcillas, reposan areniscas limosas muy friables ferruginosas con abundantes gravas de cuarzo, chert, liditas y xilópalos. Para la Formación Betulia se reporta un espesor aproximado de 1500-1700 metros. Con base en su posición estratigráfica se ha determinado que se depositó en el Pleistoceno (INGEOMINAS, 1999).

5.4.1.4. Depósitos Cuaternarios

Depósitos Aluviales de Inundación. (Qali).

Se presentan en la depresión del bajo Cauca y San Jorge, al Oriente del departamento, conformando la planicie fluvio-lacustre de los ríos Cauca y San Jorge. Corresponden a superficies planas a casi planas que permanecen inundadas la mayor parte del año. Se encuentran bordeando las ciénagas, presentando una morfología plana- cóncava, suavemente inclinada hacia sus bordes. Están constituidos por arenas de grano muy fino y principalmente limos y arcillas grises parduscas a marrón oscuro con abundante materia orgánica (INGEOMINAS, 1999).

Terrazas Continentales (Qtg).

Se presentan hacia la parte central del departamento en la margen oriental de la región del Sinú y entre Planeta Rica y Tierra Alta. Corresponden a los depósitos aluviales antiguos de los ríos Sinú y San Jorge y algunos de sus efluentes. Su distribución y composición litológica es variable, así en la cuenca del río San Jorge se encuentran dos niveles de terrazas: El más antiguo se halla hacia la región del Alto San Jorge, contienen cantos de peridotitas muy meteorizadas y rocas volcánicas en una matriz areno-limosa de color rojizo. El nivel más inferior de terrazas está constituido por gravas compuestas de cuarzo, chert, rocas volcánicas, granodioritas y cuarcitas en una matriz arenosa, poco cementados e intercalados con areniscas gruesas a conglomeráticas (Londoño & Gonzalez, 1997).

Los niveles de terrazas de la cuenca del Sinú, se encuentran principalmente formando el núcleo de la estructura sinclinal al sur de Canalete y al occidente del río Sinú. En general constan de areniscas y conglomerados débilmente consolidados, con fragmentos de chert, vulcanitas y cuarcitas (Londoño & Gonzalez, 1997).

Depósitos Aluviales (Qal).

Constituyen acumulaciones de sedimentos y fragmentos de roca que conforman los actuales cauces, aluviones y llanuras de inundación de los ríos Sinú, San Jorge, Canalete, Broqueles y algunos tributarios de estos, así como los depósitos intermontanos asociados a los principales drenajes del área montañosa del departamento de Córdoba (INGEOMINAS, 1999).

Su distribución es muy variable, ocupando principalmente una amplia faja en la parte central del departamento conformando el valle del Río Sinú y otra de menor amplitud al suroriente de él (Valle del río San Jorge). Debido a la gran amplitud en la distribución de estos depósitos, su composición litológica varía de acuerdo a la naturaleza de las rocas parentales de las colinas adyacentes a los valles (Londoño & Gonzalez, 1997).

En términos generales, hacia la parte alta del valle, predominan las gravas y arenas, hacia la parte media y baja están compuestos por limos areno arcillosos y arenas con fragmentos de rocas de tamaño y composición variable (INGEOMINAS, 1999).

Terrazas Marinas (Qtm).

Estos depósitos reflejan oscilaciones en el nivel del mar asociados a fenómenos eustáticos y neotectónicos, las más importantes se hallan en Puerto Escondido, Las Córdobas,

Santander de la Cruz, Cedro, Moñitos, oeste de la cuchilla de Cispatá y San Antero - El Porvenir. En los alrededores de Puerto Escondido y al oeste de la cuchilla de Cispatá, constan de fragmentos de rocas sedimentarias y una cobertera de corales y conchas (Londoño & Gonzalez, 1997).

Dataciones realizadas en algunos de estos depósitos por el método de radiocarbón en conchas y corales, señalan una edad Holoceno (Londoño & Gonzalez, 1997).

Depósitos de Manglar (Qmm).

Se presentan en la parte más septentrional del departamento, en los alrededores de la desembocadura del río Sinú, y bordeando gran parte de las ciénagas presentes en la bahía de Cispatá. Están constituidos esencialmente por lodos con abundante materia orgánica, constituyendo sustratos aptos para el desarrollo de manglares (INGEOMINAS, 1999).

<u>Depósitos Marinos Recientes de Playas (Qmp).</u>

Corresponden a franjas litorales de amplitud variable, compuestas por sedimentos tamaño arena, cuya composición es variable dependiendo del origen de los sedimentos, algunas constan de minerales esencialmente terrígenos (líticos, cuarzo, feldespatos y chert) que confieren un color oscuro a las playas, como las presentes en San Bernardo del Viento, Moñitos y Punta Rey. Otras están constituidas por sedimentos de origen biogénico y son de color claro (INGEOMINAS, 1999).

5.4.2. Geomorfología

En el departamento de Córdoba existen cuatro tipos de paisajes distribuidos dentro de las dos grandes geoestructuras, donde se evidencia la gran diversidad geomorfológica en la región. En la Cordillera se encuentra solamente el paisaje de Montaña que representa el 19,72% del departamento, mientras que en la Megacuenca de Sedimentación se presenta la mayor diversidad de paisajes, con predominio del paisaje de Lomerío, que ocupa el 40,43% del departamento, seguido por el paisaje de Planicie con un 29,59% y el piedemonte con el 7,99% del territorio (Tabla 4, Figura 7) (Gobernación de Cordoba; UNGRD, PNUD, 2012).

Tabla 4. Geoformas del departamento de Córdoba.

Paisaje	Tipo de relieve	Área (km²)	%Tipo de relieve en el paisaje	% de paisaje con respecto al área del departamento
Lomerío	Lomas y Colinas	6792,04	67,39	40,43
	Espinazos y/o Crestones	1748,64	17,25	
	Vallecitos	1187,84	11,79	
	Colinas	249,61	2,47	
Planicie	Terrazas	4213,57	57,12	29,59

Paisaje	Tipo de relieve	Área (km²)	%Tipo de relieve en el paisaje	% de paisaje con respecto al área del departamento
	Plano de Inundación	2740,58	37,15	
	Vallecitos	322,39	4,37	
	Plano de Marea	74,03	1	
	Plataforma Costera	26,15	0,35	
Montaña	Espinazos, Filas y Vigas	3004,18	69,24	
	Filas y Vigas	804,88	16,37	
	Espinazos y/o Crestones	415,39	8,45	19,72
	Vallecitos	168,24	3,43	
	Espinazos	123,51	2,51	
Piedemonte	Abanicos y/o Glacis	1942,28	97,56	7,99
	Vallecitos	48,62	2,44	

Fuente: IGAC, 2009

5.4.2.1. Paisaje de Lomerío

En el departamento de Córdoba, es el paisaje de mayor extensión con un área de 10.078,13 km2, que equivale al 40,43% del territorio. Está constituido por varios bloques dispuestos a lo largo y ancho de todo el departamento, los cuales se describen a continuación (IGAC, 2009)

Lomerío Occidental: conformado por una franja alargada, dispuesta en sentido N-S, localizada en el extremo occidental del departamento y hace parte del segmento terminal de la Serranía de Abibe, dentro del Bloque Cinturón Sinú. Comprende gran parte de la vertiente occidental de la cuenca del río Sinú. Geomorfológicamente limita al sur con el relieve de Montaña, al occidente con el departamento de Antioquia y el mar Caribe, al oriente con los piedemontes y al norte con las Planicies y el mar Caribe; atraviesa de sur a norte la parte occidental de los municipios de Tierrita, Valencia, Montería, Cereté, San Pelayo, Lorica y San Bernardo del Viento e incluye la totalidad de Canalete, Los Córdobas, Puerto Escondido y Moñitos.

Está caracterizado por presentar alturas inferiores a 200 msnm, vertientes cortas, pendientes predominantemente moderadas (25%) pero pueden llegar a alcanzar 50% y una red hídrica de tipo dendrítica subparalela.

<u>Lomerío Sur:</u> conformado por una franja irregular, dispuesta en sentido SW-NE, localizada hacia el sur y hace parte de las serranías de San Jerónimo y Ayapel. Se encuentra inmerso dentro de paisaje de montañas y limitado al norte y nororiente por piedemontes y la planicie desarrollada por el río San Jorge; comprenden, de occidente a oriente, parte de los municipios de Tierralta, Montelíbano, Puerto Libertador, Planeta Rica, Buenavista y La Apartada. Está caracterizado por presentar alturas entre 100 y 250 msnm, vertientes

cortas, pendientes variables entre 7% y 50% y una red hídrica de tipo dendrítica a subdentrítica.

Al igual que las rocas que conforman el lomerío occidental, las que conforman este bloque han sido plegadas y falladas dando origen a una serie de anticlinales estrechos separados por sinclinales.

Lomerío Centro-Nororiental: conformado por dos bloques, uno de carácter ancho, dispuesto en sentido W-E y localizado en la zona central del departamento, que se despliega desde inmediaciones del municipio de Planeta Rica hasta Montería, incluyendo los municipios de Pueblo Nuevo, San Carlos, Sahagún y Ciénaga de Oro. Comprende un segmento del Cinturón de San Jacinto, el Anticlinorio de San Jerónimo y parte de la vertiente oriental la cuenca del Río Sinú. Está limitado por las planicies de las cuencas de los ríos Sinú al W y al N y del San Jorge al SE. El otro bloque, configura una franja alargada en sentido SE-NW, al nororiente del departamento, atravesando los municipios de Chinú, San Andrés de Sotavento, Chima, Momil, San Antero y Purísima.

Este lomerío está modelado sobre el mismo sistema de rocas del bloque anterior, de ambiente marino y continental y en menor proporción sobre depósitos cuaternarios. Sus alturas son inferiores a los 250 msnm, presenta vertientes cortas, pendientes predominantemente moderadas (25%) pero pueden llegar a alcanzar 50% y una red hídrica de tipo dendrítica.

5.4.2.2. Paisaje de Planicie

En el departamento de Córdoba este paisaje es el segundo en extensión, y ocupa 7.376.72 km², que equivalen al 29,59% del total del territorio. La Planicie está distribuida en dos regiones principales y otras dispersas al interior del departamento de menor extensión (IGAC, 2009):

La primera se encuentra en la cuenca del río Sinú y se puede observar desde la represa de Urrá, con una configuración estrecha en dirección S-N, que se amplía a partir de Tierralta, donde el río desarrolla un extenso valle aluvial que separa los piedemontes desarrollados a partir de las serranías de Abibe y Las Palomas al occidente y la serranía de San Jerónimo al oriente. Esta planicie se extiende hasta el mar Caribe, al norte del departamento, y se abre paso en medio de un sistema de lomeríos y algunos piedemontes.

La segunda región corresponde a la planicie localizada en la zona centro oriente del departamento y pertenece a la cuenca del río San Jorge, limita al N y al S con el paisaje de Lomerío, al W con el piedemonte y al E con los departamentos de Sucre, Bolívar y Antioquia. Cubre gran parte de los municipios de Ayapel y Buenavista y en menor proporción los sectores orientales de Pueblo Nuevo, Planeta Rica y La Apartada; incluye la zona cenagosa de Ayapel. Esta superficie se encuentra modelada sobre depósitos de carácter continental, dentro del área de influencia de la cuenca baja del río Cauca y de algunas corrientes fluviales que descienden de los lomeríos. En esta geoforma los procesos de carácter fluviolacustre configuran el principal atributo del paisaje.

Esta unidad de paisaje es el resultado de procesos de depositación de sedimentos de diferente naturaleza. Se encuentran asociados algunos focos de erosión laminar ligera y de erosión vertical originada por la incisión de las corrientes (IGAC, 2009).

Dentro de la unidad de Planicie se encuentran cinco diferentes tipos de relieve, constituyendo uno de los paisajes con mayor diversidad al igual que la Montaña. En general predominan las Terrazas y los Planos de inundación, presentes en 57,12% y 37,15% respectivamente, seguido en menor proporción por los Vallecitos (4,37%), los Planos de marea (1%) y las Plataformas costeras (0,35%). A excepción de los planos de inundación y los vallecitos, las superficies modeladas en los diversos materiales exhiben inclinaciones menores al 3%, con formas rectas a ligeramente onduladas y valles abiertos en forma de "U" poco profundos (IGAC, 2009).

5.4.2.3. Paisaje de Montaña

En el departamento de Córdoba estas condiciones se presentan al sur, en las estribaciones septentrionales de la cordillera Occidental y una pequeña parte de la Central, con un área de 4,916.20 km², que equivale al 19,72% del territorio. Está conformada por tres ramales denominados: Serranía de Abibe, localizada al occidente marcando el límite con el departamento de Antioquia, cuya dirección predominante es SW-NE (jurisdicción de los municipios de Tierralta, Valencia y Montería), Serranía de San Jerónimo en el centro, con dirección predominante SW-NE (jurisdicción de los municipios de Tierralta y Montelíbano, principalmente) y la Serranía de Ayapel, ubicada al oriente, constituye el límite con el departamento de Antioquia, con dirección S-NE (jurisdicción del municipio de Puerto Libertador). El relieve relativo en estas estructuras montañosas alcanza más de 2000 m, puesto que se eleva desde alturas cercanas a los 400 msnm hasta los 2700 msnm aproximadamente (IGAC, 2009).

5.4.2.4. Paisaje de piedemonte

En el departamento de Córdoba, el paisaje con las anteriores características configura franjas alargadas con dirección predominantemente N-S y se localizan de la siguiente forma (IGAC, 2009):

<u>Costado occidental</u>: localizado en los municipios de Valencia y Montería, se encuentra constituido por la acumulación de los materiales transportados por las corrientes que drenan las aguas del Lomerío hacia la planicie desarrollada por el río Sinú al este. Entre las corrientes más importantes que dan origen a este bloque de piedemonte, de norte a sur, son: las quebradas Quimarí, Del Medio, Aguas Prietas, Jaraguay, Matamoros, Caño Viejo y sus respectivos afluentes.

<u>Parte Central</u>: localizado en los municipios de Tierralta y Montería, principalmente, se encuentra constituido por la acumulación de los materiales transportados por las corrientes que drenan las aguas desde la montaña que comprende el denominado cerro Murrucucú (parte terminal de la serranía de San Jerónimo) al sur, hacia la planicie aledaña a la Ciénaga Betancí al norte. Entre las corrientes más importantes que dan origen a este bloque de piedemonte están: las quebradas Las Flores, Los Limones, el arroyo Trementinal, y sus respectivos afluentes.

En la parte más occidental y geográficamente al SE de la cabecera municipal de Planeta Rica se desarrolla otro piedemonte, el cual se origina a partir de los materiales que conforman el Cerro las Mulas y las Lomas de Corozal, entre los corregimientos de Marañonal y Campobello y que drenan sus aguas hacia la planicie aluvial del río San Jorge; se destacan los arroyos Hondo y El Desorden.

<u>Parte Centro norte:</u> configura una franja dispuesta en sentido E-W, localizada entre los municipios de Montería y San Carlos, limita con el lomerío que se desarrolla a partir de las inmediaciones del municipio de Planeta Rica al sur y la planicie del río San Jorge. El principal arroyo que transporta y deposita estos materiales es el Arroyo Trementino y la quebrada El Pital.

<u>Costado Nororiental</u>: en esta parte el piedemonte se establece como un bloque dispuesto en dirección SE-NW que atraviesa los municipios de Sahagún, Chinú, San Andrés de Sotavento, Chimá, Momil y Purísima, dividiendo el lomerío del costado oriental con la planicie del río Sinú, la cual en su parte septentrional incluye el complejo cenagoso de Lorica. Entre las principales corrientes se encuentran los arroyos Pital, Palmito y Bijao, los cuales drenan sus aguas al complejo cenagoso.

El paisaje de piedemonte es la unidad de menor extensión en el departamento, con tan solo 1.990.90 km², que equivale al 7,99% del territorio. De acuerdo a su génesis, los depósitos son el resultado de procesos de depositación de sedimentos de carácter coluvio-aluvial originados por efectos de la gravedad y de las corrientes asociadas; en general, configuran superficies ligeramente inclinadas, afectados por algunos procesos de erosión superficial moderados a ligeros y movimientos en masa localizados, de tipo reptación y terracetas.

Esta unidad de paisaje se encuentra constituida casi en su totalidad por relieves de tipo Abanicos y/o glacis, ocupando el 97,56% del piedemonte y se encuentran en alturas que no sobrepasan 150 msnm. El otro tipo de relieve son los Vallecitos que cuentan con tan solo 2,44% del paisaje, y desarrollan formas rectas y cauces abiertos poco profundos.

Figura 7. Mapa geomorfológico del departamento de Córdoba.

Fuente: Elaboración equipo técnico tomado de IGAC, 2009.

5.4.3. Edafología

De acuerdo a las subregiones del departamento los suelos se clasifican de la siguiente forma:

5.4.3.1. Subregión Alto Sinú

La subregión presenta una gran variedad de suelos que pertenecen a las clases agrológicas VI, VII y IV (baja fertilidad, color pardo, arcillosos). La aptitud de este suelo es forestal, pastoreo de especies menores y cultivos de subsistencia. Los pertenecientes a las clases II y III presentan moderada a alta fertilidad, arcillosos y retenedores de humedad. Presentan algunas restricciones para uso agrícola. El uso actual de suelo se divide en bosque, agricultura comercial mecanizada y tradicional, pastos para ganadería extensiva y otros usos. Los conflictos por uso del suelo se dan por la ampliación de la frontera agrícola, ganadera y de colonización hacia las zonas de bosque natura (INGEOMINAS, 2003)I.

5.4.3.2. Subregión Sinú Medio

La mayoría de los suelos son formados sobre planicies aluviales derivados de la dinámica del Río Sinú, en donde predominan las clases I hasta VII, cuya aptitud general es para cultivos transitorios, permanentes o pastos. Son suelos profundos a muy profundos, de fertilidad alta a moderada. Los principales sistemas de explotación son agropecuarios, destacándose cultivos semestrales como algodón, arroz tradicional, maíz tradicional, maíz tecnificado, sorgo, patilla, yuca, entre otros. El cultivo de pastos ocupa un porcentaje alto de uso del suelo. Los conflictos más significativos son los dados por la ubicación de explotaciones agropecuarias en zonas no aptas como humedales o rondas de ríos (INGEOMINAS, 2003).

5.4.3.3. Subregión Bajo Sinú.

Están conformados por depósitos aluviales recientes del Río Sinú y pertenecen a las clases II a la VIII, que son empleados en explotaciones agrícolas, pecuarias y forestales. Varían entre planos, ondulados y quebrados, que permiten que tengan variabilidad de textura, consistencia, fertilidad, drenaje, profundidad efectiva y permeabilidad. El uso del suelo está dividido en ganadería y agricultura (cultivos semestrales y de pancoger, bosques, plantaciones naturales, pastos naturales y áreas de rastrojo). Los complejos lagunares ocupan el 23% de suelo de la subregión (INGEOMINAS, 2003).

5.4.3.4. Subregión San Jorge (Alto)

Los suelos son superficiales a moderadamente profundos con drenaje deficiente y textura fina dominante. Son de fertilidad media a baja y de clases III hasta VII, están cubiertos por bosques, pastos, humedales y cultivos agrícolas (INGEOMINAS, 2003).

5.4.3.5. Subregión San Jorge (Bajo)

Presenta suelos de topografía s quebrada, ondulada y plana, con diferentes clases desde la II hasta la VII. Son suelos moderadamente evolucionados y bien drenados. Los usos más frecuentes son explotación ganadera, agropecuaria y forestal. Los conflictos por uso del suelo más frecuentes son destrucción de hábitats, drenaje y taponamiento de pantanos y ciénagas, contaminación de los suelos por agroquímicos y erosión (INGEOMINAS, 2003).

5.4.3.6. Subregión Canalete y otros Arroyos

Presenta topografía plana a levemente ondulada con variedad de suelos: clase III, IV, VI y VII, que están conformados por material aluvial y marino con vegetación manglarica, de litoral y cocoteros. Son suelos de buen drenaje y textura arcillosa con mediana fertilidad. El uso del suelo está distribuido en agricultura, ganadería y bosques intervenidos y plantados (INGEOMINAS, 2003).

5.4.4. <u>Cuencas hidrográficas</u>

5.4.4.1. Cuenca Río Sinú

La cuenca hidrográfica del río Sinú hoy conformada por las cuencas Rio Alto Sinú y Rio Medio-Bajo Sinú, geográficamente limitan al Norte con el mar Caribe, al Oriente con la serranía de San Jerónimo, al occidente con la Serranía de Abibe y al sur con el Nudo de Paramillo. Políticamente limita al oriente con los municipios de Palmito, Sincelejo y Sampués en el departamento de Sucre y los municipios de San Andrés de Sotavento, Chinú, Sahagún, Planeta Rica y Montelíbano en el departamento de Córdoba. Al Sur limita con los municipios de Dabeiba y Peque en el departamento de Antioquia y al Occidente con los municipios de los Córdobas y Canalete y con los municipios de San Pedro de Urabá, Apartadó, Carepa, Chigorodó, Mutatá y Dabeiba en Antioquia (CVS; Sistema de Parques Nacionales Naturales, CARSUCRE & UNICOR, 2006).

La sumatoria de áreas de estas dos cuencas representa un área aproximada de 1'395.244 Hectáreas de las cuales el 93% corresponde al departamento de Córdoba, el 6% a Antioquia y el 1% al departamento de Sucre. El perímetro de la cuenca del río Sinú es de 857.077 kilómetros que se extienden por las divisorias de aguas que la limitan (CVS; Sistema de Parques Nacionales Naturales, CARSUCRE & UNICOR, 2006).

La cuenca se localiza en el sector occidental de del mar Caribe Colombiana en jurisdicción de los departamentos de Córdoba, Sucre y Antioquia, su posición espacial de acuerdo con las coordenadas geográficas del IGAC origen Bogotá son (CVS; Sistema de Parques Nacionales Naturales, CARSUCRE & UNICOR, 2006):

El punto localizado más al sur, corresponde a la coordenada 1'280.927.73 m Norte y el punto localizado más al Norte hacia la desembocadura se localiza en 1'536.123.46 m Norte, a su vez se limita la cuenca en sus extremos Este, Oeste entre las coordenadas Este 731.071.24 m y 856.429.09 m (CVS - FONADE, 2004).

5.4.4.2. Cuencas Río San Jorge

Esta cuenca hidrográfica se encuentra ubicada al norte de Colombia entre los departamentos de Antioquia, Córdoba, Bolívar y Sucre (CVS, 2005). Se Limita al Norte con el departamento de Sucre, al sur con el departamento de Antioquia, al este con el departamento de Bolívar y al oeste con el departamento de Córdoba. Abarca territorio de 33 municipios en los cuatro departamentos así: Antioquia (Ituango); Córdoba (Puerto Libertador, Montelíbano, Tierralta, La Apartada, Ayapel, Buenavista, Planeta Rica, Pueblo Nuevo, San Carlos, Ciénaga de Oro, Sahagún, Chinú); Sucre (La Unión, Caimito, San Benito Abad, Majagual, Guaranda, Sucre, Corozal, Galeras, Sincé, Sincelejo, Morroa, Los Palmitos, San Pedro, San Juan de Betulia, Buenavista, Sampués, San Marcos) y en Bolívar los municipios de Magangue y Achí (CVS - FONADE, 2004).

Por representar un gran interés ambiental y por estar ubicada en diferentes municipios, la jurisdicción ambiental le corresponde a la CVS (Corporación Autónoma Regional de los Valles del Sinú y del San Jorge), CARSUCRE (Corporación Autónoma Regional de Sucre), CSB (Corporación Autónoma Regional del Sur de Bolívar), CORPOMOJANA (Corporación Autónoma Regional de la Mojana) y, adicionalmente, por nacer y atravesar el Parque Nacional Natural Paramillo le corresponde a Parques Nacionales la jurisdicción de toda la zona alta de la cuenca (CVS - FONADE, 2004).

El río San Jorge nace en el departamento de Antioquia, municipio de Ituango, en un sitio conocido como el Alto Yolombó, entre las cotas 3.500 y 3.200 m.s.n.m., coordenadas 1'280.992,69 mN – 789.000,63 mE y desemboca en el Brazo de Loba – Río Magdalena, departamento de Bolívar, entre los corregimientos San Nicolás y Piñalito en las coordenadas 1'504.096,04 mN – 928.061,97 mE (CVS - FONADE, 2004).

5.4.4.3. Cuenca Río Canalete

La cuenca se encuentra ubicada en la zona noroccidental del departamento de Córdoba. Ocupa el 43,7% de la zona costera del departamento, por lo cual se constituye en la mayor cuenca de esta zona. Limita al norte con el municipio de Puerto Escondido y el mar Caribe, al oriente y sur con el municipio de Montería, y al occidente con los municipios de Arboletes (Antioquia), Canalete y Los Córdobas (Córdoba) completando un perímetro de 157,25 Km (CVS & UPB, 2008).

Incluye los municipios de Canalete, Los Córdobas, Puerto Escondido y Montería (Córdoba). El área de la cuenca es de 91.940,7 ha que representan el 3,7% del departamento de Córdoba. El río Canalete tiene un cauce principal con una longitud aproximada de 90,2 Km. desde el nacimiento cercano a la cota 300 msnm hasta su desembocadura en el mar Caribe (CVS & UPB, 2008).

5.4.5. Hidrografía e hidrología

Los drenajes superficiales del departamento de Córdoba pertenecen a la vertiente hidrográfica del Caribe. La división interna del área corresponde a las cuencas hidrográficas del Río Sinú, Río San Jorge, área costera y área de estuarios.

5.4.5.1. Aspectos climatológicos

En el departamento de Córdoba se encuentran cuatro áreas climáticas (Gobernación de Cordoba; UNGRD, PNUD, 2012):

- La zona costera en donde presenta una precipitación de 800 mm y una temperatura promedio de 28°C.
- La zona del valle del río Sinú con precipitaciones entre 1.000 y 2.000 mm.
- La parte sur del departamento con precipitaciones anuales de 2.000 mm
- Las estribaciones de la cordillera, especialmente en el Nudo del Paramillo, con precipitaciones mayores de 3.000 mm al año y con temperaturas de 18 a 24°C.

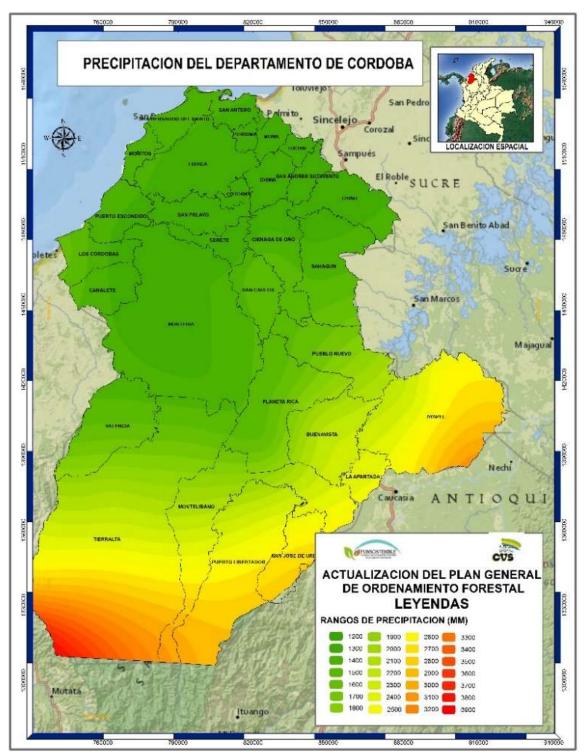
5.4.5.1.1. Precipitación

Los registros de precipitaciones en el departamento de Córdoba varían de acuerdo a cada zona. CVS estableció que en la parte alta de la Cuenca del río Sinú se presentan las mayores precipitaciones, las lluvias totales anuales superan los 3.000 mm en el sector del nudo de Paramillo. Estos valores van disminuyendo hasta el municipio de Tierralta donde se registran precipitaciones medias anuales de 2.200 mm, a partir de allí desciende hasta valores de 1.400 mm en el Medio Sinú y 1.200 a 1.300 mm en el Bajo Sinú (CVS; Sistema de Parques Nacionales Naturales, CARSUCRE & UNICOR, 2006) .

De acuerdo con el Diagnóstico Ambiental de la Cuenca Hidrográfica del río San Jorge, la distribución espacial de precipitaciones presenta mayores registros en la zona alta y disminuye progresivamente hacia la cuenca baja. Las mayores precipitaciones se encuentran distribuidas en la región perteneciente al Parque Nacional Natural Paramillo, continuando con valores promedio de 2.600 mm a 2.400 mm en la región de Uré y Montelíbano respectivamente. Hacia la zona baja de la cuenca se presentan las menores precipitaciones con valores aproximados que varían entre los 2.100 mm anuales en los municipios de Planeta Rica, Pueblo Nuevo y Buenavista hasta los 1.500 mm a 1.300 mm anuales en el municipio de Sahagún y Chinú. La zona de la cuenca que pertenece al complejo cenagoso de la ciénaga de Ayapel y parte baja de la región de la Mojana presenta un aumento en las precipitaciones con valores entre 2.200 mm y aumentando hasta los 2.900 mm hacia el departamento de Antioquia (CVS - FONADE , 2004).

En cuanto al comportamiento espacial y temporal de las precipitaciones en la Cuenca del río Canalete, en esta zona se presentan dos patrones en el comportamiento climático. Uno espacial que hace que la precipitación aumente a medida que el valle se estrecha y asciende y otro temporal debido al paso de la zona de convergencia intertropical. De igual forma, la incidencia de tormentas o ciclones tropicales es remota, registrándose únicamente el fenómeno de mar de leva y vientos fuertes como incidencia de estos fenómenos atmosféricos en dirección este – oeste (CVS & UPB, 2008).

Espacialmente el régimen de lluvias es mayor hacia el costado suroeste en el municipio de Los Córdobas, con precipitaciones multianuales promedio de 1.500 mm, las menores precipitaciones se presentan en la región oriental de la cuenca, en cercanías al municipio de Montería, donde se alcanzan precipitaciones promedio cercanas a los 1.350 mm (CVS & UPB, 2008). En la zona Costera (UAC) se presentan periodos de lluvia y seco. La


temporada de lluvias comienza levemente a finales de abril y se extiende hasta comienzos del mes de noviembre con precipitaciones que oscilan entre los 75 y 175 mm mensuales, siendo agosto el mes con mayor promedio de precipitaciones con 195 mm. Mientras que la época seca inicia a mediados del mes de noviembre y se extiende hasta el mes de abril cuando inicia nuevamente la época de lluvias. En general las precipitaciones en la zona Costera son homogéneas, se presenta el mismo patrón temporal de lluvias y no existen barreras naturales significativas que alteren de manera drástica el comportamiento de las lluvias (MAVDT, CVS & FONADE, 2006).

En la Figura 8 se presentan los registros de precipitaciones medias anuales en las cuencas de los ríos Sinú, San Jorge, Canalete y la Unidad Ambiental Costera.

Figura 8. Mapa de la distribución de precipitación en el departamento de Córdoba.

Fuente: Elaboración equipo técnico tomado de CVS & FONADE, 2004.

5.4.5.1.2. Temperatura

La temperatura promedio en las tierras bajas es de 27°C desde la zona costera hasta el embalse de Urrá. Solo a partir de este punto la temperatura comienza a descender llegando en las cimas de Paramillo a 8°C. El carácter tropical del valle y la predominancia de las zonas bajas establece un régimen térmico cálido tropical con temperaturas medias mensuales superiores a los 25°C (CVS; Sistema de Parques Nacionales Naturales, CARSUCRE & UNICOR, 2006).

La temperatura del aire del valle del río Sinú es alta, con un promedio anual superior de los 27.5° C y con poca variación en el año, durante el día la temperatura es relativamente alta aumentando hasta en 10°C con respecto a la temperatura promedio. Las temperaturas más altas se presentan en el mes abril con un promedio de 28° C y los menores registros en noviembre con un promedio de 27.2° C (CVS; Sistema de Parques Nacionales Naturales, CARSUCRE & UNICOR, 2006).

La temperatura en la cuenca del San Jorge varía alrededor de los 10°C en la parte alta de la cuenca y aumenta progresivamente hasta alcanzar valores promedio de 27°C a 28°C en la parte media y baja. Los meses con mayor temperatura corresponden a marzo y abril, con promedios alrededor de los 28°C y variaciones de temperatura en el día y la noche cercanos a los 10°C. Así mismo, los registros de temperaturas máximas promedio de 35°C y mínimas promedio de 20°C se presentan en la zona baja de la cuenca y de la ciénaga de Ayapel, donde el mes de marzo alcanza valores cercanos a los 37°C (CVS - FONADE, 2004).

La cuenca del río Canalete se encuentra situada en el piso térmico cálido y con base en el método de Thornwaite, esta zona corresponde a un tipo climático semiseco. La temperatura promedio de la cuenca oscila alrededor de los 27,5°C con variaciones muy leves a lo largo de los meses. El mes con mayor temperatura es abril con promedios de 28,9°C y la temperatura mínima oscila alrededor de los 25°C (CVS & UPB, 2008).

Finalmente, la temperatura promedio en la Unidad Ambiental Costera está alrededor de los 27,4°C con variaciones muy leves a lo largo de los meses. Toda la zona costanera presenta condiciones de clima cálido por el predominio de las zonas bajas, los meses con mayor temperatura corresponden a marzo y abril, con promedios alrededor de los 27,8°C (MAVDT, CVS & FONADE, 2006).

En la Figura 9 se presenta las temperaturas promedio en las cuencas de los ríos Sinú, San Jorge, Canalete y la Unidad Ambiental Costera.

Figura 9. Mapa de temperaturas promedios en el departamento de Córdoba.

Fuente: Elaboración equipo técnico tomado de CVS & FONADE, 2004.

5.4.5.1.3. Humedad relativa

La humedad relativa en la Cuenca del río Sinú presenta valores superiores a 80% en toda la cuenca teniendo su valor mínimo hacia Montería en donde alcanza el 82%. Desde este punto hacia el norte la humedad relativa aumenta uniformemente hasta llegar a un valor de 86% en el mar Caribe. De igual forma hacia el sur también se presenta un incremento en la humedad, pero esta llega a un valor máximo puntual de 85% en inmediaciones de la Ciénaga de Betancí. Igualmente la humedad relativa presenta variación temporal, durante el periodo seco es del 82%, durante el período húmedo se aumenta alrededor del 85%, como resultado la evapotranspiración es mayor durante la época seca (CVS; Sistema de Parques Nacionales Naturales, CARSUCRE & UNICOR, 2006).

Así mismo, la CVS en el Diagnóstico Ambiental de la Cuenca Hidrográfica del río San Jorge, plantea que en la cuenca se presentan valores cercanos al 80%, similares a los de la Cuenca del río Sinú, sin embargo, en la zona de Ayapel en la región de la Mojana correspondiente al departamento de Córdoba la humedad relativa aumenta alcanzando un valor promedio de 84%. Igualmente, se presenta un incremento en las épocas de lluvia con valores cercanos al 86%, mientras que en el periodo seco se presentan un valor promedio del 80% (CVS - FONADE, 2004).

Finalmente, tanto en la Cuenca del río Canalete y la Unidad Ambiental Costera, se presentan valores promedio de humedad relativa durante todo el año superiores al 80%, observándose una relación directa con la precipitación, es decir a mayor cantidad o días con lluvia la humedad relativa aumenta, presentándose el caso inverso en los meses de baja pluviosidad. Para los periodos húmedos se observa un aumento de la humedad relativa alcanzando valores de 88% en promedio para el mes de octubre (MAVDT, CVS & FONADE, 2006).

5.4.5.1.4. Evapotranspiración real

La CVS en el 2004 estableció que, en términos generales, en el departamento de Córdoba se presentan registros similares de evapotranspiración a lo largo del territorio. En la cuenca hidrográfica del río Sinú los mayores valores de evapotranspiración potencial (ETP) coinciden con la época de lluvias y llega a un valor de 150 mm por mes en promedio. Los meses con menor registro de evapotranspiración son noviembre, diciembre, enero y febrero, donde se alcanzan valores mínimos entre 120 a 140 mm en promedio en toda la cuenca. Así mismo, los registros de evapotranspiración anuales en la cuenca hidrográfica son de 1750 mm anuales (CVS - FONADE, 2004).

Para el San Jorge la evapotranspiración real (ET) muestra un valor promedio de 1100 a 1200 mm anuales mientras que la Evapotranspiración potencial (ETP) no varía significativamente (CVS, 2005). De igual forma, en la Cuenca del río Canalete y la Unidad Ambiental Costera, la evapotranspiración real es homogénea en toda la zona y oscila entre el rango de 1.000 a 1.200 mm anuales. Así mismo, presenta una distribución muy similar a la precipitación observándose que en la zona norte es un poco menor, debido a que está condicionada a la cantidad de agua disponible (MAVDT, CVS & FONADE, 2006).

5.4.5.1.5. Brillo solar

Las cuencas hidrográficas del departamento de Córdoba por pertenecer a una zona tropical cercana al ecuador presentan una alta incidencia del brillo solar con promedios anuales que varían desde las 1400 horas hasta las 2300. Para el caso de la Cuenca del río Sinú, el número de horas totales anuales de brillo solar varía entre 1400 y 2300 horas. El valor máximo se registra en la Cuenca del río Canalete y la Unidad Ambiental Costera, donde se tienen 2309 horas de brillo solar al año, este valor comienza a disminuir a medida que se asciende en la cuenca y a la altura de Montería se tienen en promedio 2000 horas, hacia la zona del municipio de Valencia se han registrado 1600 horas y en Urrá se tienen valores entre 1400 y 1500 horas (CVS - FONADE, 2004).

En la Cuenca del río San Jorge los valores máximos de brillo solar se encuentran asociados a los períodos secos, donde la nubosidad y las precipitaciones son menores con promedio similares a los presentados para la Cuenca del río Sinú. Se presentan alrededor de 1.800 horas anuales de brillo solar en la zona de región de Ayapel y Planeta Rica, y disminuye hasta valores de 1400 a 1500 horas en la zona alta (CVS - FONADE, 2004)

5.4.5.1.6. Vientos

Los principales sistemas regionales de vientos en la cuenca pueden ser modificados por causas locales como el calor diferencial entre el continente y el mar, predominando vientos en dirección noreste a norte, en general la velocidad de estos es baja y por varios días es menor a los 10 km/h. El período de los vientos se extiende desde junio a septiembre ocurriendo los vientos más fuertes en agosto (CVS; Sistema de Parques Nacionales Naturales, CARSUCRE & UNICOR, 2006).

La Cuenca del río San Jorge se encuentra sometida al régimen de vientos Alisios provenientes del norte y noreste y que afectan el Caribe colombiano, estos vientos definen las épocas seca y húmeda. En época seca soplan en dirección noreste con velocidad variable pero elevada y de manera constante, mientras que durante la época húmeda los vientos son muy variables tanto en dirección como en fuerza y se caracterizan por su mayor porcentaje en calma (CVS, 2005).

5.5. Uso actual de las tierras en actividades no forestales

Este es el uso que recibe la tierra en un tiempo presente, que se configura como resultado de las costumbres y posibilidades de una población, respecto a la rentabilidad económica y/o la viabilidad natural de una cobertura del suelo (IGAC, 2009).

El tipo de explotación que se hace en los predios está condicionado principalmente, por la capacidad de producción agropecuaria de las tierras y por los contenidos del subsuelo. La tradición ganadera del departamento tiene como consecuencia que la mayor parte del uso esté dominado por pastos, seguido por la explotación forestal. Es notoria la diferencia entre las tierras dedicadas a pastos y las dedicadas a la producción agrícola (IGAC, 2009).

En la Tabla 5 y en la Figura 10, se puede observar el total y porcentajes de áreas convertidas a usos no forestales por subregiones ambientales, representa 2.093,890

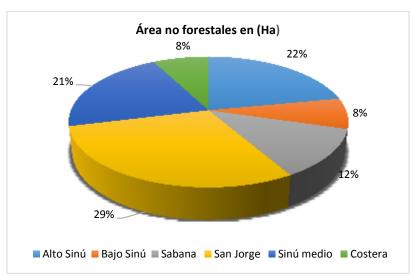

hectáreas, de las cuales 460.251 hectáreas (22%) corresponden al Alto Sinú, 159.097 hectáreas (8%)corresponden al Bajo Sinú, a la subregión Sabana pertenecen 552.807 hectáreas (12%) en áreas de uso no forestal, al San Jorge corresponden 617.742 hectáreas (29%), para Sinú medio corresponden 444.367 hectáreas (21%), y la Subregión Costera corresponden 160.620 hectáreas (8%).

Tabla 5. Áreas no Forestales en las Subregiones del Departamento de Córdoba.

Subregión Ambiental	Áreas no forestales en (Ha)
Alto Sinú	460.251
Bajo Sinú	159.097
Sabana	252.807
San Jorge	617.742
Sinú medio	444.367
Costera	160.620
Total general	2.093,890

Fuente: Elaboración equipo técnico

Figura 10. Porcentajes de las Áreas no Forestales en las Subregiones del Departamento de Córdoba.

Fuente: Elaboración equipo técnico

5.5.1. <u>Usos de suelos de la subregión Alto Sinú.</u>

La Tabla 6 muestra que la subregión Alto Sinú, ocupa un 22% de las áreas totales no forestales; en donde las áreas de uso agrícola, son aquellas que actualmente se encuentran cultivadas y que están por fuera de las áreas protegidas, esta actividad ocupa una extensión de 79.482 hectáreas correspondientes al 3,80%, las cuales incluyen cultivos transitorios, semipermanentes con técnicas y prácticas como labranza mínima y

otras que generen bajo impacto y contribuyen a la recuperación del suelo y demás recursos. Los cultivos transitorios para esta subregión están compuestos principalmente por plantaciones de maíz (Zea mayz) Yuca (Manihot esculenta Crantz), Ñame (Dioscoria sp), Arroz (Oryza sativa). Entre los cultivos semipermanentes, están el cultivo de Plátano (Musa sp.), La papaya (Carica papaya), otros cultivos que se encuentran en la subregión en menor proporción son: la ahuyama (Cucurbita máxima), la guayaba (Psidium guajaba), el mango (Mangifera indica), la guanábana (Anona muricata), la naranja (Citrus sinensis osbeck), limón (Citrus limonium), patilla (Citrullus lanatus) y el coco (Cocus nucifera). La agricultura de misceláneo ocupa un área de 110.550,98 hectáreas, esta explotación agrícola se caracteriza por ser tradicional principalmente para autoconsumo (Alcaldía de Tierra Alta, 2012) (Alcaldía del municipio de Valencia, 2012).

La explotación pecuaria se caracteriza por ser extensiva, ocupando un área de 166.912,84 hectáreas, representando 9,26% del área total; donde se registra producción bovina de forma semi-extensiva, extensiva y en confinamiento en mínima proporción; y se destacan los modelos de producción doble propósito y ceba; otras especies utilizadas en esta actividad son los búfalos, cerdos, aves, ovinos y equinos. La producción pecuaria se basa en cría, levante y engorde utilizando pastos naturales enmalezados y pastos naturales con rastrojos, en la subregión se genera para esta unidad productiva una nutrición animal a partir de un pastoreo libre (Alcaldía de Tierra Alta, 2012) (Alcaldía del municipio de Valencia, 2012).

La subregión del Alto Sinú cuenta con un área aproximada de 24.743,6 hectáreas (1,18%) dedicadas a la pesca de subsistencia y 230,4 hectáreas (0,01%) con un espejo de agua dedicado a la piscicultura, estos usos se refieren a la explotación de áreas con cobertura hídrica generalmente dedicadas al levante y engorde de peces como la Cachama (Colossoma macropomum), Bocachico (Prochilodus magdalenae) y Tilapia Roja (Oreochromis mossambicus). El tejido urbano lo constituye un área de 315,01 hectáreas (0,02%) aproximadamente. 51.016,1 hectáreas (2,44%) se utiliza en otros usos; estas tierras son usadas para los caminos, carreteables, la superficie ocupada por cuerpos de agua esta unidad incluye zonas cubiertas por agua continental, bien sea de origen natural o inducidas por el hombre, representadas por Ciénagas, embalses, represas y ríos. (Alcaldía de Tierra Alta, 2012) (Alcaldía del municipio de Valencia, 2012).

Tabla 6. Usos de suelos de la Subregión Alto Sinú

Usos de Suelos	Área (Ha)	%
Agrícola	79.482	3,80
Ganadería	41.725,8425	1,99
Pastos	152.187	7,27
Misceláneo	110.550,98	5,28
Pesca de Subsistencia	24.743,6	1,18
Piscicultura	230,4	0,01
Urbano	315,01	0,02
Otros Usos	51.016,1	2,44
Total General	460.251	22

Fuente: Elaboración equipo técnico a partir de, (Alcaldía de Tierra Alta, 2012) (Alcaldía del municipio de Valencia, 2012)

5.5.2. <u>Usos de suelos de la Subregión Bajo Sinú.</u>

El uso actual de suelos de la subregión Bajo Sinú está representado en un 8% como se muestra en la Tabla 7, donde el mayor área lo ocupa la ganadería extensiva, la cual ocupa un renglón importante para la subregión ocupando un área de 121.760,8 hectáreas (6,12%), la cría de bovinos de doble propósito ocupa la mayor área de mientras que la agricultura ocupa un área aproximada de explotación concentrada, 12.162,2 hectáreas (0,61%) y está orientada bajo dos sistemas tradicional y técnificado, sobresalen los cultivos de maíz tradicional, maíz tecnificado, hortalizas, arroz secano mecanizado, algodón, frijol caupi, ajonjolí y patilla. La pesca de subsistencia, constituye una actividad de gran importancia económica y social para los habitantes debido a que se convierte en una de las principales actividades generadoras de ingreso y genera alimento de alto valor nutritivo para la población; La camaronicultura, al igual que la piscicultura se presenta a pequeña escala con áreas de 4,66 hectáreas (0,0002%) y 24,1 hectáreas (0,0001%) respectivamente. Y el área en otros usos que está representado en el área urbana, y actividades extractivas como explotación de canteras, y cobertura hídrica (Alcaldía Municipal de Momil, 2010) (Alcaldía Municipal de Santa Cruz de Lorica, 2012) (Alcaldía Municipal de Chima, 2003) (Alcaldía Municipal de Cotorra, 2004) (Alcaldía Municipal de Purisima, 2012).

Tabla 7. Usos de Suelos Subregión Bajo Sinú

Usos de Suelos	Área (Ha)	%
Agricultura	12.162,2	0,61
Ganadería	121.760,8	6,12
Pesca de Subsistencia	12.120,8	0,61
Camaronicultura	4,66	0,0002
Piscicultura	24,1	0,0001
Otros Usos	13.025	0,655
Total General	159.097	8

Fuente: Elaboración equipo técnico a partir de, (Alcaldía Municipal de Momil, 2010) (Alcaldía Municipal de Santa Cruz de Lorica, 2012) (Alcaldía Municipal de Chima, 2003) (Alcaldía Municipal de Cotorra, 2004) (Alcaldía Municipal de Purisima, 2012).

5.5.3. <u>Usos de suelos de la subregión Sinú Medio</u>

La Tabla 8 muestra que los pastos constituyen la mayor área de explotación de usos de suelos en la subregión del Sinú Medio, ocupando un área de 265.657 hectáreas representado un porcentaje del área total de (12,6%) destinados a la alimentación ganaderías extensivas, Los pastos más comunes son: Colosuana (Blotocroa sacaroides), Carimagua (andropogum gayanus), admirable (Braguiaria matica) y angleton (Andropogum nodosus) además existen otros pastos y forrajes herbáceos naturales como: Bledo Blanco, Hierba Arroz, Verbena. La unidad pecuaria ocupa un área de 134.504 hectáreas (6,36%), distribuida en la subregión Sinú Medio la cual es de tipo semiextensiva y

extensiva utilizando pastos mejorados para la dieta de los animales (Alcaldía Municipal de Cereté, 2001) (Alcaldía Municipal de Cienaga de Oro, 2004). (Alcaldía Municipal de Montería, 2016) (Alcaldía Municipal de San Carlos, 2005) (Alcaldía Municipal de San Pelayo, 2012).

En materia agrícola se identifica un área de 31.966 hectáreas (1,51%), donde se destacan los cultivos de maíz, sorgo, algodón, arroz, plátano, ñame, patilla, hortalizas y yuca; la explotación agrícola es altamente tecnificada, completamente mecanizada, incluyendo una fertilización tradicional, acorde a los requerimientos de cada cultivo y se realiza rotación de cultivos. La pesca de subsistencia ocupa un área de 1.578 hectáreas (0,07%) y la piscicultura de subsistencia 8 hectáreas (0,0004%) respectivamente, donde se produce Moncholo (Hoplias malabaricus), Mojarra Amarilla (Terpon atlanticus) Mojarra Negra (Petenvais kraussi), Bocachico (Prochilodus reticulatus) y Liseta (Leporinus muyconen). El misceláneo o agricultura de subsistencia, está representado con alrededor de 2.157 hectáreas (0,10%) estos son asociaciones entre cultivos y coberturas los cuales pueden variar de un lugar a otro. 8.497 hectáreas (0,402%) distribuidos en el área urbana y cobertura hídrica está integrada por ríos, riachuelos, arroyos, canales, caños, ciénagas, pantanos humedales y quebradas. (Alcaldía Municipal de Cereté, 2001) (Alcaldía Municipal de Cienaga de Oro, 2004). (Alcaldía Municipal de Montería, 2016) (Alcaldía Municipal de San Carlos, 2005) (Alcaldía Municipal de San Pelayo, 2012).

Tabla 8. Usos de Subregión Sinú

Usos de Suelos	Área (Ha)	%
Agrícola	31.966	1,51
Pecuario	134.504	6,36
Pastos	265.657	12,6
Pesca de Subsistencia	1.578	0,07
Misceláneo	2.157	0,10
Piscicultura de Subsistencia	8	0,0004
Otros Usos	8.497	0,402
Total general	444.367	21

Suelos de la Medio

Fuente: Elaboración equipo técnico a partir de, CVS- FONADE (Alcaldía Municipal de Cereté, 2001) (Alcaldía Municipal de Cienaga de Oro, 2004). (Alcaldía Municipal de San Carlos, 2005) (Alcaldía Municipal de San Pelayo, 2012).

5.5.4. Usos de suelos de la subregión Sabana

El uso del suelo actual es el resultado de la acción del hombre sobre el ambiente natural, la Tabla 9 muestra, la unidad agrícola establecida en la subregión Sabana que se extiende a 36.082,1 hectáreas (1,71%), esta categoría agrupa los cultivos de carácter permanente y semipermanente, y la agricultura de subsistencia, donde se destacan

cultivos de caña de azúcar para la producción de panela, arroz, yuca amarga, ñame, maíz, Ajonjolí, frijol, ají picante entre otros. La agricultura de subsistencia (Misceláneo) se encuentra distribuida casi en la totalidad de las veredas de cada Municipio que conforman la subregión, los cultivos de maíz, yuca, plátano y ñame se encuentran en la mayoría de estas áreas muy reducidas en menos de una hectárea de extensión. La producción es para autoconsumo, bajo técnicas tradicionales, en las cuales se utiliza principalmente las variedades criollas maíz en asocio yuca y ñame (Alcaldía Municipal de Sahagún, 2013) (Alcaldía Municipal de San Andrés de Sotavento, 2001) (Alcaldía Municipal de Tuchin, 2015) CVS- FONADE.

.

La actividad predominante es la ganadería con un área de 169.059,722 hectáreas (8,025%) predominando la extensiva, se presenta principalmente en suelos con coberturas de pastos y se desarrolla en terrenos de diferentes características con infraestructura vial desarrollada. Para pesca de subsistencia se utiliza un área de 1.121,19 hectáreas (0,053%), para la agricultura de subsistencia (misceláneo) 22.345 hectáreas (1,06%) y 24.198,95 hectáreas (1,15%) en otros usos. (Alcaldía Municipal de Sahagún, 2013) (Alcaldía Municipal de San Andrés de Sotavento, 2001) (Alcaldía Municipal de Chinú, 2000) (Alcaldía Municipal de Pueblo Nuevo, 2000) (Alcaldía Municipal de Tuchin, 2015) CVS-FONADE.

Tabla 9. Usos de Suelos de la Subregión Sabana

Usos de Suelos	Área (Ha)	%
Agrícola	36.082,1	1,71
Ganadería	169.059,722	8,025
Pesca de Subsistencia	1.121,19	0,053
Misceláneo	22.345	1,06
Otros Usos	24.198,95	1,15
Total general	252.807	12

Fuente: Elaboración equipo técnico a partir de, CVS- FONADE (Alcaldía Municipal de Sahagún, 2013) (Alcaldía Municipal de San Andrés de Sotavento, 2001) (Alcaldía Municipal de Chinú, 2000) (Alcaldía Municipal de Pueblo Nuevo, 2000) (Alcaldía Municipal de Tuchin, 2015).

5.5.5. <u>Usos de Suelos de la subregión San Jorge</u>

El uso actual de la Subregión San Jorge, está representado por el sector agrícola que ocupa 5.020,73 hectáreas (0,235%), se constituye fundamentalmente en cultivos de subsistencia como maíz, arroz, plátano, yuca y ñame, entre otros. En cuanto a la actividad ganadera el área general de la zona es de 485.351,882 hectáreas (22,78%). El área de Misceláneo ocupa un área de 108.202 hectáreas (5,079%), se presentan, en general, cultivos transitorios como Arroz (Oryza sativa) y Maíz (Zea mays) y otros de carácter permanente y semipermanente como la Yuca (Manihot sculenta), el Ñame, el Plátano, la Patilla, entre otros. La actividad pesquera se desarrolla en un área de 17.044,2, hectáreas (0,800%) para subsistencia. Y otros usos 2.123,11 hectáreas (0,099%), distribuidos en

29

explotación minera, el uso urbano, consumo animal y humano (Tabla 10). (Alcaldía Municipal de Montelibano, 2001) (Alcaldía Municipal de Ayapel, 2016) (Alcaldía Municipal de Planeta Rica, 2016) (Alcaldía Municipal de Puerto Libertador, 2005) (Alcaldía Municipal de San José de Uré, 2010).

% Usos de suelos Área (Ha) 0,235 Agricultura 5.020,73 22,78 485.351,882 Ganadería 5,079 108.202 Misceláneo 0.800 Pesca de subsistencia 17.044,2 0.099 Otros usos 2.123,11

617.742

Tabla 10. Usos de Suelos de la Subregión San Jorge

Fuente: Elaborado por el equipo técnico, a partir de (Alcaldía Municipal de Montelibano, 2001) (Alcaldía Municipal de Ayapel, 2016) (Alcaldía Municipal de Planeta Rica, 2016) (Alcaldía Municipal de Puerto Libertador, 2005) (Alcaldía Municipal de San José de Uré, 2010).CVS- FONADE.

5.5.6. <u>Usos de suelos de la subregión Costera</u>

Total General

Los suelos constituyen un factor geográfico de gran importancia, ya que sus usos son muy variados, dependen de su grado de desarrollo y de sus características. Y su fertilidad influye en el hecho de satisfacer las necesidades básicas de la población. La tabla muestra la distribución de usos de suelos de la subregión costera, donde la agricultura ocupa un área de 15.977 hectáreas(0,79%), donde se destacan los cultivos transitorios, permanentes y anuales: Plátano, coco, yuca, maíz, algodón, arroz, sorgo, frutales (cítricos, mango y níspero) y la agricultura de subsistencia (misceláneo) ocupa un área de 31.645 hectáreas (1,57%), y se adelanta en pequeñas extensiones en cultivos de economía campesina destinada al autoconsumo utilizando prácticas conservacionistas, sistemas de cultivos asociados con cultivos como yuca, ñame, maíz, hortalizas y barreras vivas para la protección de estos. El área de la ganadería muestra una superficie total de 104,782 hectáreas (5,21%) de las cuales corresponden al sistema extensivo y tradicional con pastos naturales y mejorados, rotación de potreros y siembra de árboles de la región en cercas vivas. La pesca de subsistencia, ocupa un área de 2.392 hectáreas (0,11%), esta actividad se realiza en la subregión sin propósitos de lucro, con el fin de proporcionar alimentación a quien la ejecuta y su familia. La piscicultura comprende del área total 3.325 hectáreas (0,16%), adicionalmente a los usos mencionados anteriormente, en la Subregión se encuentran otros usos de importancia, los cuales están relacionados con la ocupación del espacio por asentamientos humanos, las vías y los cuerpos de agua, playas, la cual comprende un área de 2.514 hectáreas (0,12%) (

Tabla 11). (Alcaldía Municipal de Canalete, 2001) (Alcaldía Municipal de Puerto Escondido, 2001) (Alcaldía Municipal de Los Córdobas, 2000) (Alcaldía Municipal de Moñitos, 2001) (Alcaldía Municipal de San Antero, 2016) (Alcaldía Municipal de san Bernardo del Viento, 2001).

Tabla 11. Usos de Suelos Subregión Costera

Usos de suelos	Área (Ha)	%
Agricultura	15.977	0,79
Ganadería	104.782	5,21
Misceláneo	31.630	1,57
Pesca de subsistencia	2.392	0,11
Piscicultura	3.325	0,16
Otros usos	2.514	0,12
Total General	160.620	8

Fuente: Elaborado por el equipo técnico, a partir de (Alcaldía Municipal de Canalete, 2001): (Alcaldía Municipal de Puerto Escondido, 2001) (Alcaldía Municipal de Los Córdobas, 2000) (Alcaldía Municipal de Moñitos, 2001) (Alcaldía Municipal de San Antero, 2016) (Alcaldía Municipal de san Bernardo del Viento, 2001)

5.5.7. Áreas en Cultivos agrícolas y pecuarios.

Subregión Alto Sinú

En base a la 5ta entrega de resultados del Censo Nacional Agropecuario (CNA) de 2014, la subregión del Alto Sinú tiene una extensión de 43.084 hectáreas, y de acuerdo a las Evaluaciones Agropecuarias Municipales realizadas por el Ministerio de Agricultura, La Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental en el año 2015 está área de cultivos agrícolas se distribuye de la siguiente manera de acuerdo a los tipos de cultivos (DANE, 2014) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

De las 43.084 hectáreas que posee la Subregión Alto Sinú, 21.216 hectáreas (49,24%) corresponden a cultivos transitorios con sus diferentes cultivos tales como: Maíz tradicional, arroz secano manual, patilla, arroz secano mecanizado, maíz tecnificado. Los cultivos permanentes poseen 15.667 hectáreas (36,36%), este sistema está representado por cultivos de cacao, caucho, plátano, papaya, maracuyá, palma africana y los cultivos anuales representan un área aproximada de 6.201 hectáreas, equivalentes a un 14,39% del área, donde predominan los cultivos de yuca y ñame. La subregión cuenta con un área pecuaria de 38.091 hectáreas. (DANE, 2014) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Subregión Bajo Sinú.

En base al Censo Nacional Agropecuario y a las Evaluaciones Agropecuarias Municipales, las áreas de cultivos agrícolas tienen una extensión de 19.728,5 hectáreas, donde los cultivos transitorios ocupan un área de 12.940 hectáreas, la cual corresponde al 65,59%

del total de la subregión donde sobresalen los cultivos de maíz tradicional, maíz tecnificado, hortalizas, arroz secano mecanizado, algodón, frijol caupi, ajonjolí y patilla. Los cultivos anuales ocupan una superficie de 2.930,5 hectáreas (14,85%), los cultivos que ocupan está área son yuca venezolana, yuca industrial y ñame y los cultivos permanentes en la subregión bajo Sinú ocupan un área de 3.858 hectáreas (19,55%), donde los cultivos representativos son la palma de aceite, caucho, mango, piña, plátano, coco, limón y naranja. En cuanto al área pecuaria tiene dedicada un área aproximada de 43.343 hectáreas. (DANE, 2014) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Subregión Sabana

El área con cultivos agrícolas de la Subregión Sabana comprende una extensión aproximada de 12.740 hectáreas. Para esta zona un uso mayor de tierras lo ocupan los cultivos anuales con 499,5 hectáreas correspondientes al 59% del área total de la subregión, los cultivos que se registran son: Ñame, yuca industrial y yuca venezolana. Por su parte los cultivos transitorios ocupan una extensión de 3.78, 7 hectáreas (26%) el grupo de transitorios para esta subregión comprende los cultivos de: arroz mecanizado, arroz tradicional, maíz mecanizado, maíz tradicional, patilla. Arroz secano mecanizado, frijol, ajonjolí, pepino y ahuyama. El área sembrada en cultivos permanentes es de 1.961,8 hectáreas, equivalentes al 15,3% del área total de la subregión correspondientes a cultivos de plátano, piña, marañón, coco, caña panelera, mango, limón y caña flecha. En relación al área pecuaria ocupa 11.906 hectáreas para esta unidad productiva. (DANE, 2014) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Subregión San Jorge

El área total de cultivos agrícolas reportada por la ENA para 2015 para esta subregión, fue 21.339 hectáreas. Según las Evaluaciones Agropecuarias Municipales, los cultivos que registraron mayor área fueron los transitorios ocupan un área de 12.129 hectáreas, este grupo participa con 56,8% del área total de la subregión y los cultivos representativos son: arroz secano manual, arroz secano mecanizado, maíz tradicional, patilla y arroz riego. Seguidamente los cultivos permanentes con 5.746 hectáreas sembradas (26,9%): plátano, palma de aceite, caña panelera, limón, mango, caucho, cacao y maracuyá. Y finalmente los cultivos anuales registraron un área aproximada de 3.464 hectáreas (16,2%) destacándose cultivos como: yuca, ñame, yuca industrial y ají topito. En relación al área pecuaria se dedican a esta actividad 2.768 hectáreas. (DANE, 2014) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

<u>Subregión Sinú Medio</u>

Para la subregión Sinú Medio, el área total en cultivos agrícolas es de 31.522 hectáreas, donde los cultivos transitorios registran un área de 18.272 hectáreas (58%), donde se destacan: maíz técnificado, maíz tradicional, berenjena, arroz secano manual, arroz riego, patilla, pepino, ají dulce, ajonjolí. Los cultivos anuales ocupan un área de 8312,8 hectáreas

173.310.63

(26,3%): yuca, ñame, ají y berenjena. Y los cultivos permanentes sembrados son: coco, plátano, cítricos, mango, guayaba dulce, guayaba agría, piña, plátano, ají picante, maracuyá, ocupando un área de 4.927,5 hectáreas (15,6%). En cuanto al área pecuaria, existen 4.730 hectáreas dedicadas a esta actividad. (DANE, 2014) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Subregión Costera.

La Subregión Costera cuenta con 15.419,3 hectáreas en uso de cultivos agrícolas, de las cuales se aprovechan 8.656 hectáreas (56,1%) en cultivos transitorios (maíz tradicional, maíz técnificado, arroz secano manual, patilla, ají, berenjena y habichuela). La superficie en cultivos anuales es de 3.061 hectáreas y equivale al 19,8% de área bajo uso en cultivos agrícolas: yuca, ñame y piña. Existen 3.702.3 hectáreas (24%) en cultivos permanentes que se destinan en cultivos de plátano, coco, palma africana y mango. Para esta subregión se reportan 2.292 hectáreas dedicadas a la actividad pecuaria. (DANE, 2014) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

5.5.8. <u>Áreas convertidas para usos no forestales permanentes (áreas con asentamientos humanos, cultivos ilícitos, vías, embalses y otras infraestructuras).</u>

Áreas con asentamientos humanos

Los asentamientos humanos son la expresión física de las interacciones sociales, económicas y políticas de las personas que viven en comunidades tanto si son urbanas o rurales; su desarrollo supone una transformación del entorno construido por el hombre (Centro para las Naciones Unidas para los Asentamientos Humanos-Hábitat, 1994).

En la Tabla 12 se relacionan las áreas convertidas en usos no forestales (asentamientos humanos), por subregiones ambientales en el Departamento de Córdoba.

Subregión Ambiental	Asentamientos Humanos	Área (Ha)	
	Cabecera Municipal	128,36	
Alto Sinú	Cabecera Corregimental	31,24	
	Veredas	88.218,70	
	Total	88.378,31	
	Cabecera Municipal	1.188,44	
Bajo Sinú	Cabecera Corregimental	73,55	
	Veredas	157.287	
	Total	158.549	
	Cabecera Municipal	304,29	
Costera	Cabecera Corregimental	58 47	

Veredas Total

Tabla 12. Áreas convertidas en usos no forestales (Asentamientos humanos)

Subregión Ambiental	Asentamientos Humanos	Área (Ha)
	Cabecera Municipal	787,92
Sabana	Cabecera Corregimental	115,06
	Veredas	262.566,32
	Total	263.439,32
	Cabecera Municipal	950,40
San Jorge	Cabecera Corregimental	100,74
	Veredas	765.902,22
	Total	766.953,36
	Cabecera Municipal	2648,88
Sinú Medio	Cabecera Corregimental	334,51
	Veredas	473303,25
	Total	476.286,64

Fuente: Elaboración equipo técnico a partir de

Áreas en vías

Las vías Nacionales son aquellas que cumplen la función básica de integración de las principales zonas de producción y de consumo del país. La red vial nacional en Córdoba está conformada por 574.1 Km, de los cuales el 90.33% se encuentra pavimentado y el 9.67% sin pavimentar (Gobernación de Córdoba, 2009).

La red vial secundaria está compuesta por 589.6 Km. de los cuales el 38.25% se encuentra pavimentado, el 61.78% en afirmado. Esta red corresponde al 8.45% de la red total de carreteras del Departamento. El 38.25% de vías pavimentadas se encuentran el 65.29% en buen estado (338.41km), el 29.15% en regular estado (151.14 Km.) y el 5.60% en mal estado (29.02km). Esta red se encuentra conformada básicamente por aquellas vías que comunican a cabeceras municipales entre si y aquellas que comunican a cabeceras municipales con vías nacionales, así mismo están incluidos los 141.7 Km. de red transferida por la nación mediante Resolución de 1995.(Tabla 13) (Gobernación de Córdoba, 2009).

Tabla 13. Áreas vías por Subregión Ambiental

SUBREGIÓN AMBIENTAL	PAVIMENTADO	AFIRMADO	TIERRA	LONGITUD
ESTADO DE LAS VÍAS	Subtotal	Subtotal	Subtotal	TOTAL (KM)
SUBREGIÓN ALTO SINÚ	37,73	36,32	0	74,05
SUBREGIÓN COSTERA	25,43	13,76	0	33,46
SUBREGIÓN SABANA	27,69	43,24	0	70,93
SUBREGIÓN SAN JORGE	61,57	112,53	0	174,1
SUBREGIÓN SINÚ MEDIO	73,12	104,42	0	177,54
TOTAL RED VIAL SECUNDARIA	225,54	310,27	0	530,08

Fuente: Elaborado por el equipo técnico, a partir de (Gobernación de Córdoba, 2009)

Las 30 cabeceras municipales de Córdoba se encuentran comunicadas por carretera, contando de este total con 22 cascos urbanos con vía pavimentada, en razón a que 17 de ellas se encuentran ubicadas sobre vías nacionales y 5 conectadas con vías nacionales. De las restantes 8 cabeceras municipales 7 se encuentran con vía

parcialmente pavimentada y 1 cabecera municipal se encuentra sin vía pavimentada (Tabla 13) (Gobernación de Córdoba, 2009).

Cultivos Ilícitos

La Tabla 14 muestra que el departamento de Córdoba para el período 2008-2010 mostró un incremento de área cultivada registrando para 2008 1.710 hectáreas y para el año 2010 3.889 hectáreas de cultivos ilícitos. Debido que para el periodo 2011-2014 se asperjó y se erradicó manualmente área de cultivos ilícitos, hubo una reducción significativa de área cultivada con coca de 1.088 hectáreas para el año 2011 a 560 hectáreas para 2014 (Oficina de las Naciones Unidas contraladroga y el delito, 2016).

Tabla 14. Área con coca en el departamento de Córdoba (2008-2015)

Año	2008	2009	2010	2011	2012	2013	2014	2015
Hectáreas	1.710	3.113	3.889	1.088	1.046	439	560	1.363

Fuente: Elaboración equipo técnico a partir de (Oficina de las Naciones Unidas contraladroga y el delito, 2016).

Según la UNODC, 2016 para el año 2015 los cultivos ilícitos en Córdoba tuvieron un fuerte incremento que rompe tendencia de estabilidad que se venía presentando, pues para este año hay registradas 1.363 hectáreas, incrementando un 143% en el área cultivada. Los cultivos ilícitos para este departamento están concentrados principalmente en Tierralta, municipio perteneciente a la subregión ambiental Alto Sinú (Oficina de las Naciones Unidas contraladroga y el delito, 2016).

Embalses

El embalse de Urrá localizado al sur del departamento de Córdoba, al noroccidente de Colombia y a 30 km del municipio de Tierralta. Ocupa un área máxima de 8.038 hectáreas, Este embalse represó al río Sinú a la altura de Angostura de Urrá a 137 msnm a 297 km de su desembocadura con un área de 7400 Ha y forma dendriforme por la geomorfología de las colas embalsadas de los ríos y quebradas que le aportan sus aguas (Valderrama et al. 2002). Sus principales afluentes son los ríos Verde, Esmeralda, Manso y Tigre, que nacen en el Parque Nacional Natural Paramillo y confluyen aguas arriba del embalse, constituyendo el principal aporte hidrológico al mismo en conjunto con algunas quebradas como las de Tucurá, Urrá y Naín (Valderrama et al, 2002).

5.5.9. Áreas en cultivos hidrobiológicos

Este tema se aborda a nivel departamento ya que en Córdoba no existe información oficial por municipios acerca de cultivos hidrobiológicos y pesqueros y en la actualidad SEPEC se encuentra recopilando información para armar base de datos y así obtener información oficial (INVEMAR, 2009).

Se entiende por recursos hidrobiológicos a todos aquellos recursos renovables que se encuentran en los océanos, lagos, lagunas ríos y todo cuerpo de agua circundante que reúna condiciones óptimas (temperatura, pH, composición principalmente) para mantener una flora y una fauna, el cual pueda ser aprovechada por el hombre para satisfacer sus necesidades (INVEMAR, 2009).

Para las pesquerías el departamento de Córdoba la cuenca de río Sinú se ha caracterizado por la existencia de una actividad ancestral de uso de aprovechamiento del recurso pesquero (Valderrama, 2002.), y comprende un área de 137.000 hectáreas, de los cuales 122.000 hectáreas pertenecen al departamento de Córdoba. Por su parte el delta estuarino se calcula que la extensión de esta zona es de 13.000 hectáreas y se ubica en los municipios de San Bernardo del Viento, San Antero y Lorica, incluyendo ambos deltas y los caños del Lobo, Salado, Sicará y las ciénagas de Garzal, Corozo y Ostional (INVEMAR, 2009).

Tabla 15. Cantidad de granjas, estanques y jaulones y espejo de agua en hectáreas utilizados y no utilizados en la producción piscícola.

Departamento	N° de granjas	N° utilizadas	Área en espejo de agua utilizada (ha)	N° No utilizadas	Total agua en espejo de agua (ha)	N° total	Total espejo de agua (ha)
ESTANQUES ESTANQUES							
Córdoba	290	695	170	364	51	1.059	221
JAULAS Y JAULONES							
Córdoba	1	0	0	7	13,1	7	13,1

Fuente: Elaborado por el equipo técnico a partir de, (CCI-MADR, 2012)

En la Tabla 15, se observa que la superficie total dedicada a la piscicultura es de 221 hectáreas de espejo de agua. La mayoría de granjas utilizan estanques en tierra (CCI-MADR, 2012).

5.5.10. <u>Producción agropecuaria e hidrobiológica</u>

5.5.10.1. Producción agrícola

Subregión Alto Sinú

El total general para la producción de cultivos permanentes de la subregión Alto Sinú en el 2015 fue de 278.658 toneladas. La mayor producción del grupo de los permanentes la tuvo el cultivo de plátano con 165.371 toneladas; dentro de este grupo también se destaca el cultivar de papaya con 111.000 toneladas producidas para este año (Tabla 16) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 16. Producción cultivos permanentes subregión Alto Sinú

Cultivos permanentes	Producción (†)
Cacao	1.627
Plátano	165.371
Papaya	111.000
Maracuyá	260
Palma africana	400
Total general	278.658

La producción total de los principales cultivos transitorios reportada por las EVAS para 2015, fue de 32.066 toneladas, los dos cultivos que presentaron mayor producción fueron: maíz técnificado total con 12.530 toneladas y arroz secano manual con 9.000 toneladas. La menor producción la registró la patilla al producir 875 toneladas con respecto a los demás cultivos (Tabla 17) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 17. Producción de cultivos transitorios Subregión Alto Sinú

Cultivos transitorios	Producción (†)
Maíz técnificado	12.530
Arroz secano manual	9.000
Patilla	875
Arroz secano mecanizado	4.770
Maíz técnificado	4.891
Total general	32.066

Fuente: elaboración equipo técnico, tomado de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

En el año 2015 según las evaluaciones agropecuarias municipales en la Tabla 18 se registra la producción de cultivos anuales de 47.840 para la subregión Alto Sinú, registrando mayor productividad el cultivo de yuca con 46.300 toneladas con respecto al área sembrada, seguido por el ñame al producir 1.540 toneladas para este año (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 18. Producción de Alto Sinú

cultivos anuales Subregión

Cultivos anuales	Producción (†)
Yuca	46.300
Ñame	1.540
Total general	47.840

<u>Subregión Bajo Sinú</u>

La producción de cultivos permanentes en la Subregión del Bajo Sinú está compuesta por los cultivos de plátano, mango, palma africana y naranja que sumaron 32.766 toneladas de producto para el año 2015, siendo el cultivo de plátano el más sobresaliente con 31.788 toneladas en producción (Tabla 19) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 19. Producción de cultivos permanentes Subregión Bajo Sinú

Cultivos permanentes	Producción (†)
Plátano	31.788
Mango	3.440
Palma africana	631
Naranja	3
Total general	32.766

Fuente: elaboración equipo técnico, tomado de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

En cuanto a los cultivos transitorios para la subregión Bajo Sinú reúnen una producción total de 40.994,7 toneladas. Donde el producto con mayor producción es el cultivo de maíz tradicional con 4.413,6 toneladas, y el de menor producción es el cultivo de ajonjolí con una participación de 6 toneladas producidas para el año 2015 (Tabla 20) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 20. Producción de cultivos transitorios Subregión Bajo Sinú

Cultivos transitorios	Producción (t)
Maíz técnificado	18.429
Tomate	20
Hortalizas	10,9
Arroz secano mecanizado	4.735,2
Algodón	5.566
Frijol	564
Maíz tradicional	4.413,6
Patilla	5.510
Pepino	120
Arroz secano manual	1.620
Ajonjolí	6
Total general	40.994,7

Fuente: elaboración equipo técnico, tomado de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

En la

Tabla 21 se muestran los cultivos anuales donde la producción total es de 40.445

toneladas,

cultivos de yuca con industrial con 180 22.012 toneladas Agricultura, Corporación Rural Internacional y la Departamental, 2015).

Cultivos anuales	Producción (†)
Yuca	18.253
Ñame	22.012
Yuca industrial	180
Total general	40.445

distribuyéndose en los 1.8253 toneladas, yuca toneladas y ñame con (Ministerio de Colombiana Desarrollo Secretaría de Agricultura

Tabla 21. Producción de Bajo Sinú

cultivos anuales Subregión

Cultivos anuales	Producción (†)
Yuca	18.253
Ñame	22.012
Yuca industrial	180
Total general	40.445

Fuente: elaboración equipo técnico, tomado de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015)

Subregión Costera

Para la subregión Costera, la Tabla 22, muestra que los cultivos permanentes presentan una producción de 89.061 toneladas, conformando esta cifra los cultivos de plátano con 71.812 toneladas, mango 690 toneladas, guanábana 18 toneladas, aguacate 14 toneladas, maracuyá 3.600 toneladas, coco 12.700 toneladas y cacao con un aporte de 227 toneladas (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 22. Producción de Subregión Costera

cultivos permanentes

Cultivos permanentes	Producción (†)
Plátano	71.812
Mango	690
Guanábana	18
Aguacate	14
Maracuyá	3.600
Coco	12.700
Cacao	227
Total general	89.061

El total general de la producción de cultivos transitorios para la Subregión Costera produjo 46.528,6 toneladas siendo el principal producto en producción el arroz secano manual con 3.0117 toneladas, y ajonjolí el menos representativo con 6 toneladas en producción (

Tabla 23) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 23. Producción de cultivos transitorios Subregión Costera

Cultivos transitorios	Producción (†)
Maíz técnificado	605,6
Ají	375
Berenjena	418
Arroz secano mecanizado	1200
Arroz riego	2.750
Frijol	63
Maíz tradicional	8.001
Patilla	2.993
Arroz secano manual	3.0117
Ajonjolí	6
Total general	46.528,6

La Tabla 24 muestra que dentro de los cultivos anuales, para la Subregión costera se encuentran: yuca (22.458 toneladas), Ñame (37.565 toneladas) y Piña el cultivo con menos producción (140 toneladas) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 24. Producción cultivos anuales Subregión Costera

Cultivos anuales	Producción (†)
Yuca	22.458
Ñame	37.565
Piña	140
Total general	40.445

Fuente: elaboración equipo técnico, tomado de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Subregión Sabana

Según Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015, los cultivos permanentes tienen una producción total para este año 7.103 toneladas, registrando mayor producción el cultivo de plátano con 2.281 toneladas/año y el de menor producción el cultivo de la rama de citricos limón 9 toneladas (

Tabla 25) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 25 Producción de cultivos permanentes Subregión Sabana

Cultivos permanentes	Producción (†)
Plátano	2.281
Piña	875
Marañón	890
Coco	65
Caña panelera	2.040
Mango	18
Limón	9
Caña azucarera	40
Caña flecha	885
Total general	7.103

Los cultivos transitorios como el arroz, maíz, ajonjolí, frijol, pepino, ahuyama, ají para el año 2015, en la subregión Sabana alcanzaron 32.742, 9 toneladas en producción siendo el cultivo de arroz mecanizado el de mayor rendimiento con 15.785,3 toneladas (Tabla 26) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 26. Producción de cultivos transitorios Subregión Sabana

Cultivos transitorios	Producción (t)
Arroz mecanizado	15.785,3
Arroz tradicional	2.578,6
Maíz técnificado	5.281,3
Patilla	2.211
Maíz tradicional	9.669
Ajonjolí	1.527
Frijol	132
Arroz secano manual	600
pepino	64
Ahuyama	75
Ají tabasco	66
Ají dulce	32
Total general	32.742,9

Fuente: elaboración equipo técnico, tomado de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Los cultivos anuales en materia de rendimientos, para el año 2015, la mayor producción por hectáreas la tuvo el cultivo de yuca 74.436 con toneladas, cultivo de ñame se posesionó para este año en segundo lugar en cuanto a productividad para la subregión con 23.363 toneladas (

Tabla 27) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 27. Producción de Sabana

cultivos anuales Subregión

Cultivos anuales	Producción (†)
Yuca	74.436
Ñame	23.363
Yuca industrial	500
Total general	98.299

Fuente: elaboración equipo técnico, tomado de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Subregión San Jorge

Los cultivos permanentes se caracterizan por tener ciclos de producción de más de dos años, manteniendo una cobertura permanente del suelo. Las plantaciones tienen tamaño variado y se encuentran asociadas a procesos de mercadeo. De acuerdo a la Tabla 28, en la subregión Sabana se muestra en términos de producción en mayor proporción al cultivo de caucho con 46.400 toneladas para el año 2015, seguidamente el cultivo de mango con 4.200 toneladas, plátano con 4.175 toneladas, cacao con 339, palma de aceite con 190 toneladas y maracuyá con 30 toneladas registradas para este año según (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 28. Producción de cultivos permanentes Subregión San Jorge

Cultivos permanentes	Producción (†)
Plátano	4.175
Palma de aceite	190
Mango	4.200
Caucho	46.400
Cacao	339
Maracuyá	30
Total general	55.334

Fuente: elaboración equipo técnico, tomado de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

La producción de cultivos transitorios (

Tabla 29) para la Subregión San Jorge sumó 63.783,6 toneladas, donde el cultivo con mayor productividad es maíz tradicional con 26.984,4 toneladas, y menor producción el cultivo de pepino con 4 toneladas en producción. (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 29. Producción de cultivos transitorios Subregión San Jorge

Cultivos transitorios	Producción (t)
Arroz secano manual	6.581,2
Arroz secano mecanizado	23.273
Maíz tradicional	26.984,4
Patilla	5.460
Ahuyama	150
Maíz tecnificado	890
Pepino	4
Berenjena	5
Habichuela	77
Frijol	5
Hortalizas	354
Total general	63.783,6

En el año 2015 según las evaluaciones agropecuarias municipales se registró una producción de cultivos anuales de 28.672 toneladas para la subregión Alto Sinú (Tabla 30), registrando mayor productividad el cultivo de yuca con 23.550 toneladas con respecto al área sembrada, seguido por el ñame al producir 2.958 toneladas para este año, yuca industrial con 13.000 toneladas, ají con 514 toneladas y piña con 350 toneladas. (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 30. Producción de cultivos anuales Subregión San Jorge

Cultivos anuales	Producción	
	(†)	
Yuca	23.550	
Ñame	2.958	
Yuca industrial	1300	
Ají	514	
Piña	350	
Total general	28.672	

Fuente: elaboración equipo técnico, tomado de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015)

<u>Subregión Sinú Medio</u>

El total general para la producción de cultivos permanentes de la subregión Sinú Medio (Tabla 31) en el 2015 fue de 28.714 toneladas. La mayor producción del grupo de los permanentes la tuvo el cultivo de plátano con 14.144 toneladas; dentro de este grupo también se destaca el cultivo de naranja perteneciente a los cítricos con 2.265 toneladas producidas para este año y el cultivo transitorio con menor producción fue e ají picante con 13 toneladas (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 31. Producción de cultivos permanentes Subregión Sinú Medio

Cultivos permanentes	Producción (†)
Coco	3427
Plátano	14.144
Cítricos	1.500
Mango	900
Guayaba	1.774
Naranja	2.265
Cacao	26
Guayaba agría	684
Papaya	2.050
Maracuyá	459
Piña	240
Ají picante	13
Caña panelera	1.232
Total general	28.714

En cuanto a los cultivos transitorios para la subregión Sinú Medio reúnen una producción total de 156.664,2 toneladas. Donde el producto con mayor producción es el cultivo de maíz tradicional con 15.059,7 toneladas, y el de menor producción es el cultivo de tomate con una participación de 30 toneladas producidas para el año 2015 según (Tabla 32) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 32. Producción de cultivos transitorios Subregión Sinú medio

Cultivos transitorios	Producción (†)
Maíz técnificado	1.11.530
Maíz tradicional	15.059,7
Arroz secano manual	3.587,4
Berenjena	500
Algodón	15.600
Arroz técnificado	7.044,5
Patilla	858
Pepino	201
Ají dulce	129,8
Ajonjolí	36,2
Ahuyama	1200

frijol	583
Habichuela	44
Col	8,6
Ñame	192
Hortalizas varias	60
Tomate	30
Total general	156.664,2

En el año 2015 según las evaluaciones agropecuarias municipales se registró una producción de cultivos anuales de 28.672 toneladas para la subregión Sinú Medio (Tabla 33), registrando mayor productividad el cultivo de yuca con 23.500 toneladas, seguido por el ñame al producir 2.958 toneladas, yuca industrial 1.300 toneladas, ají 514 toneladas y piña con 350 toneladas para este año (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

Tabla 33. Producción de cultivos anuales Subregión Sinú Medio

Cultivos anuales	Producción (†)
Yuca	23.550
Ñame	2.958
Yuca industrial	1300
Ají	514
Piña	350
Total general	28.672

Fuente: elaboración equipo técnico, tomado de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

5.5.10.2. Producción Pecuaria

Según los resultados del Censo Nacional Agropecuario 2014, del total del área censada en uso agropecuario, hubo una producción de 2.781,756 litros de leche en el departamento de Córdoba. Por su parte la subregión Sinú Medio participa con 781.710 litros, San Jorge (685.084 litros); Sabana (575.688 litros); Bajo Sinú (298.856 litros); Costera (262.306 litros) y Alto Sinú produjo 178.112 litros de leche para el año 2015) (Tabla 34) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015) (DANE, 2014).

Por Subregión ambiental, con las mayores participaciones para el año 2015 la producción de carne de bovinos en píe, se registraron en Sinú medio (74,854775 toneladas), Sabana (50,705 toneladas), San Jorge (47,145toneladas), Bajo Sinú (40,262 toneladas), Costera (38,685 toneladas), Alto Sinú (19,67 toneladas) (Tabla 34) (Ministerio de

Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015) (DANE, 2014).

La Subregión con mayor participación en el sacrifico de porcinos fue Sabana donde hubo una producción en el año 2015 de 19,143 toneladas; seguido de la subregión Costera (14,038 toneladas); San Jorge (10,109 toneladas); Sinú Medio (7,305 toneladas); Bajo Sinú (6,871 toneladas) y finalmente Alto Sinú (3,535 toneladas) (Tabla 34) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015) (DANE, 2014).

La producción de aves en píe, donde se obtuvo mayor contribución fue en la Subregión Sinú medio aportando7429,515 toneladas, seguidamente Bajo Sinú (1833,864 toneladas); Sabana (1656,464 toneladas); San Jorge (116,064 toneladas); Alto Sinú (2,004 toneladas) y Costera (6,76 toneladas) (Tabla 34) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015) (DANE, 2014).

Tabla 34. Producción Pecuaria por Subregiones Ambientales

Subregión Ambiental	Producción (litros) de leche	Producción de bovinos(carne en píe) (†)	Producción de cerdos (†)	Producción de aves (t) en píe
Alto Sinú	178.112	19,67	3,535	2,004
Bajo Sinú	298.856	40,262	6,871	1833,864
Sabana	575.688	50,705	19,143	1656,464
San Jorge	685.084	47,145	10,109	116,064
Sinú medio	781.710	74,854775	7,305	7429,515
Costera	262.306	38,685	14,038	6,76
Total General	2.781.756	75,043225	61,001	11044,671

Fuente: Elaborado por equipo técnico equipo técnico, tomado de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015). (DANE, 2014).

5.5.10.3. Producción hidrobiológica y pesquera

De acuerdo a las estadísticas, de SEPEC (2015), (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015) para la cuenca Sinú en el departamento de Córdoba, se registró en ese año un desembarco estimado de 2.735,091 toneladas como se muestra en la

Tabla 35. Las especies más representativas en cuanto a volúmenes de desembarco son la Cachama (Colossoma macropomum) con un aporte de 1.435,78 toneladas, Bocachico (Prochilodus magdalenae) aportó 1.135,357 toneladas, tilapia roja (Oreochromis mossambicus) un aporte de 154,643 toneladas, Carpa (Cyprinus carpio) con 1,013 toneladas y Sábalo (Prochilodus lineatus) 8,31 toneladas (De La Hoz-M, 2015) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015)

Tabla 35. Producción Hidrobiológica y pesquera en Córdoba

Subregión Ambiental	Bocachico (†)	Cachama (†)	Tilapia o Mojarra roja (t)	Carpa (†)	Sábalo (†)
Alto Sinú	11,414	35,903	1,99	0,713	
Bajo Sinú	569,8	494,15	4,135		
Costera	22,9	30,238	0,208		5,25
Sabana	208,5	205,3	44,51		
San Jorge	304,833	277,307	40,05	0,3	
Sinú Medio	17,88	392,9	63,75		3,06
TOTAL GENERAL	1.135,327	1.435,798	154,643	1,013	8,31

5.1. Cobertura y uso de la tierra

La cobertura de la tierra comprende todos los elementos que se encuentran sobre la superficie del suelo ya sean naturales o creados por el ser humano, es decir, tanto la vegetación natural denominada cobertura vegetal, hasta todo tipo de construcción o edificación destinada para el desarrollo de las actividades del hombre para satisfacer sus necesidades, a lo cual en forma genérica se denomina uso de la Tierra.

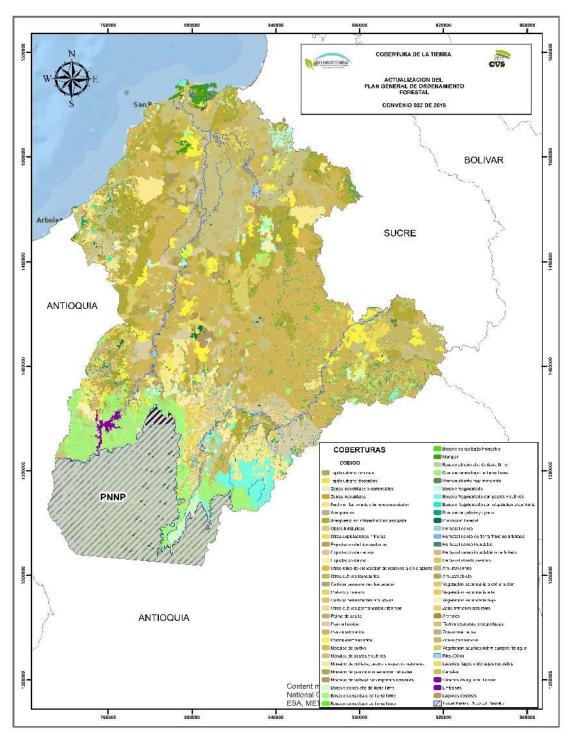
El esquema metodológico utilizado para clasificación de la cobertura de la tierra en el departamento de córdoba excepto en el Parque Nacional Nudo del Paramillo el cual es administrado por la Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales (UAESPNN), es Corine Land Cover propuesta por el IDEAM (Instituto de Hidrología, Meteorología, y Estudios Ambientales de Colombia) en el año 2010, para llevar a cabo este proceso se utilizaron imágenes de satélites RapidEye de 2015 con resolución de 5 metros, estas imágenes cuenta con 5 bandas claves para el procesamiento e interpretación de las coberturas, el cual sirve para resaltar elementos que son difíciles de percibir o no se pueden distinguir directamente en una imagen.

A continuación, se presenta el resultado de la interpretación de las imágenes RapidEye correspondientes al área administrativas de la Corporación Autónoma De Los Valles Del Sinú Y San Jorge CVS, empleadas para el desarrollo del mapa de coberturas según la leyenda Corine Land Cover adaptada para Colombia, desarrollada por IDEAM en el año 2010, ver (Tabla 36) (Figura 11).

Tabla 36. Cobertura de la tierra

CODIGO	NOMBRES	AREAS (HECT)	%
1.1.1	Tejido urbano continuo	10.055,40	0,4756
1.1.2	Tejido urbano discontinuo	656,53	0,0311
1.2.1	Zonas industriales o comerciales	113,76	0,0054
1.2.1.1	Zonas industriales	49,53	0,0023

CODIGO	NOMBRES	AREAS (HECT)	%
1.2.2	Red vial, ferroviaria y terrenos asociados	10.255,06	0,4851
1.2.4	Aeropuertos	131,52	0,0062
1.2.4.2	Aeropuerto sin infraestructura asociada	2,34	0,0001
1.2.5	Obras hidráulicas	15,31	0,0007
1.3.1.1	Otras explotaciones mineras	2.026,75	0,0959
1.3.1.2	Explotación de hidrocarburo	54,11	0,0026
1.3.1.3	Explotación de carbón	42,30	0,0020
1.3.1.4	Explotación de oro	289,51	0,0137
1.3.2.1	Otros sitios de disposición de residuos a cielo abierto	5,06	0,0002
2.1.1	Otros cultivos transitorios	4.372,85	0,2068
2.2.1	Cultivos permanentes herbáceos	45,82	0,0022
2.2.1.3	Plátano y banano	25,95	0,0012
2.2.2	Cultivos permanentes arbustivos	2,64	0,0001
2.2.3.1	Otros cultivos permanentes arbóreos	122,56	0,0058
2.2.3.2	Palma de aceite	160,46	0,0076
2.3.1	Pastos limpios	129.793,76	6,1392
2.3.2	Pastos arbolados	645.575,44	30,5356
2.3.3	Pastos enmalezados	98.614,85	4,6645
2.4.1	Mosaico de cultivos	1.937,63	0,0916
2.4.2	Mosaico de pastos y cultivo	263.415,08	12,4595
2.4.3	Mosaico de cultivos, pastos y espacios naturales	98.838,50	4,6750
2.4.4	Mosaico de pastos con espacios naturales	242.997,55	11,4938
2.4.5	Mosaico de cultivos con espacios naturales	34.906,23	1,6511
3.1.1.1.1	Bosque denso alto de tierra firme	12.045,09	0,5697
3.1.1.2.1	Bosque denso alto inundable	23.050,05	1,0903
3.1.1.2.2	Bosque denso bajo inundable	1.222,29	0,0578
3.1.1.2.2.1	Bosque denso alto inundable heterogéneo	8.781,70	0,4154
3.1.2.1.1	Bosque abierto alto de tierra firme	9.119,27	0,4313
3.1.2.2.1	Bosque abierto bajo de tierra firme	92.199,14	4,3610
3.1.2.2.2	Bosque abierto bajo inundable	1.271,95	0,0602
3.1.3	Bosque fragmentado	28.290,15	1,3381
3.1.3.1	Bosque fragmentado con pastos y cultivos	39.078,02	1,8484
3.1.3.2	Bosque fragmentado con vegetación secundaria	2.198,06	0,1040
3.1.4	Bosque de galería y ripario	37.769,99	1,7865
3.1.5	Plantación forestal	3.941,65	0,1864


CODIGO	NOMBRES	AREAS (HECT)	%
3.2.1.1	Herbazal denso	244,35	0,0116
3.2.1.1.1.1	Herbazal denso de tierra firme no arbolado	7,56	0,0004
3.2.1.1.2	Herbazal denso inundable	966,76	0,0457
3.2.1.1.2.1	Herbazal denso inundable no arbolado	69,11	0,0033
3.2.1.2.1	Herbazal abierto arenoso	337,71	0,0160
3.2.2.1	Arbustal denso	27.194,51	1,2863
3.2.2.2	Arbustal abierto	20.754,23	0,9817
3.2.3	Vegetación secundaria o en transición	51.551,07	2,4384
3.2.3.1	Vegetación secundaria alta	22.928,29	1,0845
3.2.3.2	Vegetación secundaria baja	46.608,06	2,2046
3.3.1	Zonas arenosas naturales	2.256,90	0,1068
3.3.1.2	Arenales	222,28	0,0105
3.3.3	Tierras desnudas y degradadas	3.729,92	0,1764
3.3.4	Zonas quemadas	370,30	0,0175
4.1.1	Zonas Pantanosas	85.204,77	4,0302
4.1.3	Vegetación acuática sobre cuerpos de agua	4.309,24	0,2038
5.1.1	Ríos (50 m)	9.501,43	0,4494
5.1.2	Lagunas, lagos y ciénagas naturales	25.434,35	1,2030
5.1.3	Canales	413,34	0,0196
5.1.4	Cuerpos de agua artificiales	1.225,25	0,0580
5.1.4.1	Embalses	6.243,74	0,2953
5.2.1	Lagunas costeras	1.124,03	0,0532
	Total	2.114.171	100

Fuente: Elaboración equipo técnico

Figura 11. Coberturas de la tierra del departamento de Córdoba

Fuente: Elaboración equipo técnico

5.2. Conflicto de usos de suelos por subregiones ambientales

Los conflictos de uso de la tierra son el resultado de la discrepancia entre el uso que el hombre hace actualmente del medio natural y aquel que debería tener, de acuerdo con la oferta ambiental; ello es consecuencia de diversas causas, como son la desigualdad en su distribución, el predominio de intereses particulares sobre los intereses colectivos y el manejo incoherente de la relación uso - tierra. Por definición, los conflictos de uso solo se presentan donde el hombre hace su intervención, transformando profunda o parcialmente la cobertura natural y otros recursos naturales según sus necesidades e intereses (IGAC, CORPOICA, 2002).

La metodología más concreta que puede ayudar a determinar el conflicto o uso adecuado de la tierra, es el diseñado para la Zonificación de los Conflictos de Uso de las Tierras en Colombia (DANE, IGAC Y CORPOICA, 2002) en la que se considera el uso potencial y el uso actual de las tierras. Mientras, que el uso actual de suelos muestra la distribución de la vegetación natural e inducida, de la localización de las áreas dedicadas a la ganadería; se representan los tipos de vegetación y las áreas de uso agrícola, pecuario y forestal (INEGI, 2005).

De acuerdo a lo anterior, y a partir de información secundaria (Esquemas de Ordenamientos Territorial, Plan Básico de Ordenamiento Territorial de los municipios del departamento de Córdoba y Estudio general de suelos y zonificación de tierras del departamento de Córdoba, se elaboró el mapa de uso potencial de suelos por subregiones ambientales, donde se contemplan las siguientes categorías

Tierras con uso potencial agrícola

Bajo este concepto se encuentran todas las tierras que, por sus características de suelos y topografía, permiten el establecimiento de sistemas de producción agrícola, con plantas cultivadas de diferentes periodos vegetativos, con variada intensidad en el uso de los recursos, de tecnología y con distintas opciones de mercadeo. A este tipo de vocación corresponden las categorías de cultivos transitorios intensivos (CTI), cultivos transitorios semi-intensivos (CTS), cultivos permanentes intensivos (CPI) y cultivos permanentes semi-intensivos (CPS) (IGAC, 2009).

Tierras con uso potencial ganadero

Las tierras con vocación ganadera son aquellas cuyos suelos presentan limitaciones moderadas, especialmente para el desarrollo de agricultura intensiva o semi-intensiva. Tierras con vocación ganadera Las tierras con vocación ganadera son aquellas cuyos suelos presentan limitaciones moderadas, especialmente para el desarrollo de agricultura intensiva o semi-intensiva (IGAC, 2009).

Tierras con uso potencial agroforestal

Las tierras con vocación agroforestal son aquellas que por sus características biofísicas (clima, relieve, material parental, suelos y erosión, entre otras) no permiten la utilización exclusiva de usos agrícolas o ganaderos. Estas tierras deben ser utilizadas bajo sistemas

combinados, donde, deliberadamente, se mezclen actividades agrícolas, ganaderas y forestales, en arreglos tanto espaciales como temporales. Los usos principales contenidos en esta vocación son el agrosilvícola y el agrosilvopastoril (IGAC, 2009).

Agrosilvopastoril (ASP) Este tipo de uso principal incluye aquellas tierras que son aptas para el establecimiento de sistemas que combinan prácticas agrícolas, forestales y ganaderas; de esta manera se puede implementar la combinación de cultivos con plantaciones forestales, la cual, después de implementada permite el uso en ganadería al dejar rotar pasturas entre los árboles; también se puede implementar con los cultivos un sistema de cercas vivas o barreras rompevientos. Igualmente, este sistema admite una gran cantidad de alternativas de uso, tales como: cultivos transitorios, bosque productor y ganadería semi-intensiva; cultivos transitorios, bosque protector y ganadería semi-intensiva (IGAC, 2009).

Agrosilvícola (AGS)

Las tierras con vocación agrosilvícola son aquellas que por sus características biofísicas deben ser utilizadas para el establecimiento de actividades agrícolas y forestales de tipo protector y productor, bajo sistemas que estén en armonía sin que se permita la utilización exclusiva en actividades de tipo agropecuario. Algunas de las asociaciones que se pueden generar son: cultivos transitorios y bosque protector, cultivos transitorios y bosque productor, cultivos permanentes y bosque protector (IGAC, 2009).

Silvopastoril (SPA)

Los suelos se caracterizan por presentar profundidad efectiva de superficial a profunda, bien drenados, fertilidad baja y alta. Los factores que más influyeron en la definición de este tipo de uso fueron el clima, las pendientes y el grado de erosión ligera a moderada. Teniendo en cuenta las características biofísicas anteriormente expresadas, esta unidad requiere la combinación armónica del uso forestal y el pastoreo; el sistema debe estar integrado por árboles (productores de alimento, madera o forraje) con pasturas; no requiere preparación de suelos, ni deja la tierra desprovista de cobertura vegetal, lo que permite el pastoreo permanente del ganado dentro del bosque (IGAC, 2009).

Tierras con uso potencial forestal

Se refiere a aquellas tierras que por sus condiciones de clima, pendiente, suelos y riesgo de deterioro deben aprovecharse con usos que aseguren la protección de los suelos, mediante el establecimiento de especies arbóreas para protección y/o producción forestal, ya sea con especies nativas o exóticas; las tierras no admiten ningún tipo de uso agrícola o pecuario, excepto cuando se definen para uso forestal de producción, el cual es compatible con usos agroforestales; de lo contrario, debe predominar el propósito de protección de los recursos naturales (IGAC, 2009).

De acuerdo con la Ley General Forestal N°1021 de 2006, en su artículo 12 define la clasificación para efectos de ordenación y manejo forestal sostenible y clasifica estas tierras en dos clases de áreas forestales: una de protección y otra de producción. Estas áreas se localizan exclusivamente en los paisajes de lomerío y montaña (IGAC, 2009).

Forestal protector (FPR)

Las características predominantes para considerar esta zona como forestal protectora son el relieve de ligeramente escarpado a moderadamente escarpado y la erosión ligera a severa. Los suelos de esta unidad están caracterizados por tener fertilidad de baja a alta; drenaje bueno a moderadamente excesivo, profundidades en el rango de muy superficiales a moderadamente profundos. Esta unidad biofísica comprende las tierras aptas para el establecimiento de sistemas forestales dedicados a la protección de fauna y flora, así como para la protección de las laderas contra los procesos erosivos y la protección de los recursos hídricos. En términos generales, en estas áreas no se debe desarrollar ningún tipo de actividad económica diferente a la protección y regeneramiento del bosque protector (IGAC, 2009).

Forestal protector (FPR)

Las características predominantes para considerar esta zona como forestal protectora son el relieve de ligeramente escarpado a moderadamente escarpado y la erosión ligera a severa. Los suelos de esta unidad están caracterizados por tener fertilidad de baja a alta; drenaje bueno a moderadamente excesivo, profundidades en el rango de muy superficiales a moderadamente profundos. Debido a las prácticas inadecuadas como la tala indiscriminada de la vegetación natural, las quemas y el sobrepastoreo, la erosión y los movimientos en masa se han acentuado, especialmente las terracetas, pata de vaca y los deslizamientos; por lo tanto, estas áreas se deben reforestar. Esta unidad biofísica comprende las tierras aptas para el establecimiento de sistemas forestales dedicados a la protección de fauna y flora, así como para la protección de las laderas contra los procesos erosivos y la protección de los recursos hídricos (IGAC, 2009).

Forestal productor (FPP)

Las áreas para esta actividad se localizan en los tipos de relieve de lomas y colinas, espinazos y fi las y vigas, de los paisajes de lomerío y montaña, donde las pendientes varían entre 25 y 75%, Las características predominantes para considerar esta zona como forestal protectora-protectora son: el relieve, la profundidad efectiva de los suelos, la susceptibilidad a la erosión, el drenaje natural que llega a ser moderadamente excesivo y la preservación de los recursos hídricos. Por otro lado, el clima, especialmente, determina ambientes propicios para la regeneración natural y el rápido crecimiento de las especies vegetales; por lo tanto, puede hacerse aprovechamiento selectivo del bosque en algunos lugares y en otros se pueden hacer plantaciones comerciales, con aprovechamiento escalonado, sin dejar desprotegido el suelo (IGAC, 2009).

Tierras para conservación

Comprende todas aquellas que, por sus características biofísicas e importancia ecológica, tienen como función principal la protección de los recursos naturales, con el propósito de garantizar el bienestar social, económico y cultural de la humanidad en el corto, mediano y largo plazo. La intervención del hombre es limitada y dirigida principalmente a actividades de investigación, ecoturismo, protección de flora y fauna silvestre o de recuperación para la protección. La recomendación general para estas zonas es conservarlas en su estado natural, cuando no se han intervenido, inducir o permitir su recuperación natural o rehabilitación ecológica cuando han sufrido algún proceso

degradacional. Bajo esta denominación se incluyen las áreas de manejo especial y las áreas que necesitan actividades de recuperación y/o que deben mantenerse en conservación (IGAC, 2009).

Recuperación y conservación (CRE)

En estos sectores se debe propiciar la regeneración natural y la siembra de especies vegetales colonizadoras propias de la región, así como la implementación de obras de tipo ingenieril que prevengan el avance del proceso erosivo en las laderas y la formación de terracetas. La unidad cartográfica de suelos involucrada en esta denominación corresponde a los misceláneos erosionados (ME). Las zonas de conservación se encuentran a lo largo del cinturón costeño (IGAC, 2009).

5.2.1. <u>Uso potencial por subregiones ambientales</u>

El uso potencial es una representación de las condiciones ambientales (en especial de las condiciones del suelo), consideradas como factores limitantes del uso agrícola, pecuario, forestal, de conservación y urbano, a que puede destinarse un determinado espacio geográfico. Es decir, describe el conjunto de condiciones ambientales a las que el hombre tiene que enfrentarse al transformarlas o adaptándose a ellas para aprovechar mejor el suelo y sus recursos en el desarrollo de la agricultura, ganadería, silvicultura y desarrollo urbano, así como para el establecimiento de áreas de conservación de recursos naturales (Figura 12) (INEGI, 2005).

Subregión Alto Sinú

En la Tabla 37, se observa la participación porcentual de las tierras con diferente uso potencial respecto al área total de la subregión alto sinú; también se incluyen los cuerpos de agua, los centros poblados, las áreas de protección y conservación. Se puede resaltar en la tabla que el 32% presenta vocación agrícola, el 38% tiene vocación producción forestal, el 6% del área de la subregión tiene vocación ganadera, el 13% tiene vocación agroforestal, el 6% presenta vocación forestal, el 1% tiene vocación silvopastoril, 0,1% tiene vocación de protección y el 0,27% se dedican a la conservación (Figura 12).

Tabla 37. Uso potencial de suelos en la Subregión Alto Sinú

Uso potencial	Área (Ha)	Porcentaje
Agricultura	87.863,23	32%
Agroforestal	34.632,09	13%
Ganadera	17.039,70	6%
Silvopastoril	2.855,85	1%
Forestal	15.305,02	6%
Protección	181,43	0,1%
Producción	102.798,69	38%
Conservación	721,47	0,27%

Uso potencial	Área (Ha)	Porcentaje
Centro Poblado	1.160,83	0,43%
Cuerpos de Agua	8.243,93	3%
Total general	270.802,23	100%

Subregión Bajo Sinú

La

USO POTENCIAL DE SUELOS	ÁREA (Ha)	PORCENTAJE
Agricultura	56.433,75	34%
Agroforestal	40.691,92	25%
Ganadería	14.242,22	9%
Producción	3.926,39	2%
Forestal	152,36	0,1%
Conservación	24.182,89	15%
Silvopastoril	101,25	0,06%
Explotación de materiales	492,56	0,3%
hidrobiológicos	472,30	0,3%
Centro Poblado	1.195,44	1%
Cuerpos de Agua	18.374,54	11%
Protección	1.239,59	1%
Recuperación	2.912,27	2%
Total General	163.945,18	100%

Tabla 38 muestra, la distribución del uso potencial de suelos de la subregión bajo sinú donde se distribuye porcentualmente donde sobresale la vocación agrícola con el 34% del área total, el sistema agroforestal presenta vocación del 25%, la vocación de conservación está representada por el 14,75%, el 9% presenta vocación ganadera, la vocación de producción forestal está dada por el 2%, 0,06% presenta vocación silvopastoril, el 0,1% tiene vocación forestal, 2% el presenta vocación para producción, el 2% tiene vocación forestal de recuperación y el 1% tiene vocación forestal protector. El resto de área está dada por explotación de materiales hidrobiológicos, centro poblado y cuerpos de agua (Figura 12).

USO POTENCIAL DE SUELOS	ÁREA (Ha)	PORCENTAJE
Agricultura	56.433,75	34%
Agroforestal	40.691,92	25%
Ganadería	14.242,22	9%
Producción	3.926,39	2%
Forestal	152,36	0,1%
Conservación	24.182,89	15%
Silvopastoril	101,25	0,06%
Explotación de materiales hidrobiológicos	492,56	0,3%

Centro Poblado	1.195,44	1%
Cuerpos de Agua	18.374,54	11%
Protección	1.239,59	1%
Recuperación	2.912,27	2%
Total General	163.945,18	100%

Tabla 38. Uso potencial de suelos en la Subregión bajo Sinú

Subregión Costera

En el uso potencial de la subregión costera presenta mayor porcentaje en la vocación ganadera (38%) del área total, el 25% presenta vocación agrícola, el 10% tiene vocación de protección, el 7,89% son tierras con vocación de conservación, el 5% tiene vocación agrosilvopastoril, el 5% presenta vocación de producción forestal, el 5% presenta tierras con vocación de producción forestal protector (Tabla 39 y Figura 12).

Tabla 39 Uso potencial de suelos en la Subregión Costera

USO POTENCIAL DE SUELOS	ÁREA (Ha)	PORCENTAJE
Agricultura	47.356,02	25%
Agroforestal	39.45,85	2%
Ganadería	73062,66	38%
Producción de Energía	57,73	0,03%
Producción Forestal Protector	9540,11	5%
Forestal	10.162,001	5%
Conservación	15.187,60	7,89%
Silvopastoril	9.701,74	5%
Protección	18.378,92	10%
Centro Poblado	922,58	0,001%
Cuerpos de Agua	2.927,83	2%
Recuperación	90,35	0,05%
Agrosilvopastoril	1.080,23	0,56%
Total General	192.413,69	100%

Fuente: Elaboración equipo técnico.

Subregión Sabana

De acuerdo a la Tabla 40, el uso potencial de la subregión sabana que se encuentra en mayor porcentaje es el agrícola con el 44% representado en un área de 119.844,96 hectáreas, 28% presenta vocación silvopastoril (75.815,92 hectáreas), el 14% tiene vocación ganadera (37.447 hectáreas), el 9% del área presenta vocación de producción forestal protector (23.424,20 hectáreas), el 5% presenta vocación de forestal protector equivalentes a 13.105,34 hectáreas, el 0,1% presenta tierras con vacación de recuperación equivalentes a 238,14 hectáreas y el 0,4% del área total es utilizado para los centros poblados con una equivalencia en hectáreas de 1.066,95 (Figura 12).

Tabla 40. Uso potencial de suelos en la Subregión Sabana

USO POTENCIAL DE SUELOS	ÁREA (Ha)	PORCENTAJE
Agricultura	119.844,96	44%
Ganadería	37.447	14%
Producción	23.424,20	9%
Recuperación	238,14	0,1%
Silvopastoril	75.815,92	28%
Protección	13.105,34	5%
Centro Poblado	1.066,95	0,4%
Cuerpos de Agua	4.415,28	2%
Total General	275.357,80	100%

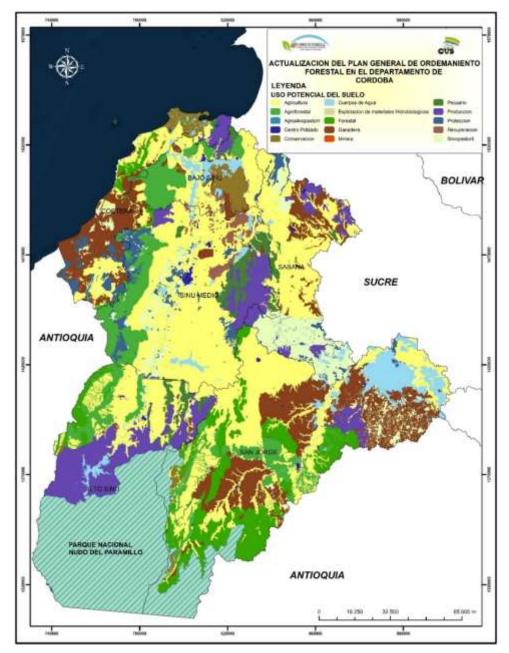
Subregión San Jorge

Según la Tabla 41 las tierras con vocación agrícola están representadas por el 31% (220.524,62 hectáreas) del área total de la subregión sabana, el 25% (175.473,92 hectáreas) presenta vocación ganadera, el 20% tiene vocación forestal (143.034,70 hectáreas), el 8% (59.582,46 hectáreas) presenta vocación agroforestal, el 4% (28.858,22 hectáreas) representa las tierras con vocación silvopastoril, el 2% (15.717 hectáreas) tiene vocación de producción forestal protector, 1% (6.668,69 hectáreas) está dada por una vocación de conservación, el 0,5% (3.365,03 hectáreas) tiene vocación de protección y el 0,001% (65,85 hectáreas) presenta vocación de minería (Figura 12).

Tabla 41. Uso potencial de suelos en la Subregión San Jorge

USO POTENCIAL DE SUELOS	ÁREA (Ha)	PORCENTAJE
Agricultura	220.524,62	31%
Agroforestal	59.582,46	8%
Ganadería	175.473,92	25%
Producción	15.717	2%
Forestal	143.034,70	20%
Conservación	6668,69	1%
Silvopastoril	28.858,22	4%
Protección	3.365,03	0,5%
Centro Poblado	2.030,43	0,3%
Cuerpos de Agua	60.085,96	8%
Minería	65,85	0,01%
Total General	715.406,88	100%

La vocación agrícola ocupa el 57% (261.396,73 hectáreas) del área total de la subregión sinú medio, la vocación agroforestal ocupa el 13% del área (59.504,42 hectáreas), el 1% presenta vocación de producción forestal protector (2.716,29 hectáreas), el 8% tiene vocación ganadera (36.484 hectáreas), el 7% presenta vocación de protección (33.163,02 hectáreas), el 6% del área presenta vocación silvopastoril (25.665,09 hectáreas), el 4% tiene vocación de recuperación (18.132,79 hectáreas), el 1% presenta vocación forestal equivalentes a 2.716,29 hectáreas, el 0,05% del área presenta vocación de producción (211,156 hectáreas) y el 0,002% (9.15 hectáreas) tiene una vocación de conservación (Tabla 42 y Figura 12).


Tabla 42. Uso potencial de suelos en la Subregión Sinú Medio

USO POTENCIAL DE SUELOS	ÁREA (Ha)	PORCENTAJE
Agricultura	261396,73	57%
Agroforestal	59.504,42	13%
Ganadería	36.484	8%
Producción	211,156	0,05%
Forestal	2.716,29	1%
Protección	33.163,02	7%
Conservación	9,15	0,002%
Silvopastoril	25.665,09	6%
Recuperación	18.132,79	4%
Centro Poblado	4.403,21	1%
Cuerpos de Agua	13.906,17	3%
Total General	455.592,03	100%

Figura 12. Mapa uso potencial de suelos por subregiones ambientales

Fuente: Elaboración equipo técnico.

5.2.2. <u>Uso actual por subregiones ambientales</u>

El uso actual de la tierra, permite conocer el uso que el hombre le está dando está dando al suelo y a la cobertura que éste presenta. Determinar el uso actual del suelo e identificar sus principales coberturas vegetales, nos permite establecer los grados de intervención del hombre en ecosistemas de interés, cuál es su estado de conservación, además de identificar los principales conflictos socio ambientales existentes y establecer las

responsabilidades sociales en el deterioro y las estrategias de ordenamiento y restauración.

El uso actual de suelos por subregiones ambientales del departamento de Córdoba, generado por el equipo técnico, se presenta por áreas en hectáreas y los porcentajes con relación al área de la subregión y en la Figura 13, se muestra cartográficamente esta temática desarrolla.

Subregión Alto Sinú

La ganadería extensiva ocupa en esta subregión el 28% de área total equivalente a 76.580,69 hectáreas, este tipo de uso está relacionado con la actividad ganadera que se realiza en los diferentes suelos y en todas las formas de relieve. El área total que se destina a la agricultura extensiva es de 47.712,37 hectáreas, que equivalen al 18% con relación al área del territorio. La agricultura intensiva ocupa un área de 9.899,47 hectáreas (4%). El área para conservación es de 12.5514, 01 hectáreas (46%), el uso predominante es de reserva forestal. El uso actual es forestal productor realizado directamente en áreas que se conservan permanentemente con bosques artificiales, con el fin de obtener productos forestales para comercialización o consumo, su área corresponde a 863,13 hectáreas que equivalen al 0,3% de la subregión. El área que ocupa el uso para restauración es de 36,63 hectáreas, equivalentes al 0,1% (Tabla 43).

Tabla 43. Uso actual de suelos en la subregión alto sinú

Uso actual	Área (Ha)	Porcentaje
Agricultura Extensiva	47.712,37	18%
Agricultura Intensiva	9.899,47	4%
Ganadería extensiva	76.580,69	28%
Forestal	863,13	0,3%
Conservación	12.5514,01	46%
Restauración	36,63	0,1%
Infraestructura	97,57	0,1%
Vías	693,60	0,2%
Zona urbana	1.160,83	0,3%
Cuerpos de Agua	8.243,93	3%
Total general	270.802,23	100%

Fuente: elaboración equipo técnico

Subregión Bajo Sinú

De acuerdo a la

Tabla 44, el uso de suelos que predomina en la subregión bajo sinú es la agricultura extensiva con un área de 64.781,82 hectáreas, ocupa el 40% del área total. La ganadería extensiva con un área de 47.470,83 hectáreas que corresponde al 29% del área total de la subregión. En tercer lugar, encontramos la conservación con una extensión de 27.989,24

hectáreas, que representa el 117% del área total correspondiente a los bosques, el 2% del área ocupa 3.017,43 hectáreas dedicadas a la agricultura intensiva. En vías, infraestructura y zona urbana se ocupa alrededor del 0,6% del área total de la zona. Y los cuerpos de agua ocupan un área de 8.243,93% hectáreas equivalentes al 3% del área total de la subregión que corresponden a Ciénaga Grande del Bajo Sinú (Tabla 44).

Tabla 44. Uso actual de suelos en la subregión Bajo Sinú

Uso actual	Área (Ha)	Porcentaje
Agricultura Extensiva	64.781,82	40%
Agricultura Intensiva	3.017,43	2%
Ganadería extensiva	47.470,83	29%
Conservación	27.989,24	17%
Infraestructura	41,86	0,03%
Vías	1.074,09	1%
Zona urbana	1.195,44	1%
Cuerpos de Agua	18.374,55	11%
Total general	163.945,25	100%

Fuente: elaboración equipo técnico

Subregión Costera

En la Tabla 45 se describen los usos actuales de la tierra que los habitantes de esta subregión realizan, la agricultura extensiva ocupa 102.225,52 hectáreas representadas en un 52% del área total donde se desarrollan los cultivos de yuca, plátano, ñame, arroz y coco. En segundo lugar, la ganadería extensiva presenta un total de 48.549,82 hectáreas equivalentes al 25%, considerada esta actividad como un reglón socioeconómico de importancia para el desarrollo del campo. En cuanto a la conservación esta ocupa un área de 34.966,86 hectáreas representadas en un 18% del área total, ocupada en la conservación de bosques. El 1% del área está ocupada por la agricultura intensiva equivalente a 2.934,07 hectáreas, el uso forestal ocupa 809,6 hectáreas (0.50%), el área de restauración es de 90,35 hectáreas (0,40%). Los cuerpos de agua ocupan el 1% del área total, es decir, 2.927,83 hectáreas y el 1.77% restante representados en infraestructura, vías y zonas urbanas (Tabla 45).

Tabla 45. Uso actual de suelos en la subregión Costera

Uso actual	Área (Ha)	Porcentaje
Agricultura Extensiva	102.225,52	52%
Agricultura Intensiva	2.934,07	1%
Ganadería extensiva	48.549,82	25%

Forestal	809,6	0,50%
Conservación	34.966,86	18%
Restauración	90,35	0,40%
Infraestructura	657,71	0,30%
Vías	2.538,31	1%
Zona urbana	922,59	0,47%
Cuerpos de Agua	2.927,83	1%
Total general	196.622,66	100%

Subregión Sinú Medio

La mayor parte del área de la subregión ambiental 209.251,43 hectáreas (42%) están ocupadas en ganadería extensiva donde se realiza rotación de cabezas de ganado, el 36% del área total lo ocupa la agricultura extensiva equivalentes a 177.738,27 hectáreas (36%) usados para realizar plantaciones de algodón, maíz, arroz, entre otros. La agricultura intensiva se realiza a menor escala en un área de 25.781,91 hectáreas equivalentes al 5% del área total, el área forestal ocupa el 0.31% (1.547,34 hectáreas) con pequeñas áreas de bosque. El área usada actualmente en el sistema de conservación en la subregión es de 58.972,39 hectáreas equivalentes al 12% del área total. Y el 0.33% del área total (1.629,55 hectáreas) están dedicadas a la restauración de áreas forestales (Tabla 46).

Tabla 46. Uso actual de suelos en la subregión Sinú Medio

Uso actual	Área (Ha)	Porcentaje
Agricultura Extensiva	177.738,27	36%
Agricultura Intensiva	25.781,91	5%
Ganadería extensiva	209.251,43	42%
Forestal	1.547,34	0,31%
Conservación	58.972,39	12%
Restauración	1.629,55	0,33%
Infraestructura	301,27	0,1%
Vías	2.603,30	1%
Zona urbana	4.403,22	1%
Cuerpos de Agua	13.906,17	3%
Total General	496.134,86	100%

En la Tabla 47 se muestra que la ganadería extensiva ocupa el 44% del área total de la subregión, equivalente a 120.974,05 hectáreas, la agricultura extensiva por su parte ocupa 116.712,75 hectáreas (42%) del área total. El sistema de la conservación ocupa una extensión de 26.377,47 hectáreas, que representa el 10% del área total, el 0,03% del área ocupa 82,83 hectáreas dedicadas al uso forestal. El 2% equivalentes a 4.572,40 hectáreas se usan actualmente en agricultura intensiva. La categoría vías ocupa el 0,42% (1.156,08 hectáreas) del área total, la infraestructura y zona urbana de la subregión ocupan alrededor del 2,39% del área total de la zona. Y los cuerpos de agua ocupan un área de 4.415,28% hectáreas equivalentes al 2% del área total.

Tabla 47. Uso actual de suelos en la subregión Sabana

Uso actual	Área (Ha)	Porcentaje
Agricultura Extensiva	116.712,75	42%
Agricultura Intensiva	4.572,40	2%
Ganadería extensiva	120.974,05	44%
Forestal	82,83	0,03%
Conservación	26.377,47	10%
Vías	1.156,08	0,42%
Zona urbana	1.066,95	0,39%
Cuerpos de Agua	4.415,28	2%
Total General	275.357,80	100%

Subregión San Jorge

Como se puede observar en la Tabla 48 que la actividad primaria tiene una alta participación en el uso actual de la subregión San Jorge, siendo la actividad ganadera (ganadería extensiva), la que aporta la mayor participación con el 49% del área total equivalente a 350.894,57 hectáreas, la agricultura extensiva con un 15% dl área total correspondiente a 110.005,05 hectáreas, las cuales están ocupadas en cultivos de maíz, yuca, ñame, arroz, algodón, pepino, ajonjolí, entre otros. La agricultura intensiva ocupa el 0,49% del área total. La zona de extracción minera y escombreras ocupa 2.417,73 hectáreas equivalentes a 0,34% del área total, donde los materiales de origen mineral que más demanda tienen son los utilizados en la industria de la construcción y las arenas provenientes del municipio de San Andrés de Sotavento. En el uso forestal se ocupa 0,08% del área total puesto que en esta zona hay pequeñas áreas de bosque plantados a nivel comercial, el 25% del suelo se ocupa en conservación con una equivalencia del área e hectáreas de 180.959,08; mientras que el área que ocupa la restauración es de 0,33% (2.343,70 hectáreas).

Tabla 48. Uso actual de suelos en la subregión San Jorge

Uso actual	Área (Ha)	Porcentaje
Agricultura Extensiva	110.005,05	15%
Agricultura Intensiva	3.530,05	0,49%
Ganadería extensiva	350.894,57	49%
Forestal	556,43	0,08%
Conservación	180.959,08	25%
Restauración	2.343,70	0,33%
Zona de Extracción Minera y	2417,73	0,34%
Escombreras		
Vías	2.366,93	0,33%
Infraestructura	217,05	0,03%
Zona urbana	2.030,43	0,28%
Cuerpos de Agua	60.085,96	8%
Total General	715.406,99	100%

Figura 13. Mapa uso actual de suelos por subregiones ambientales

5.2.3. Conflicto de uso de suelos por subregiones ambientales

De acuerdo con la metodología general para la determinación del conflicto de uso de las tierras en Colombia, planteada por (DANE, IGAC Y CORPOICA, 2002), se determinaron los conflictos de uso de suelos comparando o superponiendo el mapa de uso actual con el mapa de uso potencial. El resultado de este paso permitió, luego de una confrontación de usos, generar un mapa de conflictos donde se ubican las áreas de uso adecuado, inadecuado, muy inadecuado, subutilización y muy subutilizado.

Las definiciones de las categorías de los conflictos de uso son:

- Uso Adecuado (A). Áreas donde el uso actual de la tierra coincide el uso potencial.
- Uso Inadecuado (I). El uso actual de la tierra es más intenso que el uso potencial.
- Uso Muy Inadecuado (M). El uso actual de la tierra es más intenso y deteriora la tierra en comparación con el uso potencial.
- Área Subutilizada (S). Cuando el uso actual ejerce una menor intensidad de uso que la que ejercería el uso potencial.

Área Muy Subutilizada (MS). Cuando el uso actual ejerce una menor intensidad de uso que el uso potencial, este último permitiría una labranza más intensa de los suelos y un mayor uso de agroquímicos.

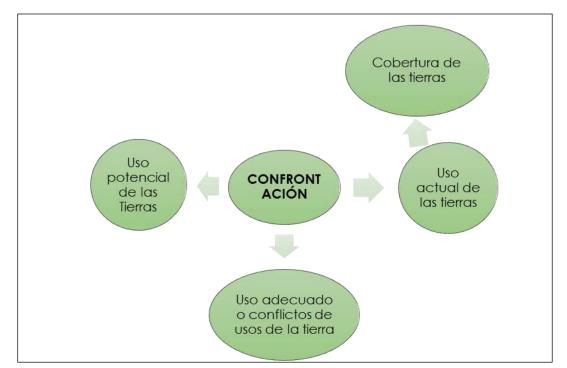


Figura 14. Metodología General para evaluar los conflictos de uso de las tierras en Colombia

Fuente: Elaboración equipo técnico, a partir de, (DANE, IGAC Y CORPOICA, 2002)

La comparción entre la oferta ambiental de las tierras del departamento e Córdoba (Zonificación Agroecológica y potencial Actual de las Tierras) y la demanda de sus habitantes (Cobertura y Uso Actual de las Tierras Colombianas), define si se presentan o no concordancias o conflictos (DANE, IGAC Y CORPOICA, 2002).

Para definir la calificaciones de los conflictos, se partió del cruce de los mapas actual y el de potencialidades, donde al utilizar la clave de asignación de conflictos de uso de la tierra y de conflictos (Tabla 49), generan una serie de conflictos anteriormente relacionada de acuerdo a su grado de conflicto. En este sentido como resultado del ejercicio se obtuvo como resultado el mapa que plasma conflictos de usos de suelos por subregiones ambientales del departamento de Córdoba (

Figura 15).

Tabla 49. Clave para la asignación de conflictos de uso de la tierra

USO ACTUAL	VOCACIÓN DE USO	CONFLICTO DE USO DE LA TIERRA
FORESTAL	Forestal	Adecuado
	Agricola	Subutilizado
	Ganadería	Subutilizado
	Agroforestal	Subutilizado
	Cuerpos de agua	Adecuado
	Conservación	Adecuado
AGRÍCOLA	Forestal	Muy inadecuado
	Agricola	Adecuado
	Ganadería	Inadecuado
	Agroforestal	Inadecuado
	Cuerpos de agua	Muy inadecuado
	Conservación	Muy inadecuado
PECUARIO	Forestal	Muy inadecuado
	Agricola	Subutilizado
	Ganaderia	Adecuado
	Agroforestal	Inadecuado
	Cuerpos de agua	Muy inadecuado
	Conservación	Muy inadecuado

Fuente: Elaboración equipo técnico a partir de (DANE, IGAC Y CORPOICA, 2002).

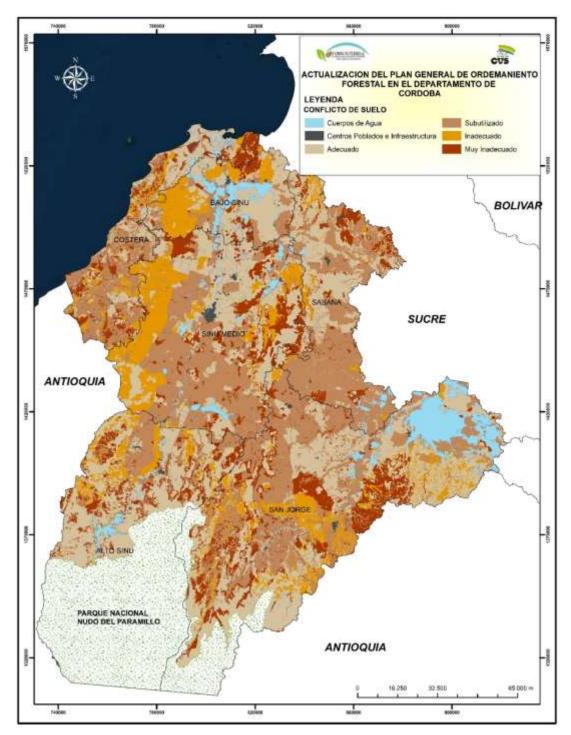


Figura 15. Mapa de conflicto de uso de suelos por Subregiones Ambientales

Fuente: Elaboración equipo técnico

La superposición de los mapas de uso actual (por subregión de interés) y uso potencial de la tierra generaron las áreas en conflicto de uso (excluyendo las áreas protegidas).

Subregión Alto Sinú

Con base a la (Tabla 50) la subregión Alto Sinú posee 147.783,07 hectáreas con un uso adecuado de tierras, correspondientes al 55% de área total. La subutilización se presenta en un área de 39.896,34 hectáreas, 15% del total de las tierras de la subregión, el conflicto por uso de suelos muy inadecuado se presenta puesto que el uso actual de las tierras dedicadas a la ganadería extensiva en suelos con aptitud agrícola y forestal; esta área comprende 42.465,76 hectáreas, correspondientes al 16% del área de la subregión. El 4% restante corresponde a cuerpos de agua y áreas de vías y centros no poblados los cuales no aplica para Uso de conflictos por uso de suelos.

Tabla 50. Conflicto de usos de Suelos de la Subregión Alto Sinú

Conflicto	Área (Ha)	Porcentaje
Adecuado	147.783,07	55%
Inadecuado	30.461,12	11%
Muy Inadecuado	42.465,76	16%
Subutilizado	39.896,34	15%
Cuerpos de Agua	8.243,93	3%
No aplica	1.952,007	1%
Total General	270.802,23	100%

Fuente: Elaboración equipo técnico

Subregión Bajo Sinú

La Tabla 51 muestra que al 40% (65.900,22 hectáreas) de los suelos de la subregión bajo sinú se le está dando un uso adecuado. El 24% del área presenta un conflicto de uso inadecuado representado en 39.926,06 hectáreas, por la falta de prácticas que estimulen el aprovechamiento de este recurso (IGAC, 2014). Los conflictos de la tierra por subutilización, tienen una extensión de 28.022,49 hectáreas, que equivalen al 17%. Y finalmente del total de área de la subregión el 6% presenta conflicto de uso muy inadecuado, donde se evidencia que se está desaprovechando la capacidad del suelo. Los cuerpos de agua ocupa 18.374,55 hectáreas correspondientes al 11% del área total, y la categoría no aplica correspondiente a vías y centros poblados que ocupan 23.11, 39 hectáreas equivalente al 1% del área total.

Tabla 51. Conflicto de usos de Suelos de la Subregión Bajo Sinú

Conflicto	Área (Ha)	Porcentaje
Adecuado	65.900,22	40%
Inadecuado	39.926,06	24%
Muy Inadecuado	9.410,55	6%
Subutilizado	28.022,49	17%
Cuerpos de Agua	18.374,55	11%
No aplica	23.11,39	1%

Conflicto	Área (Ha)	Porcentaje
Total General	163.945,25	100%

Subregión Sabana

En la subregión Sabana el 50% del área total, correspondiente a 136.337,50 hectáreas, presenta algún grado de subutilización. El 34% de las tierras de la subregión no presentan conflictos de uso, ello explica, principalmente, por las actividades relacionadas con la ganadería, las agriculturas desarrolladas en tierras con esta vocación, estas tierras alcanzan una extensión de 92.346,32 hectáreas. Las tierras con conflictos inadecuados alcanzan una extensión de 10.987,91hectáreas, que representan el 4% del área de la subregión y el 11% relativo a conflictos muy inadecuados con una extensión de 29.047,75 hectáreas. Y el 3% restantes del área corresponde a las categorías cuerpos de agua y no aplica (vías y centros poblados) (Tabla 52).

Tabla 52 Conflicto de usos de Suelos de la Subregión Sabana

Conflicto	Área (Ha)	Porcentaje
Adecuado	92.346,32	34%
Inadecuado	10.987,91	4%
Muy Inadecuado	29.047,75	11%
Subutilizado	136.337,50	50%
Cuerpos de Agua	4.415,28	2%
No aplica	2.223,02	1%
Total General	275.357,78	100%

Fuente: Elaboración equipo técnico

Subregión San Jorge

Para la Subregión San Jorge se evidencia en la que el 38% del área total, es de uso adecuado; es decir, sin conflicto de uso, con una extensión de 284.579,67 hectáreas, donde en estas tierras el agrosistema dominante guarda correspondencia con la vocación de uso principal o con un uso compatible. El uso actual es adecuado y concordante con la capacidad productiva natural de las tierras (IGAC, CORPOICA, 2002). Este suelo se aprovecha de manera adecuada en ganadería y en la agricultura con cultivos de plátano, arroz, yuca, ñame entre otros (Alcaldía Municipal de Montelibano, 2001) (Alcaldía Municipal de Ayapel, 2016) (Alcaldía Municipal de Planeta Rica, 2016) (Alcaldía Municipal de Puerto Libertador, 2005) (Alcaldía Municipal de San José de Uré, 2010).CVS- FONADE. El 28% del área total predominan los conflictos por subutilización de las tierras, la cual se produce cuando las tierras con vocación agrícola, en especial con cultivos transitorios intensivos y semiintensivos, se encuentran principalmente en actividades pecuarias de baja a moderada intensidad, asociadas principalmente a pastos naturales, manejados, arbolados y asociaciones de pastos con rastrojos; en menor magnitud este conflicto se asocia con tierras con vocación agroforestal, en especial para usos silvoagricolas, utilizadas actualmente en actividades ganaderas extensivas) (IGAC, CORPOICA, 2002). En la subregión hay conflictos de uso de suelos inadecuado y muy

inadecuado con un 11%(78.083,85hectáreas) y 14% (102.223,14 hectáreas) del área total, donde el uso actual con el uso vocacional difieren. Y el 9% restante pertenecen a cuerpos de agua y a la categoría no aplica (vías y centros poblados) (Tabla 53).

Tabla 53. Conflicto de usos de Suelos de la Subregión San Jorge

Conflicto	Área (Ha)	Porcentaje
Adecuado	272.698,59	38%
Inadecuado	78.083,85	11%
Muy Inadecuado	102.223,14	14%
Subutilizado	197.701,03	28%
Cuerpos de Agua	60.085,96	8%
No aplica	4614,42	1%
Total General	715.406,99	100%

Fuente: Elaboración equipo técnico

Subregión Sinú Medio

Los conflictos de usos por subutilización, alcanzan el 35% del área total, correspondiente a 174.603,07 hectáreas, lo cual tiene que ver con el desaprovechamiento a la aptitud que presentan. Del área total de la subregión el 31% (152.983,69 hectáreas) no presenta conflicto de uso, dado que el uso actual corresponde con la vocación y uso principal recomendado, o este se relaciona con un uso compatible al principal. El 18% (90.348,84 hectáreas) presenta conflicto por uso inadecuado. Del total de las tierras el 11% presentan conflictos de uso muy inadecuado donde el uso actual de la tierra es más intenso y deteriora la tierra en comparación con el uso vocacional (IGAC, CORPOICA, 2002). El 3% del área total correspondiente a 13.906,17 hectáreas pertenecen a cuerpos de agua y el 1% (7.307,79 hectáreas) corresponde a la categoría no aplica (vías y centros poblados) (Tabla 54).

Tabla 54. Conflicto de usos de Suelos de la Subregión Sinú Medio

Conflicto	Área (Ha)	Porcentaje
Adecuado	152.983,69	31%
Inadecuado	90.348,84	18%
Muy Inadecuado	56.985,30	11%
Subutilizado	174.603,07	35%
Cuerpos de Agua	13.906,17	3%
No aplica	7.307,79	1%
Total General	496.134,86	100%

Subregión Costera

El 36% (69.755,46 hectáreas) de las tierras de la subregión Costera tienen conflictos de uso por subutilización. Del área total de la subregión el 31% de las tierras no presentan conflictos de uso; ello se debe en gran medida, a que las actividades agropecuarias se realizan en suelos con estas vocaciones (IGAC, CORPOICA, 2002), estas tierras alcanzan una extensión de 58.858,58 hectáreas. El 11% (22.091,23 hectáreas) presentan conflictos por uso muy inadecuado. El 18% del área total de la subregión hace referencia a conflictos por muy inadecuado de las tierras. El 4% restante alude a cuerpos de agua y la categoría no aplica (vías y centros poblados) (Tabla 55).

Tabla 55. Conflicto de usos de Suelos de la Subregión Costera

Conflicto	Área (Ha)	Porcentaje
Adecuado	58.858,58	31%
Inadecuado	22.091,23	11%
Muy Inadecuado	34.661,98	18%
Subutilizado	69.755,46	36%
Cuerpos de Agua	2.927,83	2%
No aplica	4.118,61	2%
Total General	192.413,69	100%

Fuente: Elaboración equipo técnico

5.3. Descripción de los ecosistemas y especies importantes

5.3.1. Antecedentes

El departamento de Córdoba posee tres grandes biomas que agrupan una variedad de ecosistemas con características semejantes para el desarrollo de la vegetación y la fauna, los biomas presentes son: Bosque Subandino, Bosque Húmedo tropical y Bosque Seco Tropical.

De acuerdo al POMCA Sinú, la cuenca hidrográfica del Rio Sinú se localiza en tres provincias biogeográficas: Norandina, Choco – Magdalena y Cinturón Árido Pericaribeño; con presencia de biomas de Bosque Pluvial Montano en la zona alta de la Cuenca caracterizada por zonas montañosas de paramo y bosque andino, de igual manera, el bioma de bosque húmedo tropical se asocia a formaciones de selva húmeda de zona baja y zona de montaña como el Cerro de Murrucucú. A su vez se encuentra otros biomas que identifican la mayor parte de la cuenca como es el Bosque Seco Tropical iniciando de la Subcuenca de Betanci en la margen derecha y desde las palomas en margen izquierda; presenta zonas transicionales de bosque húmedo a bosque seco y manglar (CVS - FONADE, 2004) (Tabla 56).

Tabla 56. Distribución porcentual de los biomas presentes en cada subregión del departamento de Córdoba.

Bioma	Subregión	%
Bosque Húmedo Tropical	Alto Sinú	34,07
	Costera	0,09
	Sabana	2,32
	San Jorge	60,63
	Sinú medio	2,89
Bosque Seco Tropical	Alto Sinú	8,73
	Bajo Sinú	12,25
	Costera	14,32
	Sabana	18,89
	San Jorge	10,84
	Sinú medio	34,97
Bosque Subandino	Alto Sinú	18,83
	San Jorge	81,17

Fuente: Elaboración equipo técnico tomado de (CVS - FONADE, 2004)

En la cuenca del Rio Sinú se reportan 1320 especies distribuidas en 300 Familias de Flora incluyendo briofitas (Musgos y hepáticas), pteridiofitos (Helechos) y espermatofitos (Hierbas, arbustos, arboles, lianas, bejucos y palmas) (CVS - FONADE, 2004).

<u>Bioma de Bosque Húmedo Tropical</u>

El bioma de bosque húmedo tropical presenta en el departamento un área de 975446,07 ha, distribuidos el 60,63% en la subregión del San Jorge, 34,07% en la subregión del Alto Sinú y el 5,31% distribuidos en la subregión de la Sabana, Costera y Sinú medio.

El bosque húmedo tropical se caracteriza por presentar promedios pluviométricos anuales de 2.000-4.000 mm, una temperatura media de 24 °C y una topografía ondulada con alturas hasta de 1.000 msnm, encontrando especies características como: Peine mono (Apeiba membranácea), Aceite Maria (Calophyllum brasiliense), Abarco (Cariniana pyriformis), Almendrón (Caryocar amygdaliferum), Algarrobo (Hymenaea oblongifolia), Chingale (Jacaranda copaia), Nazareno (Peltogyne purpurea), Amargo (Vatairea guianensis), Sangre toro (Virola sebifera), Fresno (Tapirira guianensis), Caracolí (Anacardium excelsum) y Caoba (Swietenia macrophylla), entre otras especies (CVS, 2008).

El bioma de Bosque Húmedo Tropical del Alto Sinú se subdivide en dos zonas características definidas de la siguiente manera: Bosque de Serranía y Bosque de colinas con valles intermontanos. El Bosque de Serranía se caracteriza por tener una ubicación entre 400 y 1000 msnm conectado por la parte superior al bosque subandino y por la parte más baja con el bosque de colinas con valles intermontanos; se configuran como bosques de dosel abierto y cerrado con altura mayor a 20 m con un reporte de 136 especies, encontrando principalmente Cativo (*Prioria copaifera*), Barsino (*Protium heptaphyllum*), Ceiba blanca (*Hura crepitans*), Vara de paloma (*Trema micrantha*), Nazareno (*Peltogyne*)

purpurea), Algarrobo (Hymenaea courbaril), Amargo (Vatairea sp.), Coco cristal (Lecythis minor), Comino crespo (Aniba perutilis), Bálsamo (Myroxylon balsamum) (CVS - FONADE, 2004).

El bosque de Colinas con valles intermontanos se ubica por debajo de los 400 msnm e incluye las zonas no inundables de los valles, planicies o llanuras conectado con el bosque de serranía en la zona superior y el bosque inundable en la zona inferior, comprendiendo dosel cerrado y altura menor a 20 m, con presencia de especies Cagüi (Caryocar amygdaliferum), Cedro (Cedrela odorata), Abarco (Cariniana pyriform is), Zapato (Pterygota excelsa), Ébano (Caesalpinia ébano), Dormilon (Pentaclethra macroloba), Canime (Copaifera canime), Laurel (Aniba sp.), Canelo (Ocotea sp.), Almendro (Dipteryx sp.), Velecuba (Couratari sp.) (CVS - FONADE , 2004).

Este bioma posee una alta intervención antrópica, especialmente el área que se encuentra fuera del Parque Paramillo referente al bosque de colinas con valles intermontanos, que ha sido transformado a pastos y rastrojos bajos debido a procesos de colonización.

Bioma de Bosque Seco Tropical

El bioma de Bosque seco tropical se distribuye en las 6 subregiones del departamento con un área total de 1337974,62 ha, donde la subregión de Sinú medio posee el 34,97%, Sabana con 18,89 %, Costera con 14,32 %, Bajo Sinú con 12,25 %, San Jorge con 10,84 % y Alto Sinu con 8,73%.

Bioma Bosque Subandino

Se encuentra ubicado entre los 1000 y 2700 m caracterizado por presentar abundantes epifitas, vegetación de raíces tubulares y arbolado con estrato emergente discontinuo y disperso con copas variables

- 5.3.1.1. Ecosistemas forestales naturales
- 5.3.1.1.1. Bosques primarios, secundarios e intervenidos.

Bosque Subandino

Este bosque se presenta en la subregión del San Jorge con un área de 8810,12 ha, distribuidas en 8553,74 ha en Puerto Libertador y Montelíbano con 256, 38 ha (CVS - FONADE, 2005) y en la subregión del Alto Sinú un área de 2044, 10 ha en el municipio de Tierralta para un total de 10854,22 ha en el departamento de Córdoba.

Bosque Húmedo Tropical

En el caso del Bosque Húmedo Tropical es el bioma más extenso del PNN Paramillo y su influencia se extiende hasta la zona de Betanci por la margen derecha del Rio Sinú y hasta el sector de las palomas hacia la margen izquierda (CVS - FONADE, 2004); con un

área de 332322,72 ha distribuidos 260957,99 ha en el municipio de Tierralta y 71364,73 ha en el municipio de Valencia.

En la subregión del San Jorge posee un área de 591364,83 ha, con 114864,31 ha en Puerto Libertador, 118831,64 ha en Montelíbano, 198117,13 ha en Ayapel, 74687,12 ha en Buenavista, 52560,81 ha en San Jose de Ure, 28702,92 ha en La Apartada y 3600,87 ha en Planeta rica (CVS - FONADE, 2005), caracterizado por Abarco (Cariniana pyriformis), Cagüi (Caryocar amygdaliferum), Caracoli (Anacardium excelsum), Caoba (Swietenia macrophylla), Cedro (Cedrela odorata), Ceiba amarilla (Hura crepitans), Ceiba tolua (Pachira quinata), Chingale (Jacaranda copia), Masabalo (Carapa guianensis) y Sande (Brosimun utile). Los bosques se caracterizan por tener abundante hojarasca, dosel semiabierto o dosel semicerrado y abundante sotobosque pero intervención moderada a alta en algunos sectores de la Apartada principalmente (CVS - FONADE, 2005); se encuentra aproximadamente 440 especies representadas a 102 familias y 271 géneros.

Bosque Seco Tropical

El Bosque seco tropical ha ido disminuyendo considerablemente debido a presiones antrópicas principalmente como la expansión de la frontera agrícola y el cambio de uso del suelo; dicha formación vegetal se caracteriza por un clima cálido seco que se caracteriza porque la evapotranspiración supera ampliamente a la precipitación durante la mayor parte del año. Presenta una serie de adaptaciones fisiológicas como la perdida de follaje para contrarrestar el déficit de agua. De igual forma se presencia las hojas compuestas y foliolos pequeños, corteza de fustes lisa y presencia de aguijones o espinas) (Humboldt, 2014). Las especies características de esta zona son: Roble (Tabebuia rosea), Polvillo (Handroanthus chrysanthus), Ebano (Caesalpinia ebano), Olleto (Lecythis minor), Diomate (Astronium graveolens), Ceiba blanca (Hura crepitans), Guayacan bola (Bulnesia arborea), Cedro (Cedrela odorata), Carreto (Aspidosperma polyneuron), Ceiba tolúa (Pachira quinata), Ceiba (Ceiba pentandra), Olivo (Quadrella odoratissima), entre otras especies.

En la subregión de Sinú medio y bajo Sinú, los bosques han sido muy intervenidos de manera antrópica y se encuentran principalmente coberturas asociadas a cerca viva y sombrío para ganado; caracterizado por especies Roble (*Tabebuia rosea*), Campano (*Albizia saman*) e Higo (*Ficus sp.*), Pastizales con parches de rastrojos y Parches de bosques muy intervenidos (CVS - FONADE, 2004).

En la subregión costera, específicamente en el municipio de canalete se mantiene un total de 940 ha de bosque seco dividido en fragmentos de bosque natural a lo largo de toda la cuenca, sin embargo 388 Ha son una área de rastrojo alto entre los corregimientos de Buenavista en Los Córdobas y El Arizal en Puerto Escondido (CVS y Universidad Pontificia Bolivariana, 2008); estos fragmentos han sufrido una alta intervención por extracción selectiva de Madera.

En la Ciénaga de Betanci, perteneciente a la subregión de Sinú medio, se encuentra un fragmento de bosque seco tropical de Alta intervención con un área de 542 ha

disminuida considerablemente por factores como la expansión agrícola y la extracción selectiva de madera; se encuentra una composición florística de 29 familias, 43 géneros y 46 especies dominado por especies como: Hojiancho (Coccoloba caracasana), Cariaca (Machaerium sp.), Guamo (Inga vera), Roble (Tabebuia rosea), Olleto (Lecythis minor), Guácimo (Guazuma ulmifolia) y Divi divi (Caesalpinia coriaria) (Fundación Bosques y Humedales - CVS, 2016).

Así mismo, la ciénaga de corralito ubicada en la subregión de Sinú medio, presenta un parche de vegetación secundaria o en transición de aproximadamente 7,9 ha perteneciente al Bioma de Bosque Seco Tropical y una zona transicional del Bosque Húmedo Tropical (CVS - Herencia Ambiental , 2014); caracterizado por una vegetación arbórea dominado por especies como Campano (Albizia saman), Matarraton (Gliricidia sepium), Totumo (Crescentia cujete), Roble (Tabebuia rosea), Guacamayo (Albizia niopoides), Hobo (Spondias mombin), Caracoli (Anacardium excelsum), Santa Cruz (Astronium graveolens), Guayacan bola (Bulnesia arborea), Yaya blanca (Xilopia frutescens), Carreto (Aspidosperma polyneuron), Resbalamono (Bursera simarouba), Camajon (Sterculia apetala), Guacimo (Guazuma ulmifolia), Ebano (Caesalpinia ébano) y Ceiba blanca (Hura crepitans).

La subregión del San Jorge posee áreas de formaciones secundarias fragmentadas equivalentes a 7579 ha, distribuidas en 1715 ha en Pueblo Nuevo, 55 ha en Sahagún, 1226 ha en Ciénaga de Oro, 3291 ha en Montelíbano, 299 ha en Buenavista, 831 ha en Planeta Rica y 159 ha en Tierralta. Los bosques de esta zona de vida se caracterizan por tener alta intervención y secundarios con sotobosque escaso, hojarasca abundante y dosel abierto; presenta una composición florística de 40 familias, con 87 géneros y 139 especies. Bosques de Galería

El Bosque de Galería funciona como un corredor biológico de especies brindando grados de interconectitividad con otras coberturas relictuales del Departamento de Córdoba. Aproximadamente de 30845,24 ha. La principal función es contribuir al equilibro hídrico evitando altas tasas de evaporación, reteniendo excedentes de humedad y liberándolo en condiciones críticas; además son refugios de una amplia variedad de fauna, Flora y servicios ambientales.

En la subregión de Sinú medio, específicamente la ciénaga de Betanci se reporta un área de 234 ha, siendo una cobertura bastante afectada por expansión de frontera agrícola y el conflicto de uso del suelo (Fundación Bosques y Humedales - CVS, 2016).

Ecosistema de Manglar

El Manglar es uno de los ecosistemas más importantes en el departamento, teniendo en cuenta su alta productividad asociada a los recursos hidrobiológicos, forestales y ecológicos posee un área de 11329,7 ha en Córdoba, distribuidas en el golfo de Morrosquillo 1198 ha, Bahía de Cispatá 8556,7 ha, Tinajones con 1513 ha y San Bernando del viento a Los Córdobas con 62 ha (CVS - FONADE, 2004) perteneciente a la subregión costera del departamento; asociado a ecosistemas como Bosque seco Tropical, pantanos

costeros, vegetación de pantano de agua dulce, playas, fondos sedimentarios y las praderas fanerógamas (CVS - INVEMAR, 2009).

La especie dominante en el Bosque de Manglar es Mangle Rojo (*Rizophora mangle*) con una cobertura del 80% del bosque acompañado de Mangle blanco (*Laguncularia racemosa*), Mangle negro (*Avicennia germinans*), Mangle Zaragoza (Conocarpus erecta) y algunos individuos de Mangle piñuelo (*Pelliciera rhizophorae*).

En la cuenca del rio Canalete se encuentran 15 Ha de Mangle blanco (Laguncularia racemosa) como especie dominante, aunque hay presencia de Mangle Rojo (Rizophora mangle), Mangle negro (Avicennia germinans) combinadas con el helecho matatigre (Achrostichum sp.); se considera un fragmento bastante pequeño pero que cumple un papel importanto en la regulación del flujo de energía en la desembocadura; sin embargo se encuentra altamente amenazado por la expansión ganadera (CVS y Universidad Pontificia Bolivariana, 2008).

5.3.1.1.1. Otros ecosistemas naturales de particular significancia

Coberturas de Rastrojos

Las coberturas de rastrojos se consideran un ecosistema natural de importancia, teniendo en cuenta que se han mantenido como pequeñas manchas aisladas luego de la alta intervención antrópica y deforestación de los bosques del departamento de Córdoba. Por lo general están localizadas en potreros y colinas dominando elementos de tipo arbustivo, trepador y herbáceo.

En la subregión del San Jorge, se encuentra coberturas de Rastrojos altos y bajos con especies características como: Totumo (Crescentia cujete), Guácimo (Guazuma ulmifolia), Guanabanito (Annona sericea), Yarumo (Cecropia longipes), Guamo de monte (Inga oerstediana) y Bensenuco (Palicourea sp); la problemática principal de estas coberturas se debe evidencia en la sustitución a Pastos Naturales y mejorados.

En la subregión de la Sabana, específicamente en el Municipio de Chinú, se encuentra un área de 3000 ha remanente de vegetación natural con alturas de 2 a 4 m; caracterizada por ser una zona de regeneración natural en la cual se encuentra actividades ganaderas y de caza (CVS - FONADE, 2005) pero tienen una funcionalidad de conexión con otras coberturas para la movilización de Fauna.

<u>Distrito de Manejo Integrado (DMI) bahía de Cispatá - La Balsa - Tinajones y sectores</u> aledaños del delta estuarino del río Sinú

El DMI se presenta en su mayoría como un humedal donde predominan los manglares y ecosistemas asociados o colindantes, como son: El bosque seco tropical, pantanos costeros, vegetación de pantano de agua dulce, playas, fondos sedimentarios de la bahía de Cispatá y las praderas de fanerógamas (CVS - INVEMAR, 2009); donde el

manglar representa el 31% del área y se consolida como el principal objeto de conservación junto con las poblaciones de fauna asociadas.

La vegetación acuática y de pantano de las ciénagas de los sitios cercanos al manglar, es similar en su composición florística y en sus arreglos ecológicos; el clima en el área de estudio según Thornthwaite es semiseco con ligero o sin superávit de agua en la época crítica (verano), el régimen de lluvia es unimodal-biestacional con un monto de precipitación anual de 1337 mm y un promedio mensual de 111,45 mm. El periodo lluvioso va desde mayo hasta noviembre y el menos lluvioso de diciembre hasta abril ((Palacios, L. Rodriguez, P. Rangel, O., 2012).

En el DMI Bahía de Cispatá se reporta un fragmento de bosque seco tropical de 525, 9 Ha, con presencia de especies Matarraton (Gliricidia sepium), Carbonero (Leucaena leucocephala), Guayacan (Tabebuia sp.), Campano (Albizia saman), Chiminango (Pithecellobium dulce), Mamon (Melicoccus bijugatus) y Hobo (Spondias mombin) (CVS - INVEMAR, 2009).

Los manglares de la bahía de Cispatá se encuentran en buen estado, no obstante en las ciénagas Garzal, Mestizos y caño La Balsa alertan por un estado pobre y regular basado en el área basal tendencia para el departamento de Córdoba (Ramos., 2016). El regular estado en la ciénaga Garzal obedece a un intenso aprovechamiento realizado en el 2012 mezclado con una baja tasa de crecimiento. Así mismo, en la ciénaga Mestizos obedece a un proceso de mortalidad, debido a un incremento paulatino en la salinidad intersticial; en el caso del caño La Balsa se asocia a un uso intensivo del bosque a partir de tala selectiva que no está sujeta a regulación (Ramos., 2016). Todavía cabe señalar que el manglar en los últimos 16 años se ha venido desarrollando estructuralmente, sin embargo desde el 2011 se ha observado un ligero declive estructural basado en variables de biomasa, área basal y densidad, evidenciando un mal manejo forestal como procesos locales de mortalidad (Ramos., 2016).

5.3.1.1.2. Plantaciones

La reforestación comercial en el Departamento de Córdoba se concentra en 11 subnúcleos productivos basado en la zonificación y criterios agroecológicos, climáticos, de protección, conservación de suelos; los subnúcleos se encuentran ubicados en las subregiones del Alto Sinú (Tierralta y Valencia), Sinú medio (Montería, San Carlos, Cerete), San Jorge (Montelíbano, Planeta Rica, Ayapel), Sabana (San Andrés de Sotavento) y Costera (San Antero, Canalete).

La primera empresa que se estableció en el Departamento fue GAMAL LTDA en la hacienda el Páramo en el Municipio de Canalete con un área de 1700 ha de Teca (*Tectona grandis*). De igual manera se destacan otras empresas por tener una extensión considerable de plantación comercial, tal es el caso de: Industrias Agroecológicas Oxigeno Infinito, Agrofuturo Fernandez y Cia, Kanguroid y Reforestadora del Caribe (FAO, FEDEMADERAS, FORCARIBE, 2011); en la Tabla 57 se detalla el área, ubicación y especie utilizada por cada empresa.

Tabla 57. Principales empresas de Reforestación Comercial.

Empresa	Especie	Área (ha)	Subnúcleos	
Reforestadora del Caribe	Teca (Tectona grandis)	1700		
	Acacia (Acacia mangium)	(Acacia mangium) 500 Puerto Li		
	Gmelina (Gmelina arborea)	30		
Ganados y Maderas Gamal Ltda	Teca (Tectona grandis)	Teca (Tectona grandis) 1700		
Description of the second of t	Acacia (Acacia mangium)	3000 Tierralta		
Bosques del Futuro (Kanguroid)	Gmelina (Gmelina arborea)	304	nerrana	
	Ceiba tolua (Pachira quinata)	70		
Industrias agroecologicas oxigeno infinito	Roble (Tabebuia rosea)	31	Planeta Rica	
Oxigeno ir illi illo	Acacia (Acacia mangium)	249		
	Ceiba tolua (Pachira quinata)	485		
Agrofuturo Fernandez y Cia	Eucalyptus sp.	75	Planeta Rica	
	Acacia (Acacia mangium)	75		
Compañía Ganadera Pomeno	Acacia (Acacia mangium)	150	Ayapel	
Reforestaciones Proovedora del Oriente	Teca (Tectona grandis)	240	San Carlos	
	Acacia (Acacia mangium)	100	Cienaga de Oro	
Zafarí S.A	Teca (Tectona grandis)	600	Pueblo Nuevo	
	Acacia (Acacia mangium)	100	Cienaga de Oro	
Asociación comunitaria Abibe Forestal	Roble (Tabebuia rosea)	550	Valencia	
Sociedad Agraria de Transformación SAT. Los Palitos	Acacia (Acacia mangium)	140	Ti	
	Nativas Varias	60	Tierralta	

Fuente: Elaboración equipo técnico tomado de (FAO, FEDEMADERAS, FORCARIBE, 2011)

Desde el año 2009 se está procesando aproximadamente 92964 m³/año de Madera Aserrada de Acacia (Acacia mangium) en fabricación de Tableros alistonados, estructuras laminadas, construcciones modulares, estructuras prefabricadas para vivienda en madera, molduras, fabricación de puertas, ventanas y maderas cepillada (FAO, FEDEMADERAS, FORCARIBE, 2011).

En la fabricación de pulpa han destinado 4200 m³ de madera de entresacas de Acacia (Acacia mangium) y de la especie Teca (Tectona grandis) se producen 540 m³/año de madera aserrada para la industria y 33600 m³/año de madera rolliza descortezada sin procesamiento (FAO, FEDEMADERAS, FORCARIBE, 2011).

Las especies utilizadas para la reforestación obedecen a razones de mercado y conocimiento de su paquete tecnológico (FAO, FEDEMADERAS, FORCARIBE, 2011). Las especies utilizadas en plantaciones comerciales, de acuerdo a la cadena forestal, se especifican en la Tabla 58.

Tabla 58. Extensión y especies de las Plantaciones Forestales en Córdoba

Especie	Área (ha)
Roble (Tabebuia rosea)	9930
Teca (Tectona grandis)	8297
Acacia (Acacia mangium)	7800
Ceiba Tolua (Pachira quinata)	2219
Gmelina (Gmelina arborea)	652
Eucalipto rojo (Eucalyptus tereticornis)	230
Caucho (Hevea brasiliensis)	1796
Total	30924

Fuente: Elaboración equipo técnico tomado de (FAO, FEDEMADERAS, FORCARIBE, 2011)

De acuerdo al Instituto Colombiano Agropecuario de las plantaciones comerciales registradas ante la entidad se reporta un total de 22261, 34 ha, no obstante se realiza una anotación a la información proporcionada de la siguiente manera: "Se debe tener en cuenta que de la cantidad de hectáreas registradas en la base de datos se estima que aproximadamente el 35% ya ha sido aprovechado, por lo que la información digital de registro puede ya no encontrarse en pie" (Instituto Colombiano Agropecuario (ICA), 2017); sin embargo las especies registradas se evidencian en la Tabla 59.

Tabla 59. Extensión y especies de las Plantaciones Forestales en Córdoba registradas en el ICA.

Especie	Área (hal
Acacia (Acacia mangium)	7512,27
Caracoli (Anacardium excelsum)	3,6
Palo de Hierro (Caesalpinia ferrea)	0,5
Carbonero (Calliandra trinervia var. Carbonaria)	50
Abarco (Cariniana pyriformis)	29,1
Guarumo (Cecropia sp.)	3
Cedro (Cedrela odorata L.)	198,48
Vara de Humo (Cordia alliodora)	24,1
Moho (Cordia sp.)	12
Ébano (Diospyros ebenum)	2
Eucalipto (Eucalyptus pellita)	380,24
Eucalipto (Eucalyptus sp.)	0,22
Eucalipto rojo (Eucalyptus tereticomis)	484,8
Eucalipto colorado (Eucalyptus urograndis)	1212,76
Gmelina (Gmelina arborea)	508,3
Gualanday (Jacaranda caucana)	20
Chingalé (Jacaranda copaia)	27
Balso (Ochroma pyramidale)	1,5
Ceiba Tolua (Pachira quinata)	962,2

Especie	Área (hal
Campano bleo (Albizia guachapele)	2,5
Campano (Albizia saman)	11
Pata de gallina (Schefflera morototoni)	20
Tambolero (Schizolobium parahyba)	34
Caoba (Swietenia macrophylla)	47,28
Polvillo (Handroanthus chrysanthus)	10
Roble (Tabebuia rosea)	1970,81
Teca (Tectona grandis)	8663,52
Vara de Leon (Terminalia ivorensis)	2
Almendro (Terminalia sp.)	68
Tachuelo (Zanthoxylum sp.)	0,16
Total	22261,34

Fuente: Elaboración equipo técnico tomado de (Instituto Colombiano Agropecuario (ICA), 2017)

La mayor cantidad de plantaciones forestales se encuentran en la subregión del san Jorge con 8327,98 ha, seguido de la subregión del Alto Sinú de 6454,4 ha y 3553,91 ha en la subregión de Sinú medio. La menor proporción se encuentra en la subregión de la sabana con 366,78 ha y 298 ha en la subregión del Bajo Sinú.

Las diferencias presentadas entre las áreas reportadas por la cadena forestal y el ICA en algunas especies, se fundamenta principalmente es que el registro se realiza por interés del usuario o inicio de etapa de comercialización.

La importancia ecológica de las plantaciones se asocia a una estrategia del manejo forestal sustentable, basado en la utilización racional del recurso brindando servicios ambientales para la mitigación del efecto invernadero y cambio climático.

5.3.1.1.3. Humedales

El departamento de córdoba posee una multiplicidad de humedales que proporcionan servicios ecosistémicos, desde el suministro de agua dulce, alimentos, biodiversidad, hasta control de crecidas, recarga de aguas subterráneas y mitigación del cambio climático; es así como en la subregión del Bajo Sinú y Sinú medio, conformado por los humedales Baño, Pantano Bonito, Charco Pescao, ciénaga de la pacha, ciénaga de baño, ciénaga de betanci, ciénaga de corralito, ciénaga de martinica, ciénaga de Sierra chiquita, humedal de catabre, humedal de los quemados, Pantano grande, Pantano Largo y el complejo cenagoso del bajo Sinú; posee aproximadamente 819 especies distribuidas en 93 familias con 350 géneros, en coberturas de Bosque Húmedo y Bosque Seco Tropical. El bosque húmedo se caracteriza por la presencia de individuos arbóreos de gran porte como Volador (Cavanillesia platanifolia) e individuos de porte arbustivo.

Los bosques alrededor de los humedales se encuentran especies como Diomate (Astronium graveolens) y Fresno (Tapirira guianensis): los bosques inundables

caracterizados por Uvilla (Coccoloba costata) y Campano (Albizia saman) y los bosques secos propiamente dichos se caracterizan por la presencia de Fresno (Tapirira guianensis), Roble (Tabebuia rosea), Campano (Albizia saman) y Guácimo (Guazuma ulmifolia) (CVS, Universidad Nacional de Colombia, Colegio Mayor de Cundinamarca, Universidad Javeriana, Universidad de los Andes, Universidad Distrital, Universidad de Cordoba, 2009)

El humedal de la Pacha es uno de los remanentes del gran complejo de humedales de la margen izquierda del rio Sinú en su valle medio con un área de 22444 ha, inicialmente se encontraba aislada de la cuenca del caño La Caimanera pero actualmente se encuentra conectada por el caño la Virgen, siendo afectada directamente por el régimen de pulso. Posee gran importancia por garantizar el buen funcionamiento de la hidrodinámica del rio a causa de la captura de sedimentos (CVS - Fundación Herencia Ambiental, 2013). En cuanto a las coberturas presentes existen remanentes muy pequeños de bosque ripario y matorrales, encontrándose aislados y si ninguna estructura o composición representativa.

El humedal ciénaga de Baño hace parte también del complejo de humedales de la margen izquierda del rio Sinú con una cobertura de vegetación secundaria de 7,9 ha, caracterizada por tener una conexión permanente con el caño de la Caimanera, siendo este el caño más importante desde el punto de vista hidráulico por el transporte de escorrentía proveniente del sistemas de ciénagas y planicies (CVS - Herencia Ambiental, 2012); asociado a Baño se encuentra el humedal de la Ciénaga de los Negros, localizado en la margen izquierda del rio Sinú con una alta intervención presentando únicamente una cobertura de pastos arbolados con especie dominante Campano (Albizia saman) (CVS - Fundación Bosques y Humedales, 2015).

El complejo cenagoso del Bajo Sinú posee un área de aproximadamente 79100 ha clasificada de acuerdo Ramsar en Pantanos, esteros, charcas permanentes de agua dulce, la cual representa charcas, pantanos y esteros sobre suelos inorgánicos, con vegetación emergente en agua durante la mayor parte del periodo de crecimiento; su importancia radica en ser un ecosistema estratégico para la supervivencia de diferentes especies acuáticas y en especial para la actividad pesquera (CVS - Universidad Nacional de Colombia, 2007).

La vegetación característica del complejo está formada por Boques relictuales, Bosques de Galería, Bosques inundables, vegetación de ciénaga y rastrojo; los bosques relictuales se localizan en las áreas adyacentes a la ciénaga que no poseen influencia alguna por la fluctuación de los niveles de agua, presentando dosel cerrado o abierto y los estratos inferiores presentan diferente grado de organización; la composición florística es de 448 especies en 291 géneros y 100 familias. Los bosques de Galería se caracterizan por presentar varios estratos, estrato arbóreo discontinuo y estratos inferiores bastante alterados, florísticamente se registran 71 Familias, 142 géneros y 184 especies. Los bosques inundables son los influenciados de forma temporal o permanente de la fluctuación del nivel de agua, presentando fustes mal formados, diferentes alturas del dosel y puede estar cerrado o abierto; con 87 especies, 67 géneros y 49 familias (CVS - Universidad Nacional de Colombia, 2007).

Dicho complejo ha sufrido una alta intervención antrópica, debido a actividades como la introducción de especies invasoras, la ampliación de la frontera agrícola y ganadera, tala y quema de bosque, sobreexplotación de recursos biológicos y contaminación (CVS - Universidad Nacional de Colombia, 2007).

La subregión del San Jorge, formado por un sistema lagunar de los humedales Arcial, El Porro y Cintura y la ciénaga grande de Ayapel, se caracterizan por poseer alta eutrofización, teniendo en cuenta los índices de nutrientes, material orgánico y mineralización del agua (Universidad Nacional, Instituto de Ciencias Naturales, CVS, 2007); de igual forma han sufrido procesos de alteración de la dinámica, conectividad hidrológica, deforestación y degradación de los suelos que han disminuido sus condiciones y servicios ambientales; cuenta con 40180 ha entre ciénagas y zonas de vegetación baja, distribuidos en 6284 ha en Pueblo Nuevo, 106 ha en Chinu, 1031 ha en Puerto Libertador, 1128 ha en la Apartada, 1469 en Montelíbano, 4057 ha en Buenavista, 25916 ha en Ayapel y 183 ha en Planeta Rica (CVS - FONADE, 2005); las especies más representativas son Jussiae leptocarpa, Jussiae linifolia, Poyganum hidropiperoides, Mimosa pigra, Limnochans flava, Thalia geniculata y Scirpus californicus.

El complejo de humedales de Ayapel posee aproximadamente 13753 ha, caracterizado por poseer una variada ictiofauna siendo la base del sustento de comunidades asociadas (CVS - FONADE, 2005), conforma parte del macrosistema de humedales y zonas anegables de la depresión Momposina. La ciénaga incluye varios cuerpos menores y zonas de zapales o bañados conectados a través de una compleja red de caños de variada magnitud, el cual contiene deltas interiores, arroyos permanentes, arroyos estacionales, intermitentes e irregulares, lagos permanentes de agua dulce, lagos estacionales e intermitentes de agua dulce, pantanos esteros, charcas permanentes de agua dulce, pantanos, esteros, charcas estacionales o intermitentes de agua dulce sobre suelos inorgánicos y turberas no arboladas de acuerdo a la clasificación de tipos de humedales Ramsar (CVS, Universidad de Antioquia, GAIA, 2007).

Las coberturas presentes en el complejos de humedales de Ayapel son principalmente Bosque secundario intervenido (288,36 ha), Bosque secundario muy intervenido (1839,60 ha), Rastrojos Alto y Bajo (26355,11 ha) y coberturas de Pastos naturales y manejados (13558,92 ha); teniendo en cuenta que el bosque primario desapareció en un 90% a causa de deforestación por extracción selectiva, deforestación por ampliación de frontera agrícola y colonización (CVS, Universidad de Antioquia, GAIA, 2007). El Bosque secundario se encuentra dominado por especies como Fruta de Burro (Xilopia aromatica), Roble (Tabebuia rosea), Ceiba blanca (Ceiba pentandra), Ceiba Tolua (Pachira quinata), Barsino (Protium heptaphyllum), Algarrobo (Hymenaea courbaril), Camajon (Sterculia apetala), Olleto (Lecythis minor), Laurel (Nectandra cuspidata) y Totumillo (Vitex colombiensis) (CVS, Universidad de Antioquia, GAIA, 2009).

De igual forma dentro de los ecosistemas estratégicos del San Jorge se encuentra la zona de humedales del Caño Carate, con un total de 5580 ha de gran importante por hospedar una gran cantidad de especies de Flora y Fauna (CVS - FONADE, 2005).

5.3.1.1.4. Especies endémicas, raras, amenazadas y en vía de extinción.

Dentro de las especies forestales reportadas para el departamento de Córdoba (CVS - UNIVERSIDAD NACIONAL, 2008) (CVS - FONADE, 2004) (CVS - FONADE, 2005) (CVS - CONIF, 2008); se encuentran las siguientes especies bajo alguna categoría de amenaza, según el libro rojo y la resolución 1912 de 2017 (Tabla 60):

Tabla 60. Especies de flora en Categoría de Amenaza en el departamento de Córdoba.

Especie	Nombre común	Categoría de Amenaza
Anacardium excelsum	Caracolí	Casi amenazada (NT)
Aspidorperma polyneuron	Carreto	En peligro (EN)
Cariniana pyriformis	abarco	En peligro crítico (CR)
Caryocar amygdaliferum	cagui	vulnerable (VU)
Cedrela odorata	Cedro	En peligro (EN)
Dypteryx oleifera	choiba	vulnerable (VU)
Hymenaea courbaril	Algarrobo	Casi amenazada (NT)
Caesalpinia ebano	Ébano	En peligro (EN)
Myroxylon balsamun	Bálsamo	Casi amenazada (NT)
Pachira quinata	cedro macho	En peligro (EN)
Peltogyne purpurea	Nazareno	Casi amenazada (NT)
Swietenia macrophylla	Caoba	En peligro crítico (CR)
Prioria copaifera	Cativo	En peligro (EN)
Bulnesia arborea	Guayacán bola	En peligro (EN)
Guaicanum officinale	Guayacán negro	En peligro crítico (CR)
	Nato	En peligro (EN)
Humiriastrum procerum	chanul	En peligro crítico (CR)
Huberudendron patinoi	Carrá	vulnerable (VU)
Brosimun rubescens	Palo de sangre	Casi amenazada (NT)
Lecythis minor	Olleto	Preocupación menor (LC)

Fuente: Elaboración equipo técnico tomado de (CVS - UNIVERSIDAD NACIONAL, 2008) (CVS & CONIF, 2007) (CVS - FONADE, 2004) (CVS - FONADE, 2005)

Especies vedadas para el aprovechamiento

La Corporación Autónoma Regional de los Valles del Sinú y del San Jorge no ha estudiado la posibilidad de la veda de especies para el aprovechamiento, por lo tanto, no posee actos administrativos que restringa el aprovechamiento forestal de especies maderables.

5.3.1.2. Causas que afectan la oferta de los bosques naturales

Causas Antrópicas

Las principales causas antrópicas que afectan la oferta de los bosques naturales presentes en el departamento de Córdoba son la extracción selectiva de madera y la expansión de la frontera agropecuaria afectando a gran escala los relictos y fragmentos de las diferentes coberturas boscosas del departamento (Henao, 2008) (Gobernación de Cordoba; UNGRD, PNUD, 2012). De igual forma la Minería se considera una actividad que afecta considerablemente los bosques causando su deterioro a gran escala y amenazando con la perdida de especies y área de coberturas (Rincón, 2004) (Pantoja, 2016).

Causas Naturales

Las causas naturales que afectan la oferta de los bosques están asociados a los incendios forestales que podría aportar a la pérdida de recursos importantes y especies en peligro de extinción (Gobernación de Cordoba; UNGRD, PNUD, 2012) (Del Campo, 2011). En el caso del ecosistema de manglar la erosión costera es una causa notable en la perdida de manglar de Borde (CVS, CARSUCRE y ECOVERSA, 2016).

5.3.2. Áreas forestales

Para la definición de las áreas forestales del departamento de Córdoba se realizó la interpretación y procesamiento de las imágenes satelitales de la constelación RapidEye año 2015, con una resolución de 5 m, la cual cuenta con una resolución espectral de 5 bandas (Azul, Verde, Rojo, Red Edge e Infrarrojo Cercano), a partir de la cual se elaboró el índice de vegetación de diferenciación normalizado (NDVI).

El índice de vegetación se tomó en cuenta los valores de absorción diferencial, transmitancia, reflectancia y energía de la vegetación; el cual varía entre -1 y +1; donde los valores positivos corresponden a las zonas de vegetación (Manrique, E, 1999); para el caso de las imágenes manejadas se utilizó la siguiente formula:

$$NDVI = \frac{Banda\ 5 - Banda\ 3}{Banda\ 5 + Banda\ 3}$$

Donde;

Banda 5 = Infrarrojo Cercano

Banda 3 = Rojo

Para delimitar las áreas forestales se identificó la masa vegetal en óptimas condiciones y en buen estado por la firma espectral del claro contraste entre bandas visibles, en especial la banda del rojo y el infrarrojo cercano. Una vez realizada la reclasificación se hizo la calibración mediante el método de validación visual, realizando la interpretación de las imágenes mediante la combinación de bandas Color verdadero 3-2-1 para la verificación de las áreas seleccionadas sean específicamente forestales y se compararon con capas de coberturas del Departamento de Córdoba.

Teniendo en cuenta que el mapa de coberturas se encuentra terminado y que solo falta realizar verificación de campo, se efectuó una comparación de las áreas forestales obtenidas por el índice de vegetación de diferenciación normalizado (NDVI) con las coberturas de bosques determinadas en el procesamiento e interpretación de imágenes de satélite RapidEye año 2015 con base en la metodología Corine Land Cover adaptada para Colombia ((IDEAM, IGAC, CORMAGDALENA, 2008).

Con respecto a la delimitación de áreas se obtiene que el departamento de Córdoba cuenta con 380051,70 ha (Figura 17), distribuidas el 42,83 % en la subregión del San Jorge, 28,51 % en la subregión del Alto Sinú, 13,62 % en la subregión de Sinú medio, 8,37 % en la subregión Costera, 5,93 % en subregión de la Sabana y 0,71% en el Bajo Sinú, se evidencia en la Tabla 61, la distribución porcentual se muestra en la Figura 16.

Tabla 61. Áreas forestales por subregión

Subregión	Área forestales en (Ha)
Alto Sinú	108.379,56
Bajo Sinú	2.730,54
Sabana	22.551,09
San Jorge	162.784,14
Sinú medio	51.767,63
Costera	31.838,74
Total	380.051,70

Fuente: Elaboración equipo técnico.

Figura 16. Distribución de áreas forestales

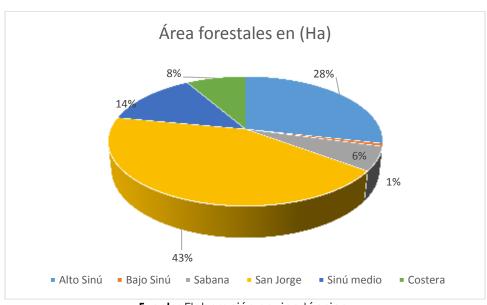
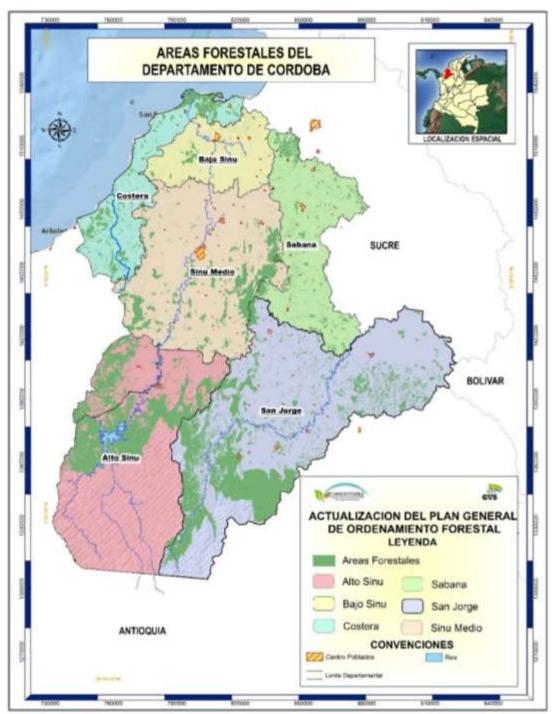
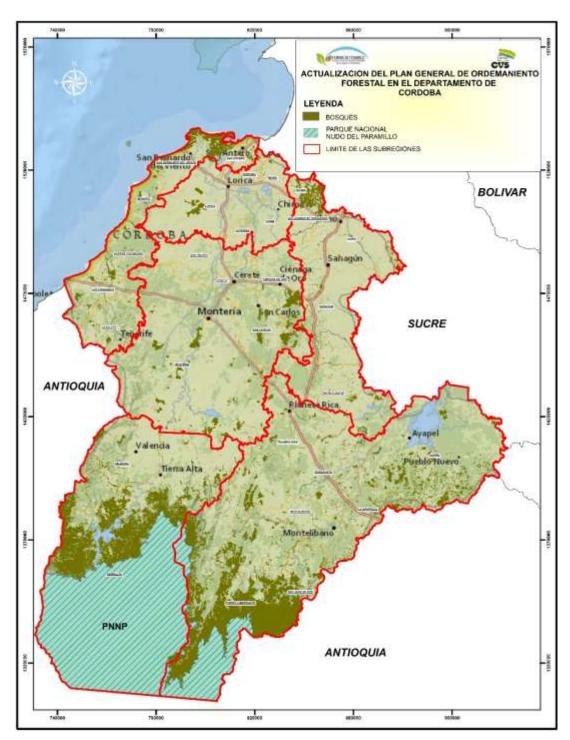



Figura 17. Áreas forestales en jurisdicción de la CVS en el departamento de Córdoba

5.4. Áreas boscosas del Departamento de Córdoba

En el departamento de córdoba se cuenta con un área de bosques naturales de 258963,99 ha, distribuidas en coberturas de bosque denso, bosque abierto, bosque fragmentado y bosque de galería. El 35,60% es de bosque abierto bajo de tierra firme, seguido de los bosques fragmentados (con pastos y cultivos y con vegetación secundaria) que son el 26,86%. Cabe resaltar que la cobertura de manglar es el 3,39 % de las áreas de bosques del departamento (Figura 18).

Las plantaciones forestales remanentes del departamento de Córdoba poseen un área de 3941,65 Ha.


Tabla 62. Coberturas boscosas del departamento de Códoba.

Tipo de Bosque	Área
Bosque Denso Alto de Tierra Firme	12045,63
Bosque Denso bajo de Tierra Firme	23052,15
Bosque Denso Bajo Inundable	1222,29
Manglar	8780,76
Bosque Abierto Alto de Tierra Firme	9119,27
Bosque Abierto Bajo de Tierra Firme	92192,42
Bosque Abierto Bajo Inundable	1271,95
Bosque Fragmentado	28290,15
Bosque Fragmentado con pastos y cultivos	39077,61
Bosque fragmentado con vegetacion secundaria	2198,06
Bosque de Galería	37772,06
Plantación Forestal	3941,65
Total	258963,99

Figura 18. Coberturas boscosas del departamento de Córdoba

5.5. Inventario forestal

5.5.1. Metodología

El Inventario forestal del Plan de ordenamiento forestal del departamento de Córdoba, se basó en un muestreo estratificado al azar por asignación proporcional; definiendo los estratos por el tipo de coberturas presentes, de acuerdo a la leyenda Corine Land Cover (IDEAM, IGAC, CORMAGDALENA, 2008); teniendo en cuenta la heterogeneidad de los ecosistemas boscosos presentes. De igual manera se combinó con un conglomerado por muestreo aleatorio simple, debido a la presencia de estratos con áreas muy pequeñas que dentro del estratificado la proporción sería muy baja en comparación a los demás estratos.

Es así como basado en la guía técnica para la ordenación y manejo sostenible del Ministerio de Ambiente (Minambiente & OIMT, 2002), específicamente la guía técnica de elaboración de inventarios forestales y el método de parcelas propuesto por Gentry (1982), se proponen parcelas rectangulares de 0.1 Ha (50 * 20 m) para estudios de volumen forestal mayores a 10 cm de DAP, se subdividirá para evaluación de regeneración natural en parcelas de 5*5 m para realizar el inventario de latizales (DAP menor a 9,9 cm y alturas ≥ 1,5 m) y dentro de las parcelas de 5*5 m se realizaran las parcelas de 2 * 2 para brinzales (Altura entre 31 cm y menor 1,5m) y renuevos con altura menor de 30 cm (Figura 19).

50 m

Figura 19. Diseño de unidad de muestreo

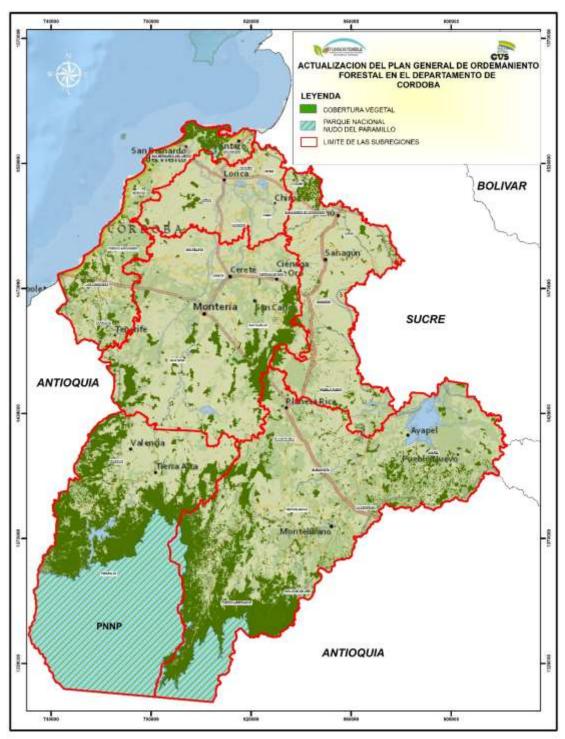
Fuente: Elaboración equipo técnico.

En las parcelas de 5*5 y 2*2 se levantó el N° de individuos por especie que se encuentra en las parcelas. En las parcelas de 50* 20 m se realizó la medición de datos de DAP/CAP, Altura total, altura comercial, dimensión de copa y usos de la especie en la zona.

El inventario forestal fue realizado por 3 cuadrillas de campo conformadas como se indica en la

Tabla 63:

Tabla 63. Integrantes de cuadrilla de campo


Cuadrilla
Jefe de Cuadrilla (Forestal)
Auxiliar de Campo
Baquiano de la zona
Biólogo (Fauna)
Profesional Social

En la Figura 20 se puede observar el mapa de coberturas vegetales, definiendo los 13 estratos del inventario forestal.

Figura 20. Mapa de coberturas vegetales

5.5.1.1. Premuestreo

En el premuestreo se realizaron 14 parcelas de 0.1 ha, midiendo las variables de DAP y altura de la cantidad de individuos encontrados en cada muestra; obteniendo un error de muestreo de 10,50%, en la Tabla 64 se detalla los estadígrafos del premuestreo.

Tabla 64. Estadígrafos del premuestreo estratificado al azar

ESTRATO	ÁREA DEL ESTRATO	PROBABILIDAD ESTRATO J	DESVIACIÓN TIPICA			PROPORCION POR ESTRATO
	Nj	Pj	Sj	Pj*Sj	Pj*Sj^2	
Bosque Denso Alto de Tierra	0.4500.4	0.000		4.050		10
Firme	34529,4	0,089	78,0	6,959	542,799	12
Bosque Denso Bajo de Tierra Firme	24134,0	0,062	68,0	4,240	288,343	8
Bosque Abierto Bajo de Tierra Firme	79751,1	0,206	62,0	12,776	792,103	27
Bosque Fragmentado	28382,7	0,073	59,0	4,327	255,282	9
Bosque Fragmentado con pastos y cultivos	57370,8	0,148	70,0	10,376	726,355	19
Bosque de Galería	35463,6	0,092	58,0	5,315	308,248	12
Vegetación secundaria o en transición	51533,1	0,133	55,0	7,323	402,785	17
Vegetación secundaria alta	24084,5	0,062	65,0	4,045	262,922	8
Vegetación secundaria baja	51775,3	0,134	64,0	8,562	547,954	17
TOTAL	387024,5*	1,000		63,923	4126,789	
		3870244,9				

Fuente: Elaboración equipo técnico. *Área inicial con menos del 50% de verificación de campo

Para el caso del premuestreo aletorio simple de las coberturas de pequeñas áreas, se obtuvo un error de muestreo promedio de 8,20%; para lo cual los estadígrafos se detallan en la Tabla 65.

Tabla 65. Estadígrafos del muestreo aleatorio simple

Bosque Abierto Bajo Inundabl	Bosque Denso Bajo Inunda	ble	
PROMEDIO	43	PROMEDIO	42,7
desviación estandar	6,700	desviación estandar	6,255
COVARIANZA	15,581	COVARIANZA	14,648
SYM	2,118	SYM	1,977
EM	3,803	EM	3,551
EM %	8,845	EM %	8,316
Bosque fragmentado con Vegetación S	Secundaria	Bosque Abierto Alto de Tierra	Firme
PROMEDIO	41,417	PROMEDIO	42
desviación estandar	6,417	desviación estandar	6,194
COVARIANZA	15,493	COVARIANZA	14,747
SYM	1,852	SYM	1,788

Bosque Abierto Bajo Inundabl	Bosque Denso Bajo Inunda	ble	
EM	3,326	EM	3,211
EM %	8,030	EM %	7,645

5.5.1.2. Muestreo

Se realizo un muestreo de 16,7 ha con un total de 167 parcelas distribuidas entre las 13 coberturas identificadas en el departamento de Córdoba; con una intensidad de muestreo como se muestra en la Tabla 66 detallando N° de parcelas, la afijación de la muestra en % y en superficie para cada cobertura.

Tabla 66. Distribución de parcelas por tipo de cobertura.

Tipo de Cobertura	Área	Tipo de muestreo	N° de parcelas	%	На
Bosque Denso Bajo Inundable	1222,29	Conglomerado por muestreo aleatorio simple	11	6,6	1,1
Bosque Abierto Bajo Inundable	1271,95	Conglomerado por muestreo aleatorio simple	8	4,8	0,8
Bosque Fragmentado con vegetación secundaria	2198,06	Conglomerado por muestreo aleatorio simple	10	6	1
Bosque Abierto Alto de Tierra Firme	9119,27	Conglomerado por muestreo aleatorio simple	10	6	1
Bosque Denso Alto de Tierra Firme	12045,63	Estratificado al azar	5	3	0,5
Bosque Denso Bajo de Tierra Firme	23052,15	Estratificado al azar	10	6	1
Bosque Abierto Bajo de Tierra Firme	92192,42	Estratificado al azar	34	20,4	3,4
Bosque Fragmentado	28290,15	Estratificado al azar	10	6	1
Bosque Fragmentado con pastos y cultivos	39077,61	Estratificado al azar	17	10,2	1,7
Bosque de Galería	37772,06	Estratificado al azar	12	7,2	1,2
Vegetación secundaria o en transición	51551,07	Estratificado al azar	16	9,6	1,6
Vegetación secundaria alta	22926,52	Estratificado al azar	8	4,8	0,8
Vegetación secundaria baja	46692,44	Estratificado al azar	16	9,6	1,6
Total	367411,61		167	100	16,7

Fuente: Elaboración equipo técnico

En la Tabla 67 se evidencia las coordenadas de ubicación de cada una de las parcelas de muestreo.

Tabla 67. Ubicación de parcelas de muestreo

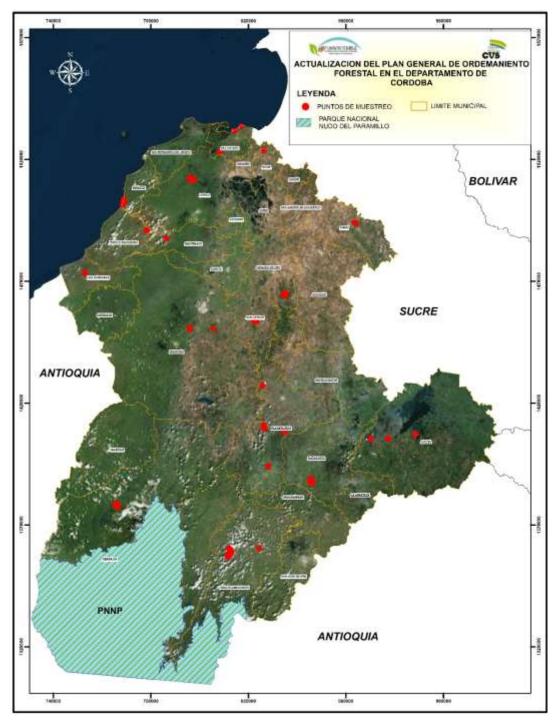
A 1		Municipio	X	Y
A1	Bosque fragmentado con vegetación secundaria	San Antero	814332	1531701
A2	Vegetación secundaria Alta	San Antero	817082	1533632
А3	Vegetación secundaria baja	San pelayo	786459	1487719
A4	Bosque fragmentado	Planeta Rica	825869	1427199
A5	Bosque fragmentado	Planeta Rica	825610	1427432
A6	Bosque denso Bajo de Tierra Firme	Planeta Rica	826368	1411171
A7	Bosque denso Bajo de Tierra Firme	Planeta Rica	826358	1410697
A8	Bosque de Galería	Planeta Rica	826809	1409843
A9	Bosque de Galería	Planeta Rica	826559	1409585
A12	Bosque Abierto Bajo de Tierra Firme	Momil	826309	1523955
A13	Bosque Abierto Bajo de Tierra Firme	Momil	826266	1523961
A14	Vegetación secundaria baja	Cienaga de Oro	834314	1464310
A15	Vegetación secundaria baja	Cienaga de Oro	834610	
A16	Vegetación secundaria baja	Cienaga de Oro	835126	1464340
A17	Vegetación secundaria baja	Cienaga de Oro	834732	1464684
A18	Vegetacion secundaria baja	Cienaga de Oro	835403	1464508
A19	Vegetacion secundaria baja	Cienaga de Oro	835004	1464866
A20	Vegetacion secundaria baja	Cienaga de Oro	835532	1464847
A21	Vegetacion secundaria baja	Cienaga de Oro	835145	1465289
A22	Vegetacion secundaria baja	Cienaga de Oro	863624	1494140
A23	Bosque fragmentado con pastos y cultivos	Puerto escondido	778604	1491085
A24	Vegetacion secundaria baja	Chinu	863619	1493996
A25	Vegetación secundaria o en transición	San Antero	808444	1523079
A26	Vegetación secundaria o en transición	San Antero	808395	1523055
A27	Vegetación secundaria o en transición	San Antero	808356	1523012
A28	Vegetación secundaria o en transición	San Antero	808099	1523166
A29	Bosque fragmentado por pastos y cultivos	Puerto escondido	778478	1491178
A30	Bosque fragmentado	San Carlos	822786	1454416
A31	Bosque fragmentado	San Carlos	822769	1454205

Parcela	Cobertura	Municipio	X	Y
A32	Bosque fragmentado	San Carlos	822087	1454063
A33	Bosque fragmentado	San Carlos	822240	1453576
A34	Vegetación secundaria	Los Cordobas	753069	1473840
A35	Vegetación secundaria	Los Cordobas	753121	1473670
A36	Vegetación secundaria	Los Cordobas	752884	1473729
A37	Bosque Abierto Bajo de Tierra Firme	Monteria - Jaraquiel	796100	1450447
A38	Bosque Abierto Bajo de Tierra Firme	Monteria - Jaraquiel	795914	1450812
A39	Bosque Abierto Bajo de Tierra Firme	Monteria - Jaraquiel	795922	1450424
A40	Bosque Abierto Bajo de Tierra Firme	Monteria - Jaraquiel	796182	1450681
A41	Vegetación Secundaria Alta	Tierralta	765716	1378781
A42	Vegetación secundaria Alta	Tierralta	765769	1378731
A43	Vegetación Seundaria Alta	Tierralta	765848	1378823
A44	Bosque Abierto Bajo de Tierra Firme	Tierralta	766381	1377718
A45	Bosque Abierto Bajo de Tierra Firme	Tierralta	766107	1378009
A46	Bosque Abierto Bajo de Tierra Firme	Tierralta	766330	1378258
A47	Bosque Abierto Bajo de Tierra Firme	Tierralta	766531	1378034
A48	Bosque de Galería	San Carlos	823332	1453965
A49	Bosque de Galería	San Carlos	823102	1454283
A50	Bosque de Galería	San Carlos	823063	1454518
A51	Bosque Abierto Bajo de Tierra Firme	Buenavista	845776	1389196
A52	Bosque Denso Alto de Tierra Firme	Puerto Libertador	824388	1360582
A53	Bosque Denso Alto de Tierra Firme	Puerto Libertador	824385	1360643
A54	Bosque Abierto Alto de Tierra Firme	Puerto Libertador	812120	1358302
A55	Bosque Abierto Alto de Tierra Firme	Puerto Libertador	812895	1358354
A56	Bosque Abierto Alto de Tierra Firme	Puerto Libertador	812455	1359132
E1	Bosque Denso Bajo inundable	Ayapel	877290	1405631
E2	Bosque Denso Bajo inundable	Ayapel	877453	1405626
E3	Bosque Abierto Bajo de Tierra Firme	Ayapel	888631	1407340
E4	Vegetación secundaria	Monteria - Loma grande	805685	1450573
E5	Bosque de Galeria	Planeta Rica	834438	1408325
E6	Bosque de Galeria	Planeta Rica	834753	1408320
E7	Bosque de Galeria	Planeta Rica	834932	1408115
E8	Vegetación secundaria	Planeta Rica	828126	1394362
E9	Bosque Abierto Bajo Inundable	Ayapel	877361	1405618

Parcela	Cobertura	Municipio	Х	Υ
E10	Bosque Abierto Bajo Inundable	Ayapel	877229	1405631
E11	Bosque Abierto Bajo Inundable	Ayapel	877240	1405535
E12	Bosque Abierto Bajo Inundable	Ayapel	877286	1405516
E13	Bosque Abierto Bajo Inundable	Ayapel	877318	1405494
E14	Bosque Abierto Bajo Inundable	Ayapel	877472	1405464
E15	Bosque Abierto Bajo Inundable	Ayapel	877389	1405554
E16	Bosque Abierto Bajo Inundable	Ayapel	877215	1405593
E17	Bosque Abierto Bajo de Tierra Firme	Momil	826406	1523724
E18	Bosque Abierto Bajo de Tierra Firme	Momil	826285	1523744
E19	Bosque fragmentado por pastos y cultivos	Lorica	796989	1511540
E20	Bosque fragmentado por pastos y cultivos	Lorica	778689	1491111
E21	Bosque fragmentado por pastos y cultivos	Puerto Escondido	778766	1491144
E22	Bosque fragmentado por pastos y cultivos	Puerto Escondido	778483	1490988
E23	Bosque fragmentado por pastos y cultivos	Puerto Escondido	778244	1490969
E24	Bosque fragmentado por pastos y cultivos	Puerto Escondido	778331	1491087
E25	Vegetación secundaria baja	Chinu	864200	1493927
E26	Vegetación secundaria o en transición	San Antero	808362	1523026
E27	Vegetación secundaria o en transición	San Antero	808276	1523075
E28	Vegetación secundaria o en transición	San Antero	808228	1523098
E29	Vegetación secundaria o en transición	San Antero	808167	1523061
E30	Bosque fragmentado por pastos y cultivos	Lorica	795731	1512021
E31	Bosque fragmentado	San Carlos	822555	1453940
E32	Bosque fragmentado	San Carlos	822605	1453971
E33	Bosque fragmentado	San Carlos	822478	1454270
E34	Bosque fragmentado	San Carlos	822555	1453940
E35	Vegetación secundaria	Los Cordobas	752907	1473489
E36	Vegetación secundaria	Los Cordobas	796166	1450788
E37	Bosque Abierto Bajo de Tierra Firme	Monteria - Jaraquiel	796017	1451033
E38	Bosque Abierto Bajo de Tierra Firme	Monteria - Jaraquiel	795860	1450610
E39	Bosque Abierto Bajo de Tierra Firme	Monteria - Jaraquiel	796137	1450846
E40	Bosque Abierto Bajo de Tierra Firme	Monteria - Jaraquiel	796194	1450749
E41	Vegetación Secundaria Alta	Tierralta	765712	1378633
E42	Bosque Abierto Bajo de Tierra Firme	Tierralta	766671	1377851
E43	Bosque Abierto Bajo de Tierra Firme	Tierralta	766690	1377568

Parcela	Cobertura	Municipio	Х	Y
E44	Bosque Abierto Bajo de Tierra Firme	Tierralta	766460	1377367
E45	Bosque Abierto Bajo de Tierra Firme	Tierralta	766151	1377355
E46	Bosque Abierto Bajo de Tierra Firme	Tierralta	765970	1377484
E47	Bosque Abierto Bajo de Tierra Firme	Tierralta	765871	1377822
E48	Bosque de Galeria	San Carlos	823263	1453773
E49	Bosque de Galeria	San Carlos	823350	1453456
E50	Bosque de Galeria	San Carlos	823179	1453345
E51	Bosque Abierto Bajo de Tierra Firme	Buenavista	846354	1387102
E52	Bosque Denso Alto de Tierra Firme	Puerto Libertador	824413	1360534
E53	Bosque Denso Alto de Tierra Firme	Puerto Libertador	824331	1360561
E54	Bosque Abierto Alto de Tierra Firme	Puerto Libertador	813147	1359296
E55	Bosque Abierto Alto de Tierra Firme	Puerto Libertador	812791	1359990
E56	Bosque Abierto Alto de Tierra Firme	Puerto Libertador	811853	1360660
L1	Bosque Abierto Bajo de Tierra Firme	Ayapel	888311	1407157
L2	Bosque de Galería	Planeta Rica	835033	1407949
L3	Bosque fragmentado por pastos y cultivos	Moñitos	769027	1503864
L4	Bosque fragmentado por pastos y cultivos	Moñitos	768855	1503713
L5	Bosque Denso Bajo de Tierra Firme	Planeta Rica	826220	1410191
L6	Bosque Denso Bajo de Tierra Firme	Planeta Rica	826420	1410408
L7	Bosque Denso Bajo Inundable	Ayapel	870150	1405678
L8	Vegetación secundaria baja	Planeta Rica	828258	1393917
L9	Bosque Denso Bajo Inundable	Ayapel	870094	1405611
L10	Bosque Denso Bajo Inundable	Ayapel	870115	1405509
L11	Bosque Denso Bajo Inundable	Ayapel	877389	1405471
L12	Bosque Denso Bajo Inundable	Ayapel	877287	1405577
L13	Bosque Denso Bajo Inundable	Ayapel	870174	1405452
L14	Bosque Denso Bajo Inundable	Ayapel	870162	1405337
L15	Bosque Denso Bajo Inundable	Ayapel	870184	1405230
L16	Bosque Denso Bajo Inundable	Ayapel	870272	1405242
L17	Bosque fragmentado por pastos y cultivos	Lorica	797013	1512268
L18	Bosque fragmentado por pastos y cultivos	Puerto escondido	778475	1491088
L19	Bosque fragmentado por pastos y cultivos	Lorica	796088	1512567
L20	Bosque fragmentado por pastos y cultivos	Puerto escondido	778637	1491198
L21	Bosque fragmentado por pastos y	Lorica	796398	1511748

Parcela	Cobertura	Municipio	Х	Υ
	cultivos			
L22	Vegetación secundaria baja	Chinu	863741	1494077
L23	Vegetación secundaria baja	Chinu	863671	1494083
L24	Vegetación secundaria baja	Chinu	863705	1494035
L25	Bosque fragmentado con vegetación secundaria	Moñitos	768686	1502527
L26	Bosque fragmentado con vegetación secundaria	Moñitos	768758	1501514
L27	Bosque fragmentado con vegetación secundaria	Moñitos	768786	1501797
L28	Bosque fragmentado con vegetación secundaria	Moñitos	768834	1502058
L29	Bosque fragmentado con vegetación secundaria	Moñitos	768945	1502262
L30	Bosque fragmentado con vegetación secundaria	Moñitos	768961	1502408
L31	Bosque fragmentado con vegetación secundaria	Moñitos	768926	1502440
L32	Bosque fragmentado con vegetación secundaria	Moñitos	768564	1502055
L33	Bosque fragmentado con vegetación secundaria	Moñitos	768384	1501600
L34	Bosque fragmentado por pastos y cultivos	Lorica	797877	1511579
L35	Vegetación secundaria	Los Cordobas	752938	1473875
L36	Bosque Abierto Bajo de Tierra Firme	Monteria - Jaraquiel	796166	1450563
L37	Bosque Abierto Bajo de Tierra Firme	Monteria - Jaraquiel	796085	1450990
L38	Bosque Abierto Bajo de Tierra Firme	Monteria - Jaraquiel	795976	1450929
L39	Vegetación Secundaria Alta	Tierralta	765286	1378652
L40	Vegetación Secundaria Alta	Tierralta	765450	1378624
L41	Bosque Abierto Bajo de Tierra Firme	Tierralta	765751	1377978
L42	Bosque Abierto Bajo de Tierra Firme	Tierralta	765859	1378098
L43	Bosque Abierto Bajo de Tierra Firme	Tierralta	766062	1378300
L44	Bosque Abierto Bajo de Tierra Firme	Tierralta	766130	1378441
L45	Bosque Abierto Bajo de Tierra Firme	Tierralta	766177	1378528
L46	Bosque Abierto Bajo de Tierra Firme	Tierralta	766179	1377645
L47	Vegetación Secundaria Alta	Tierralta	765598	1378759
L48	Bosque Abierto Bajo de Tierra Firme	Tierralta	766311	1377965
L49	Bosque Abierto Bajo de Tierra Firme	Buenavista	846415	1387539
L50	Bosque Abierto Bajo de Tierra Firme	Buenavista	845606	1387722
L51	Bosque Abierto Bajo de Tierra Firme	Buenavista	845232	1388009
L52	Bosque Abierto Bajo de Tierra Firme	Buenavista	845234	1388702
L53	Bosque Denso Alto de Tierra Firme	Puerto	824340	1360636


Parcela	Cobertura	Municipio	Х	Y
		Libertador		
L54	Bosque Abierto Alto de Tierra Firme	Puerto Libertador	811700	1356972
L55	Bosque Abierto Alto de Tierra Firme	Puerto Libertador	811261	1357723
L56	Bosque Abierto Alto de Tierra Firme	Puerto Libertador	812422	1357635
L57	Bosque Abierto Alto de Tierra Firme	Puerto Libertador	812120	1358302

En la Figura 21 se presenta la representación espacial de los puntos de muestreo realizados en el inventario forestal

Figura 21. Puntos de muestreo en el Departamento de Córdoba

5.5.1.2.1. Estadígrafos del muestreo forestal

Muestreo estratificado al azar

Error típico de la media estratificada

En la Tabla 68 se muestra los valores de cada una de las variables para el cálculo del error típico de la media estratificada.

$$S_{X*str} = \sqrt{\sum_{J=1}^{m} P_j^2 \frac{S_j^2}{n_j} \left(1 - \frac{n_j}{N_j}\right)}$$

Tabla 68. Variables de cada tipo de cobertura

Cobertura	Pj2	Sj2	nj	Nj	(Sj2/nj)*Pj2	1-(nj/Nj)
BDATF	0,001	880,000	5	125792,116	0,186	0,999960
BDBTF	0,007	3712,222	10	312027,959	2,415	0,999968
BABTF	0,081	2274,153	34	1100186,816	5,410	0,999969
BF	0,005	1343,333	10	282901,500	0,718	0,999965
BFPC	0,012	2425,000	17	418299,754	1,668	0,999959
BG	0,010	8935,606	12	378051,087	7,112	0,999968
VS	0,018	6769,643	16	515514,272	7,514	0,999969
VSA	0,004	6756,840	8	249049,771	3,501	0,999968
VSB	0,016	2999,583	16	486627,499	2,967	0,999967
					31,490	8,999694

Fuente: Elaboración equipo técnico

$$S_{X*str} = \sqrt{31,490*8,999}$$

$$S_{X*str} = 16,8345$$

Error absoluto de la media estratificada

$$\varepsilon = t * S_{X*str}$$

$$\varepsilon = 1.86 * 16.8345$$

$$\varepsilon = 31.3122$$

Error relativo de la media estratificada

$$\varepsilon\% = \frac{\varepsilon}{\tilde{X}_{str}} * 100$$

Siendo,

$$\tilde{X}_{str} = \sum_{j=1}^{m} Pj \, \overline{xj}$$

Tabla 69. Variables de la media de la muestra estratificada

Xji	Xj	Pj	\widetilde{X}_{str}
173	677,6	0,0328	22,2295
273	338,8	0,0804	27,2316
1036	99,6470588	0,2834	28,2399
271	338,8	0,0729	24,6949
391	199,294118	0,1138	22,6725
283	282,333333	0,0967	27,3018
365	211,75	0,1328	28,1217
219	423,5	0,0633	26,7903
377	211,75	0,1240	26,2567
3388			233,5390

Fuente: Elaboración equipo técnico

$$\varepsilon\% = \frac{31,3122}{233,5390} * 100$$

$$\varepsilon$$
% = 13,4077

Por lo tanto, se obtiene un error de muestreo % para las coberturas inventariadas por muestreo estratificado al azar de 13, 4077% cumpliendo con los parámetros de 95% de probabilidad y error de muestreo menor al 15% para inventario semidetallado.

Muestreo aleatorio simple

Para el caso de las coberturas de menor áreas se obtienen los siguientes errores de muestreo (Tabla 70):

Tabla 70. Estadígrafos del muestreo aleatorio simple en muestreo

Bosque Abierto Bajo Inundable		Bosque Denso Bajo Inunda	ble
PROMEDIO	23,25	PROMEDIO	16,636
desviación estandar	2,915	desviación estandar	3,802
COVARIANZA	12,540	COVARIANZA	22,853
SYM	1,030	SYM	1,146
EM	1,952	EM	2,077
EM %	8,397	EM %	12,483
Bosque fragmentado con vegetación	Bosque fragmentado con vegetación secundaria		Firme
PROMEDIO	29,1	PROMEDIO	30,1
desviación estandar	4,149	desviación estandar	2,885
COVARIANZA	14,256	COVARIANZA	9,584
SYM	1,312	SYM	0,912
EM	2,404	EM	1,672
EM %	8,262	EM %	5,555

5.5.1.3. Análisis estadístico

Para el análisis estadístico se analizarón los siguientes parámetros en cada uno de las coberturas.

5.5.1.3.1. Indicadores dasométricos por cobertura

Diámetro a la altura del pecho (m)

El diámetro normal o diámetro a la altura del pecho se mide a 1,30 a nivel del suelo (Gutierrez, E. Moreno, R & Villota, N., 2013); en campo se levanto la circunferencia a la altura del pecho con cinta métrica; para lo cual se obtuvo el DAP de la siguiente forma:

$$DAP = \frac{CAP}{\pi}$$

Área basal (m²)

Es el área de sección transversal del fuste de un árbol en metros a la altura del pecho (Gutierrez, E. Moreno, R & Villota, N., 2013).

$$g = \frac{\pi}{4} DAP^2$$

Volumen de árbol en pie (m³)

Es el espacio ocupado por la madera de un individuo arbóreo dentro de un ambiente o ecosistema (Gutierrez, E. Moreno, R & Villota, N., 2013). El volumen total se calculo a partir de la altura total (a partir del tocón hasta el ápice del árbol. El volumen de fuste se calculo a partir de la altura del fuste (a partir del tocón hasta la terminación del fuste); el volumen comercial se calculo a partir de la altura comercial (a partir del tocón hasta la primera rama o bifurcación); con un factor forma de 0.65 (Gutierrez, E. Moreno, R & Villota, N., 2013).

El volumen cosechable se determino como el volumen sin corteza a partir de la altura comercial y considerando un factor forma de 0.55 y corteza de 5% (Saito, C & Rosales, A., 2004).

5.5.1.3.2. Estructura horizontal

La estructura horizontal permite la evaluación del comportamiento de los árboles individuales y de las especies en el bosque. Esta estructura puede ser evaluada a partir del análisis de la ocurrencia de las especies y la importancia ecológica de las especies dentro del ecosistema (Zarco, V. Valdez, J. Ángeles, G & Castillo, O., 2010); a atraves de los siguientes índices:

Abundancia (Ab)

La abundancia se desarrolla a partir de la siguiente formula:

$$Aba = \frac{Ni}{Nt}$$

$$Ab\% = Aba * 100$$

Dónde;

Aba= Abundancia absoluta Ab%= Abundancia relativa Ni= Número de individuos de la iésima especie Nt= Número de individuos totales en la muestra

Frecuencia (Fr)

Se refiere a la existencia o ausencia de una especie en una subparcela (Zarco, V. Valdez, J. Ángeles, G & Castillo, O., 2010), calculada de la siguiente forma:

$$Fra = \frac{Um}{Tm}$$

Dónde;

Fra= Frecuencia absoluta

Um= Número de unidades de muestreo en que ocurre una especie

Tm= Número total de unidades de muestreo

$$Fr\% = Fra_i / \Sigma Ft * 100$$

Dónde;

Fr%= Frecuencia relativa

Fai = Frecuencia absoluta de la iésima especie

Ft = Suma de las frecuencias absolutas

Dominancia (Do)

Se considera como la expresión del espacio ocupado por la especie, es denominada también grado de cobertura (Zarco, V. Valdez, J. Ángeles, G & Castillo, O., 2010). Se define como la suma de las proyecciones horizontales de los individuos sobre el suelo. La suma de las proyecciones de las copas de los individuos especie determina su dominancia.

Debido a la complejidad de la estructura vertical de los bosques se emplean las áreas básales, como sustitutos de los verdaderos valores de dominancia (Zarco, V. Valdez, J. Ángeles, G & Castillo, O., 2010). Esto es posible, teniendo en cuenta la alta correlación lineal entre el diámetro de copa y el diámetro del fuste para una especie en particular.

$$Doa = \frac{gi}{gt}$$

$$Do\% = Doa * 100$$

Dónde;

Doa= Dominancia absoluta Do% = Dominancia relativa gi= Área basal en m² de la iésima especie gt= Área basal total en m² del muestreo

<u>Índice de valor de importancia (IVI)</u>

Fue desarrollado por Curtis & McIntosh (1951); es un índice sintético estructural, desarrollado principalmente para jerarquizar la dominancia de cada especie en rodales mezclados; calculado para cada especie a partir de la suma de la abundancia relativa (Aba%), frecuencia relativa (Fr%) y la dominancia relativa. Con este índice es posible comparar el peso ecológico de cada especie dentro del ecosistema (Zarco, V. Valdez, J. Ángeles, G & Castillo, O., 2010):

$$IVI = Ab\% + Fr\% + Do\%$$

Dónde:

Ab% = Abundancia Relativa Fr% = Frecuencia Relativa D%= Dominancia Relativa

Cociente de Mezcla (CM)

Mide la intensidad de la mezcla en bosques naturales, obteniéndose de la siguiente forma:

$$CM = \frac{Nsp}{Nti}$$

Dónde:

CM = Cociente de mezcla Nsp = Número de especies Nti = Número total de individuos

5.5.1.3.3. Estructura vertical

La estructura vertical se refiere a la descripción del estado sucesional en que se encuentra cada especie, implicando una aproximación a las especies promisorias para conformar la estructura del bosque en términos dinámicos (Finol, H., 1971); para lo cual se debe analizar de acuerdo a la altura de los árboles y definición de estratos.

Posición sociológica de las especies

Establece la importancia de una especie, de acuerdo a la presencia en varios estratos del bosque; debido a que si una especie se encuentra en todos los estratos arbóreos tendrá asegurado su lugar en la estructura y composición florística. Definiento los estratos de inferior, medio y superior, a partir de la característica de bosques altos y bajos definidos en la metodología Corine Land Cover (IDEAM, IGAC, CORMAGDALENA, 2008); para lo cual de establecen los siguientes intervalos:

Tabla 71. Intervalos de altura

Categoría	Bosques Altos	Bosques Bajos
Dominante (Superior)	≥ 25 m	≥ 7 m
Codominante (Medio)	15-25 m	3-7 m
Dominado (Inferior)	≤ 15 m	≤3 m

Fuente: Elaboración equipo técnico

A partir de la metodología de Finol (1976) citado por (Moret, et al, 2010), se asigna un valor fitosociológico a cada subestrato, obtenido de la siguiente forma:

$$VF = \frac{n}{N}$$

Dónde:

VF = Valor fitosociológico de la especie n= Número de individuos en el subestrato (Superior, medio, inferior) N = Número total de individuos de la especie

Para calcular la posición sociológica absoluta de la especie, se hace la sumatoria de sus valores fitosociológicos en cada subestrato; asi:

$$PSa = VF(i) * n(i) + VF(m) * n(m) + VF(s) * n(s)$$

Dónde:

VF = Valor fitosociológico de la especie n= Número de individuos en el subestrato (s= Superior, m = medio, i= inferior)

La posición sociológica relativa se calcula de la siguiente manera:

$$PSr = \frac{PSa_i}{\sum PSa} * 100$$

Dónde:

PSr = Posición sociológica relativa PSa_i= Posición sociológica de la iésima especie PSa = Posición sociológica absoluta

5.5.1.3.4. Analisis del sotobosque

La regeneración natural es definida por las especies menores encontradas en el sotobosque; se definieron las siguientes categorías:

Tabla 72. Estratos de regeneración natural

Categoría	Altura
Latizal (Superior)	≥ 1,5 m y DAP menor de 9,9 cm
Brinzal (medio)	31 cm -1,5 m
Renuevo (Inferior)	≤ 30 cm

Fuente: Elaboración equipo técnico

Categoría de tamaño absoluta (CTaEM)

Se determina de la misma forma a la posición sociológica (PS), para lo cual se debe realizar el cálculo de un valor fitosociológica a cada categoría (Lozada, 2008), de la siguiente manera:

$$VFem(j) = \frac{Nj}{N}$$

Dónde:

VFem (j) = Valor fitosociológico de la categoría de tamaño j Nj = Número total de individuos de la categoría de tamaño j N = Número total de individuos de las especies menores

Es asi que para calcular la categoría de tamaño absoluta, utilizando la siguiente ecuación:

$$CTaEM = VFem(i) * n(i) + VFem(m) * n(m) + VFem(s) * n(s)$$

$$CTaEM\% = \frac{CtaEm\ i}{\sum CtaEm}$$

Dónde:

CTaEM = Categoría de tamaño absoluta CtaEMi = Categoría de tamaño de cada especie Vfem = Valor fitosociológico de la categoría de tamaño n= número de individuos de la categoría de tamaño

Índice de valor de importancia ampliado (IVIA) o Índice de importancia ampliado.

Finol (1971), determinó de gran importancia la incorporación de la regeneración y posición sociológica al IVI usual, siendo el IVIA un parámetro mas integral y robusto. Sin embargo, se considero necesario unificar para adecuarlo a diferentes formas de vida (Lozada, 2008); estableciendo la siguiente forma:

 $IVIA = Estructura\ horizontal + Estructura\ vertical + Estructura\ sotobosque$

$$IVIA = IVI + PSr + EMr$$

Siendo,

$$EMr = \frac{Ab(rn)\% + Fr(rn)\% + CtaEm\%}{3}$$

5.5.1.3.5. Indicadores de diversidad biológica

Teniendo en cuenta la guía técnica para la elaboración de planes de ordenación forestal (Minambiente & OIMT, 2002), no solicita el calculo de índices de diversidad biológica, sin embargo se realiza el cálculo de los índices alfa permitiendo dar indicios de alta o baja diversidad en las diferentes coberturas.

Alfadiversidad

Índice de Menhinick (Dmn)

Se basa en una relación entre el número total de individuos observados que crece al aumentar el tamaño de la muestra (Moret, 2010).

$$Dmn = \frac{S}{\sqrt{N}}$$

Dónde:

S= Número de especies N= Número de individuos

<u>Índice de Simpson (Dsi)</u>

Este índice muestra la probabilidad de que dos individuos dentro del mismo universo que pertenecen a la misma especie (Moret, 2010), el resultado se define como 1/Dsi.

$$Dsi = 1 - \sum_{n=1}^{\infty} (Ni/Nt)^2$$

Dónde:

Ni = Número de individuos de la especie mas abundante Nt= Número total de individuos de la muestra

<u>Índice de Berger Parker (d)</u>

Es la medida de dominancia que expresa la abundancia proporcional de la especie más abundante (Moret, 2010), siendo independiente de las especies.

$$d = \frac{ni_{max}}{N}$$

<u>Índice de Shannon – Wiener (H´)</u>

Este índice muestra el comportamiento homogéneo de los individuos presentes en el bosque (Moret, 2010).

$$H' = -\sum_{n}^{1} (Pi * \ln Pi)$$

Siendo,

$$Pi = \frac{Ni}{Nt}$$

Donde,

Ni = Número de individuos de la especie mas abundante Nt= Número total de individuos de la muestra

Índice de Mangalef (dmg)

Es una medida utilizada para estimar la biodiversidad de una comunidad con base a la distribución de los individuos en las especies.

$$dmg = \frac{S - 1}{\ln N}$$

Donde,

S = Número de especies N= Número de individuos

5.5.2. Resultados del Inventario forestal

5.5.2.1. Composición florística de las coberturas presentes en el Departamento de Córdoba.

El departamento de Córdoba se encuentra enmarcada dentro de las zonas de vida de Holdridge como bosque seco tropical (bs-T) y el bosque húmedo tropical (bh-T) con zonas de transición de seco a húmedo.

La composición florística de las coberturas actuales presentes en el Departamento de Córdoba se obtuvo a partir de levantamiento de información primaria en el muestreo realizado (Tabla 73).

Tabla 73. Composición florística de las coberturas del Departamento de Córdoba.

Familia	Especie	
	Nombre común	Nombre científico
Anacardiaceae	Caracolí	Anacardium excelsum (Bertero ex Kunth) Skeels
	Fremo	Tapirira guianensis Aubl.
	Jobo	Spondias mombin L.
	Mango	Mangifera sp.

Familia	Especie	
	Nombre común	Nombre científico
	Реро	Ochoterenaea colombiana F.A.Barkley
	Santa cruz	Astronium graveolens Jacq.
	Ciruelo	Spondias purpurea L.
	Guanabanito	Xylopia sp.
	Yaya	Guatteria sp.
	Yaya negra	Unonopsis sp.
	Yaya prieta	Duguetia sp.
	Fruta de burro	Xylopia aromatica (Lam.) Mart.
	Chirimoya	Annona cherimola Mill.
Annonaceae	Escubillo	Xylopia sericea A.StHil.
	Guanacona	Annona purpurea Moc. & Sessé ex Dunal
	Anón	Annona squamosa L.
	Anón liso	Annona sp.
	Guanabana	Annona muricata L.
	Golero	Rollinia mucosa (Jacq.) Baill.
	Yaya macho	Oxandra panamensis R.E. Fr.
	Carreto	Aspidosperma desmanthum Benth. ex Müll.Arg.
	Pimentillo	Aspidosperma sp.
	Vara o culo de Hierro	Aspidosperma album (Vahl) Benoist ex Pichon
	Bola puerco	Malouetia sp1.
Apocynaceae	Cojon de puerco	Malouetia sp2.
	Carretico	Aspidosperma desmanthum Benth. ex Müll.Arg.
	Carreto mamellón	Aspidosperma polyneuron Müll.Arg.
	Cojón de toro	Thevetia ahouai (L.) A.DC.
	Calenturo	Aralia excelsa (Griseb.) J.Wen
	Guarumon	Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin
Araliaceae	Pat'e gallina	Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.
	Calenturo	Aralia excelsa (Griseb.) J.Wen
	Barbasco - Pat'e gallina blanco	Schefflera trianae (Planch. & Linden ex Marchal) Harms
	Palma amarga	Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.
	Maquenca	Wettinia hirsuta Burret
	Coco	Cocos nucifera L.
Arocacca	Coroza	Elaeis oleifera (Kunth) Cortés
Arecaceae	Lata	Bactris guineensis (L.) H.E.Moore
	Lata de montaña	Bactris major Jacq.
	Palma barrigona	Iriartea deltoidea Ruiz & Pav.
	Palma de vino	Attalea butyracea (Mutis ex L.f.) Wess.Boer

Familia	Especie	
	Nombre común	Nombre científico
	Palma milpesos	Oenocarpus bataua Mart.
	Palma panga	Raphia taedigera (Mart.) Mart.
	Palma tagua	Phytelephas seemannii O.F.Cook
	Zancona, Palma zancona	Socratea exorrhiza (Mart.) H.Wendl.
	Chingale	Jacaranda copaia (Aubl.) D.Don
	Guayacan	Handroanthus guayacan (Seem.) S.O.Grose
	Polvillo	Handroanthus chrysanthus (Jacq.) S.O.Grose
	Roble	Tabebuia rosea (Bertol.) Bertero ex A.DC.
Bignoniaceae	Totumo	Crescentia cujete L.
	Cañaguate	Handroanthus impetiginosus (Mart. ex DC.) Mattos
	Polvillo blanco	Handroanthus billbergii (Bureau & K.Schum.) S.O.Grose
	Pinga	Adenocalymma aspericarpum (A.H.Gentry) L.G.Lohmann
	Papayote	Cochlospermum vitifolium (Willd.) Spreng.
Bixaceae	Achiote	Bixa orellana L.
ыхасеае	Palo de agua	Cochlospermum sp.
	Achiotillo	Bixa sp.
	Asauco	Cordia alba (Jacq.) Roem. & Schult.
	Muñeco	Cordia collococca L.
Boraginaceae	Muñeco montañero	Cordia sp1.
	Vara de humo	Cordia alliodora (Ruiz & Pav.) Oken
	Vara de león	Cordia sp2.
	Indio encuero	Bursera simaruba (L.) Sarg.
Burseraceae	Tostao	Protium sagotianum Marchand
boiseraceae	Trébol	Protium apiculatum Swart
	Trementino	Trattinnickia aspera (Standl.) Swart
	Naranjuelo - Cachimonda	Crateva tapia L.
Capparaceae	Lomo caiman	Cynophalla verrucosa (Jacq.) J.Presl
	Olivo	Quadrella odoratissima (Jacq.) Hutch.
Cardiopteridace ae	Arenillo	Dendrobangia boliviana Rusby
Caricacoao	Papaya vaquero	Jacaratia digitata (Poepp. & Endl.) Solms
Caricaceae	Papaya	Carica goudotiana (Triana & Planch.) Solms
Canacarasas	Cagüi	Caryocar amygdaliferum Mutis ex Cav.
Caryocaraceae	Gatera	Caryocar costaricense Donn.Sm.
	Capacho	Buchenavia tetraphylla (Aubl.) R.A.Howard
Combretaceae	Peinecillo	Terminalia sp.
	Mangle zaragoza	Conocarpus erectus L.
Elaeocarpaceae	Toro	Sloanea sp.

Familia	Especie	
	Nombre común	Nombre científico
Erythroxylaceae	Coca de monte	Erythroxylum gracilipes Peyr.
	Lechoso	Sapium sp1.
	Ñipi Ñipi	Sapium glandulosum (L.) Morong
Funbarbigoogo	Ceiba amarilla	Hura crepitans L.
Euphorbiaceae	Lecherito	Sapium sp2.
	Sangregao	Croton sp.
	Molenillo	Mabea occidentalis Benth.
Goupiaceae	Ñequero	Goupia glabra Aubl.
Hernandiaceae	Volandero	Gyrocarpus americanus Jacq.
Humiriaceae	Aceituno montañero	Humiriastrum sp.
numinaceae	Sangretoro	Vantanea sp.
	Lacre	Vismia macrophylla Kunth
Hyporiogogo	Lacre - carate	Vismia baccifera (L.) Planch. & Triana
Hypericaceae	Lacre montañero	Vismia billbergiana Beurl.
	Carate	Vismia tomentosa Ruiz & Pav.
	Aceituno	Vitex cymosa Bertero ex Spreng
Lamiaceae	Pasmo	Callicarpa sp.
	Teca	Tectona grandis L.f.
	Amarillo - Laurel	Nectandra sp.
	Laurel aguacate	Persea caerulea (Ruiz & Pav.) Mez
	Laurel	Ocotea sp.
	Laurel amarillo	Persea sp.
Lauraceae	Aguacate	Persea americana Mill.
	Laurel negro	Nectandra cuspidata Nees & Mart.
	Laurel comino	Aniba sp.
	Laurel colorado	Rhodostemonodaphne kunthiana (Nees) Rohwer
	Zanca de mula	Ocotea spectabilis (Meisn.) Mez
	Abarco	Cariniana pyriformis Miers
	Coco	Lecythis sp.
	Coco abarco	Couratari sp.
	Coco cristal	Lecythis minor Jacq.
	Coco de mono	Lecythis tuyrana Pittier
Lecythidaceae	Olletillo	Eschweilera sp.
Lecymidacede	Olleto	Eschweilera caudiculata R.Knuth
	Piloncillo	Cariniana sp.
_	Membrillo	Gustavia superba (Kunth) O.Berg
	Olleto pelao	Grias cauliflora L.
	Cocuelo	Lecythis ampla Miers
Γ	Coco picho	Couroupita guianensis Aubl.

Familia	Especie	
	Nombre común	Nombre científico
	Algarrobo	Hymenaea courbaril L.
	Amargo	Vatairea sp.
	Ariza	Brownea ariza Benth.
	Campano	Albizia saman (Jacq.) Merr.
	Caña fistula	Cassia fistula L.
	Dormilon	Pentaclethra macroloba (Willd.) Kuntze
	Espino brujo	Macrolobium sp.
	Guacamayo	Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.
	Guamo machete	Inga edulisMart.
	Guamo	Inga sp.
	Guamo blanco	Inga macrophylla Willd.
	Guamo colorado	Inga oerstediana Benth.
	Guamo macho	Pithecellobium lanceolatum (Willd.) Benth.
	Lengua vaca - Patevaca	Senna bacillaris (L.f.) H.S.Irwin & Barneby
	Orejero	Enterolobium cyclocarpum (Jacq.) Griseb.
	Pata de vaca	Bauhinia aculeata L.
	Rayo	Albizia niopoides (Benth.) Burkart
	Tambolero	Schizolobium parahyba (Vell.) S.F.Blake
Leguminosae	Achí	Zygia longifolia (Willd.) Britton & Rose
Legoriinosae	Carbonero	Calliandra magdalenae (DC.) Benth.
	Florisanto	Brownea ariza Benth.
	Matarratón	Gliricidia sepium (Jacq.) Walp.
	Hoja menuda	Macrosamanea sp.
	Pimiento	Caesalpinia sp.
	Tamarindo de monte	Dialium guianense (Aubl.) Sandwith
	Igua amarillo - campano	All the second of the second
	bleo Carbonero	Albizia guachapele (Kunth) Dugand
		Calliandra haematocephala Hassk.
	Guayacan hediondo	Abarema jupunba (Willd.) Britton & Killip
	Velero	Senna spectabilis (DC.) H.S.Irwin & Barneby
	Dividivi	Caesalpinia coriaria (Jacq.) Willd.
	Espino prieto Trébol - Balaustre	Piptadenia sp.
		Platymiscium pinnatum (Jacq.) Dugand
	Acacia roja	Delonix regia (Hook.) Raf.
	Almendro	Dipteryx sp.
	Amarillo	Centrolobium paraense Tul.
	Canime	Copaifera canime Harms
	Amargo moca	Andira inermis (Wright) DC.
	Acacia nativa	Senna occidentalis (L.) Link

Familia	Especie		
	Nombre común	Nombre científico	
	Acacio	Acacia mangium Willd.	
	Algarrobillo	Heterostemon sp.	
	Acacia amarilla	Caesalpinia pluviosa DC.	
	Ébano	Caesalpinia ebano H.Karst.	
	Sangregado	Dussia lehmannii Harms	
	Arará	Caesalpinia sp.	
	Bálsamo	Myroxylon balsamum (L.) Harms	
	Balsamito	Myrospermum frutescens Jacq.	
	Granadillo	Platymiscium sp.	
	Guartinajero	Pterocarpus sp.	
	Peronillo	Ormosia colombiana Rudd	
	Zarazo	Dialium sp.	
	Siete cueros	Machaerium capote Dugand	
	Abeto	Senna siamea (Lam.) H.S.Irwin & Barneby	
	Cachito de toro	Acacia cornigera (L.) Willd.	
Lythraceae	Flor de reina	Lagerstroemia speciosa (L.) Pers.	
	Mamon de mico	Malpighia sp.	
Malpighiaceae	Cerezo	Malpighia glabra L.	
	Balso	Ochroma pyramidale (Cav. ex Lam.) Urb.	
	Bollo limpio	Goethalsia meiantha (Donn.Sm.) Burret	
	Ceiba verde - Bonga	Commission meranima (Commission,) Bonton	
	chitua	Pseudobombax septenatum (Jacq.) Dugand	
	Camajón	Sterculia apetala (Jacq.) H.Karst.	
_	Ceiba bonga	Ceiba pentandra (L.) Gaertn.	
_	Ceiba tolua	Pachira quinata (Jacq.) W.S.Alverson	
	Corcho	Apeiba glabra Aubl.	
	Guacimo	Guazuma ulmifolia Lam.	
	Melao	Heliocarpus americanus L.	
Malvaceae	Sapotillo	Matisia sp.	
_	Guayuyo	Trichospermum galeottii (Turcz.) Kosterm.	
	Bongo	Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	
	Cacaito	Theobroma sp.	
	Ceiba blanca	Pachira aquatica Aubl.	
	Algodoncillo	Luehea seemannii Triana & Planch	
	Bolsillo	Trichospermum sp.	
	Peine mono	Apeiba membranacea Spruce ex Benth.	
	Baboso	Sterculia speciosa K. Schum.	
	Molinillo blanco	Quararibea asterolepis Pittier	
	Toloncoy	Malvaviscus sp.	

Familia	Especie	
	Nombre común	Nombre científico
	Zapatero	Basiloxylon sp.
	Carrazo	Huberodendron sp.
	Coronillo	Bellucia sp.
	Guayaba de pava	Bellucia grossularioides (L.) Triana
	Guayabo danto	Bellucia pentamera Naudin
Melastomatacea	Gasparillo	Mouriri sp.
e	Pategarza	Clidemia andersonii Wurdack
	Mortiño	Miconia affinis DC.
	Niguito	Miconia sp.
	Cedro	Cedrela odorata L.
	Cedro macho	Cedrela sp.
	Jobo macho	Trichilia hirta L.
	Caoba	Swietenia macrophylla King
Meliaceae	Cedro caoba	Cedrela angustifolia DC.
	Cedrillo	Guarea glabra Vahl
	Nim	Azadirachta indica A.Juss.
	Cabo de hacha	Trichilia sp.
	Copé	Ficus citrifolia Mill.
	Higuerón	Ficus insipida Willd.
	Mora	Maclura tinctoria (L.) D.Don ex Steud.
	Veneno	Trophis caucana (Pittier) C.C. Berg
	Higo	Ficus magdalenica Dugand
Moraceae —	Higo suan	Ficus maxima Mill.
	Higo copé	Ficus dugandii Standl.
	Higuerón - Laurel	Ficus tonduzii Standl.
	Ají	Clarisia racemosa Ruiz & Pav.
	Caucho	Ficus involucrata Blume
Muntingiaceae	Nigua	Muntingia calabura L.
	Cenicero	Virola sp.
Myristicaceae	Sangre pescao	Virola sebifera Aubl.
	Arrayan	Myrcia popayanensis Hieron.
Myrtaceae	Guayaba	Psidium guajava L.
	Pomarroso	Syzygium malaccense (L.) Merr. & L.M.Perry
Ochnaceae	Laca	Cespedesia spathulata (Ruiz & Pav.) Planch.
Olacaceae	Lengua venao	Heisteria acuminata (Humb. & Bonpl.) Engl.
Phyllanthaceae	Cascarrabio	Hieronyma alchorneoides Allemão
	Vara santa	Triplaris americana L.
Polygonaceae	Uvero	Coccoloba pubescens L.
	Uvito de playa	Coccoloba uvifera (L.) L.

Familia	Especie	
	Nombre común	Nombre científico
	Congo	Coccoloba sp.
	Vara blanca	Triplaris sp.
Rubiaceae	Jagua	Genipa americana L.
Kubiaceae	Cafetillo	Bertiera guianensis Aubl.
	Limoncillo	Swinglea glutinosa (Blanco) Merr.
Rutaceae	Tachuelo	Zanthoxylum panamense P.Wilson
	Limon criollo	Citrus aurantiifolia (Christm.) Swingle
Salicaceae	Varepiedra	Casearia arborea (Rich.) Urb.
salicaceae	Varepiedra blanco	Casearia decandra Jacq.
	Canilla muerto - Cacho de carnero	Talisia sp.
Sapindaceae	Guacharaco	Matayba sp.
	Mamon	Melicoccus bijugatus Jacq.
	Caimito	Chrysophyllum cainito L.
	Caimitillo	Micropholis sp.
Sapotaceae	Níspero	Manilkara huberi (Ducke) Standl.
Suporucede	Caimito montañero	Chrysophyllum argenteum Jacq.
	Sapotillo chejo	Ecclinusa sp.
	Nispero montañero	Manilkara bidentata (A.DC.) A.Chev.
Simaroubaceae	Maporí	Simaba cedron Planch.
Solanaceae	Meao de perro	Solanum microleprodes Bitter
Urticaceae	Guarumo	Cecropia peltata L.
unicaceae	Guarumo colorado	Cecropia insignis Liebm.
Vochysiaceae	Dormilon cachaco	Vochysia ferruginea Mart.
Zygophyllaceae	Guayacan bola	Bulnesia arborea (Jacq.) Engl.

La composición florística esta representada en 58 familias con 259 especies, en la Figura 22 se identifica la distribución de especies por familias, siendo la familia Leguminosae la más abundante con 49 especies.

Familias vs especies Elaeocarpaceae Capparaceae Araliaceae Urticaceae Myristicaceae Caryocaraceae Lecythidaceae Myrtaceae Leguminosae Burseraceae Polygonaceae Euphorbiaceae Apocynaceae Bignoniaceae Annonaceae Leguminosae 49 20 25 0 5 10 15 30 35 40 45 50 **Especies**

Figura 22. Distribución de especies por familia

5.5.2.2. Cobertura de Bosque Abierto Alto de Tierra Firme

22

Apocynaceae

El bosque abierto alto de tierra firme se encuentra conformado por un total de 47 especies distribuidas en 20 familias, las cuales fueron identificadas en el inventario forestal.

En la Tabla 74, se identifica que la familia Leguminosae y Malvaceae son las que presentan mayor representación. De igual forma, la familia Malvaceae se encuentra representada en 6 generos y 7 especies; a su vez la familia Leguminosae presenta 8 generos con 10 especies, en la que se resalta el genero *Inga* sp. con 24 individuos. Cabe resaltar la familia Annonaceae con un total de 34 individuos distribuidos en dos generos y 2 especies, resaltando la especie *Xylopia* sp. con 33 individuos (Figura 23).

Familia	N° de ind /Familia	Especie	N° de Ind / especie
Anacardiaceae	22	Spondias mombin L.	22
A 10 10 0 10 0 0 0 0	eae 34 An	Annona purpurea Moc. & Sessé ex Dunal	1
Annonaceae		Xylopia sp.	33

Tabla 74. Composición florística del bosque abierto alto de tierra firme

Aspidosperma desmanthum Benth. ex Müll.Arg.

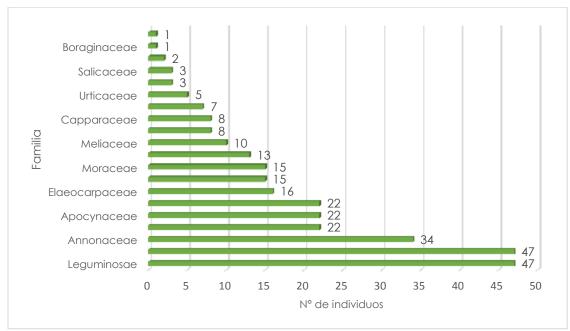
Aspidosperma polyneuron Müll.Arg.

Malouetia sp.

18

1

3


Familia	N° de ind /Familia	Especie	N° de Ind / especie
Araliaceae	3	Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	3
Bignoniaceae	8	Jacaranda copaia (Aubl.) D.Don	6
		Tabebuia rosea (Bertol.) Bertero ex A.DC.	2
Boraginaceae	1	Cordia collococca L.	1
Burseraceae	7	Bursera simaruba (L.) Sarg.	7
Capparaceae	8	Crateva tapia L.	8
Elaeocarpaceae	16	Sloanea sp.	16
Humiriaceae	1	Humiriastrum sp.	1
Hypericaceae	2	Vismia macrophylla Kunth	2
	22	Couroupita guianensis Aubl.	1
		Lecythis ampla Miers	3
1		Couratari sp.	4
Lecythidaceae		Gustavia superba (Kunth) O.Berg	9
		Lecythis minor Jacq.	2
		Lecythis sp.	3
	47	Albizia saman (Jacq.) Merr.	1
		Centrolobium paraense Tul.	3
		Dipteryx sp.	1
Leguminosae		Inga edulis Mart.	1
		Inga macrophylla Willd.	6
		Inga sp.	24
		Pentaclethra macroloba (Willd.) Kuntze	1
		Platymiscium pinnatum (Jacq.) Dugand	6
		Schizolobium parahyba (Vell.) S.F.Blake	3
		Gliricidia sepium (Jacq.) Walp.	1
	Apeiba glabra Aubl. Apeiba membranacea Spruce ex Benth. Goethalsia meiantha (Donn.Sm.) Burret Heliocarpus americanus L. Luehea seemannii Triana & Planch Matisia sp.	15	
			5
		Goethalsia meiantha (Donn.Sm.) Burret	2
Malvaceae			15
		Luehea seemannii Triana & Planch	8
		Matisia sp.	1
		Trichospermum sp.	1
Malerako no sitas a a c	15	Clidemia andersonii Wurdack	12
Melastomataceae		Mouriri sp.	3
Meliaceae	10	Cedrela odorata L.	5
		Swietenia macrophylla King	5
Moraceae	15	Clarisia racemosa Ruiz & Pav.	9
		Ficus citrifolia Mill.	6
Rubiaceae	13	Genipa americana L.	13

Familia	N° de ind /Familia	Especie	N° de Ind / especie
Salicaceae	3	Casearia decandra Jacq.	3
Urticaceae	5	Cecropia peltata L.	5

Figura 23. Distribución florística de las familias identificadas en el Bosque abierto alto de tierra firme.

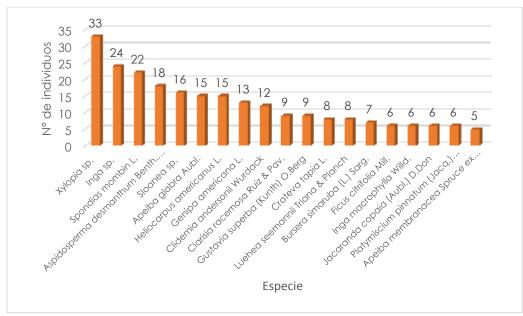
Fuente: Elaboración equipo técnico

5.5.2.2.1. Indicadores dasométricos del bosque abierto alto de tierra firme

El bosque abierto alto de tierra firme presenta un total de 301 individuos / ha en 47 especies; siendo la de mayor número la especie *Xylopia sp.* con 33 individuos, seguido de la especie *Inga sp.* con 24 individuos por ha. En la Tabla 75, se presenta el N° de individuos de cada una de las especies por ha (Figura 24).

Tabla 75. N° de individuos/especie/ha del bosque abierto alto de tierra firme

Especie	N° de ind/especie/ha
Xylopia sp.	33
Inga sp.	24
Spondias mombin L.	22
Aspidosperma desmanthum Benth. ex Müll.Arg.	18
Sloanea sp.	16
Apeiba glabra Aubl.	15


Especie	N° de ind/especie/ha
Heliocarpus americanus L.	15
Genipa americana L.	13
Clidemia andersonii Wurdack	12
Clarisia racemosa Ruiz & Pav.	9
Gustavia superba (Kunth) O.Berg	9
Crateva tapia L.	8
Luehea seemannii Triana & Planch	8
Bursera simaruba (L.) Sarg.	7
Ficus citrifolia Mill.	6
Inga macrophylla Willd.	6
Jacaranda copaia (Aubl.) D.Don	6
Platymiscium pinnatum (Jacq.) Dugand	6
Apeiba membranacea Spruce ex Benth.	5
Cecropia peltata L.	5
Cedrela odorata L.	5
Swietenia macrophylla King	5
Couratari sp.	4
Casearia decandra Jacq.	3
Centrolobium paraense Tul.	3
Lecythis ampla Miers	3
Lecythis sp.	3
Malouetia sp.	3
Mouriri sp.	3
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	3
Schizolobium parahyba (Vell.) S.F.Blake	3
Goethalsia meiantha (Donn.Sm.) Burret	2
Lecythis minor Jacq.	2
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2
Vismia macrophylla Kunth	2
Albizia saman (Jacq.) Merr.	1
Annona purpurea Moc. & Sessé ex Dunal	1
Aspidosperma polyneuron Müll.Arg.	1
Cordia collococca L.	1
Couroupita guianensis Aubl.	1
Dipteryx sp.	1
Gliricidia sepium (Jacq.) Walp.	1
Humiriastrum sp.	1
Inga edulis Mart.	1
Matisia sp.	1
Pentaclethra macroloba (Willd.) Kuntze	1

Especie	N° de ind/especie/ha
Trichospermum sp.	1

Figura 24. Distribución de Nº de individuos por especie

Fuente: Elaboración equipo técnico

La cobertura de bosque abierto alto de tierra firme presenta un área basal por ha de 25,316 m² en las 47 especies, obteniendo un área basal promedio/ individuo/ especie de 0,0866 m² y área basal promedio/ especie / hectárea de 0,5386 m²; en la Tabla 76 se presenta el detallado de cada una de las especies:

Tabla 76. Indicadores por especie de área basal

Especie	AB/sp/ha	AB/ind/sp
Albizia saman (Jacq.) Merr.	0,1987	0,1987
Annona purpurea Moc. & Sessé ex Dunal	0,0286	0,0286
Apeiba glabra Aubl.	1,4357	0,0957
Apeiba membranacea Spruce ex Benth.	0,2144	0,0429
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,6821	0,0934
Aspidosperma polyneuron Müll.Arg.	0,0561	0,0561
Bursera simaruba (L.) Sarg.	0,3290	0,0470
Casearia decandra Jacq.	0,1210	0,0403
Cecropia peltata L.	0,1408	0,0282
Cedrela odorata L.	0,4927	0,0985
Centrolobium paraense Tul.	0,5756	0,1919

Especie	AB/sp/ha	AB/ind/sp
Clarisia racemosa Ruiz & Pav.	1,5270	0,1697
Clidemia andersonii Wurdack	0,3898	0,0325
Cordia collococca L.	0,0357	0,0357
Couratari sp.	0,2968	0,0742
Couroupita guianensis Aubl.	0,0497	0,0497
Crateva tapia L.	0,2396	0,0300
Dipteryx sp.	0,0548	0,0548
Ficus citrifolia Mill.	1,1199	0,1867
Genipa americana L.	0,9081	0,0699
Gliricidia sepium (Jacq.) Walp.	0,0894	0,0894
Goethalsia meiantha (Donn.Sm.) Burret	0,2000	0,1000
Gustavia superba (Kunth) O.Berg	0,2101	0,0233
Heliocarpus americanus L.	1,1613	0,0774
Humiriastrum sp.	0,1839	0,1839
Inga edulis Mart.	0,0140	0,0140
Inga macrophylla Willd.	0,6087	0,1015
Inga sp.	0,7113	0,0296
Jacaranda copaia (Aubl.) D.Don	0,3475	0,0579
Lecythis ampla Miers	0,1109	0,0370
Lecythis minor Jacq.	0,2974	0,1487
Lecythis sp.	0,0838	0,0279
Luehea seemannii Triana & Planch	1,1067	0,1383
Malouetia sp.	0,1813	0,0604
Matisia sp.	0,0390	0,0390
Mouriri sp.	0,2735	0,0912
Pentaclethra macroloba (Willd.) Kuntze	0,2354	0,2354
Platymiscium pinnatum (Jacq.) Dugand	0,5439	0,0907
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,1153	0,0384
Schizolobium parahyba (Vell.) S.F.Blake	0,9162	0,3054
Sloanea sp.	4,0309	0,2519
Spondias mombin L.	2,0150	0,0916
Swietenia macrophylla King	0,3021	0,0604
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,0944	0,0472
Trichospermum sp.	0,0286	0,0286
Vismia macrophylla Kunth	0,0672	0,0336
Xylopia sp.	1,4516	0,0440

En cuanto al indicador de volumen se encuentran distribuidos en 9 clases diamétricas, siendo la clase V la que presenta los mayores volúmenes (Total, de fuste, comercial y cosechable).

Para el caso del volumen total se obtiene 300,28 m³ por hectárea; en la Figura 25 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de bosque abierto alto de tierra firme; encontrándose la clase V con un volumen de 57,90 m³ seguido de la clase II con 48,58 m³.

Figura 25. Distribución del volumen total por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen total por especie se halla un promedio de 6,38 m³ y un volumen promedio por especie por individuo de 1,00 m³; en la Tabla 77 se evidencia el detallado del volumen de cada una de las especies y en la Tabla 78 se observa la distribución del volumen por especie y clase diamétrica

Tabla 77. Indicadores por especie de volumen total

Especie	VT/sp / ha	VT ind/sp/ha
Albizia saman (Jacq.) Merr.	1,81	1,81
Annona purpurea Moc. & Sessé ex Dunal	0,24	0,24
Apeiba glabra Aubl.	14,47	0,96
Apeiba membranacea Spruce ex Benth.	2,12	0,42
Aspidosperma desmanthum Benth. ex Müll.Arg.	19,13	1,06
Aspidosperma polyneuron Müll.Arg.	0,66	0,66
Bursera simaruba (L.) Sarg.	3,48	0,50
Casearia decandra Jacq.	1,09	0,36

Especie	VT/sp / ha	VT ind/sp/ha
Cecropia peltata L.	1,23	0,25
Cedrela odorata L.	5,35	1,07
Centrolobium paraense Tul.	6,41	2,14
Clarisia racemosa Ruiz & Pav.	20,42	2,27
Clidemia andersonii Wurdack	3,92	0,33
Cordia collococca L.	0,26	0,26
Couratari sp.	3,64	0,91
Couroupita guianensis Aubl.	0,65	0,65
Crateva tapia L.	2,33	0,29
Dipteryx sp.	0,64	0,64
Ficus citrifolia Mill.	11,14	1,86
Genipa americana L.	9,23	0,71
Gliricidia sepium (Jacq.) Walp.	0,52	0,52
Goethalsia meiantha (Donn.Sm.) Burret	2,52	1,26
Gustavia superba (Kunth) O.Berg	1,25	0,14
Heliocarpus americanus L.	13,45	0,90
Humiriastrum sp.	1,31	1,31
Inga edulis Mart.	0,14	0,14
Inga macrophylla Willd.	6,79	1,13
Inga sp.	6,84	0,28
Jacaranda copaia (Aubl.) D.Don	3,61	0,60
Lecythis ampla Miers	1,34	0,45
Lecythis minor Jacq.	3,26	1,63
Lecythis sp.	0,83	0,28
Luehea seemannii Triana & Planch	13,98	1,75
Malouetia sp.	1,47	0,49
Matisia sp.	0,23	0,23
Mouriri sp.	3,26	1,09
Pentaclethra macroloba (Willd.) Kuntze	3,83	3,83
Platymiscium pinnatum (Jacq.) Dugand	5,62	0,94
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,96	0,32
Schizolobium parahyba (Vell.) S.F.Blake	16,66	5,55
Sloanea sp.	64,09	4,01
Spondias mombin L.	19,60	0,89
Swietenia macrophylla King	3,48	0,70
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,86	0,43
Trichospermum sp.	0,28	0,28
Vismia macrophylla Kunth	0,39	0,20
Xylopia sp.	15,53	0,47

Tabla 78. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /ha /Ct diam	
<u>L</u>	15,078	
Annona purpurea Moc. & Sessé ex Dunal	0,242	
Apeiba glabra Aubl.	1,298	
Apeiba membranacea Spruce ex Benth.	0,554	
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,912	
Bursera simaruba (L.) Sarg.	0,583	
Casearia decandra Jacq.	0,148	
Cecropia peltata L.	0,515	
Clarisia racemosa Ruiz & Pav.	0,263	
Clidemia andersonii Wurdack	0,764	
Crateva tapia L.	1,486	
Ficus citrifolia Mill.	0,134	
Genipa americana L.	0,668	
Gustavia superba (Kunth) O.Berg	0,703	
Heliocarpus americanus L.	0,454	
Inga edulis Mart.	0,137	
Inga macrophylla Willd.	0,160	
Inga sp.	2,188	
Jacaranda copaia (Aubl.) D.Don	0,390	
Lecythis ampla Miers	0,157	
Lecythis sp.	0,390	
Luehea seemannii Triana & Planch	0,186	
Platymiscium pinnatum (Jacq.) Dugand	0,577	
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,194	
Sloanea sp.	0,299	
Spondias mombin L.	0,202	
Trichospermum sp.	0,279	
Xylopia sp.	1,194	
II	48,583	
Apeiba glabra Aubl.	1,255	
Apeiba membranacea Spruce ex Benth.	0,507	
Aspidosperma desmanthum Benth. ex Müll.Arg.	2,586	
Aspidosperma polyneuron Müll.Arg.	0,657	
Bursera simaruba (L.) Sarg.	0,648	
Casearia decandra Jacq.	0,939	
Cedrela odorata L.	1,018	
Clarisia racemosa Ruiz & Pav.	1,155	

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Clidemia andersonii Wurdack	1,534
Cordia collococca L.	0,255
Couratari sp.	1,639
Couroupita guianensis Aubl.	0,646
Dipteryx sp.	0,641
1	0,566
Genipa americana L.	3,956
Gustavia superba (Kunth) O.Berg	0,551
Heliocarpus americanus L.	2,555
Inga macrophylla Willd.	0,770
Inga sp.	3,128
Jacaranda copaia (Aubl.) D.Don	0,448
Lecythis ampla Miers	1,178
Lecythis minor Jacq.	0,695
Lecythis sp.	0,441
Luehea seemannii Triana & Planch	2,117
Malouetia sp.	0,717
Matisia sp.	0,228
Platymiscium pinnatum (Jacq.) Dugand	0,406
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,769
Sloanea sp.	3,121
Spondias mombin L.	4,051
Swietenia macrophylla King	1,839
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,859
Vismia macrophylla Kunth	0,393
Xylopia sp.	6,314
III	45,418
Apeiba glabra Aubl.	0,965
Apeiba membranacea Spruce ex Benth.	1,060
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,760
Bursera simaruba (L.) Sarg.	2,246
Cecropia peltata L.	0,710
Clidemia andersonii Wurdack	1,620
Couratari sp.	1,997
Crateva tapia L.	0,840
Ficus citrifolia Mill.	1,212
Gliricidia sepium (Jacq.) Walp.	0,523
Goethalsia meiantha (Donn.Sm.) Burret	2,521
Heliocarpus americanus L.	3,671
Inga macrophylla Willd.	1,455

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Inga sp.	1,519
Jacaranda copaia (Aubl.) D.Don	2,768
Malouetia sp.	0,756
Mouriri sp.	3,264
Platymiscium pinnatum (Jacq.) Dugand	2,464
Sloanea sp.	1,027
Spondias mombin L.	8,464
Swietenia macrophylla King	1,643
Xylopia sp.	3,933
IV	26,158
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,825
Cedrela odorata L.	1,913
Centrolobium paraense Tul.	4,334
Clarisia racemosa Ruiz & Pav.	1,119
Heliocarpus americanus L.	6,769
Humiriastrum sp.	1,315
Inga macrophylla Willd.	2,010
Spondias mombin L.	2,786
Xylopia sp.	4,086
V	57,901
Albizia saman (Jacq.) Merr.	1,808
Apeiba glabra Aubl.	7,709
Aspidosperma desmanthum Benth. ex Müll.Arg.	2,884
Cedrela odorata L.	2,420
Centrolobium paraense Tul.	2,079
Clarisia racemosa Ruiz & Pav.	6,898
Ficus citrifolia Mill.	1,649
Genipa americana L.	4,606
Inga macrophylla Willd.	2,394
Lecythis minor Jacq.	2,564
Luehea seemannii Triana & Planch	2,478
Pentaclethra macroloba (Willd.) Kuntze	3,826
Platymiscium pinnatum (Jacq.) Dugand	2,172
Schizolobium parahyba (Vell.) S.F.Blake	3,328
Sloanea sp.	9,278
Spondias mombin L.	1,809
VI	32,154
Apeiba glabra Aubl.	3,245
Aspidosperma desmanthum Benth. ex Müll.Arg.	3,135
Clarisia racemosa Ruiz & Pav.	5,812

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Ficus citrifolia Mill.	7,580
Schizolobium parahyba (Vell.) S.F.Blake	5,543
Sloanea sp.	4,552
Spondias mombin L.	2,288
VII	19,984
Aspidosperma desmanthum Benth. ex Müll.Arg.	7,025
Clarisia racemosa Ruiz & Pav.	5,173
Schizolobium parahyba (Vell.) S.F.Blake	7,786
VIII	25,113
Luehea seemannii Triana & Planch	9,194
Sloanea sp.	15,919
XIII	29,897
Sloanea sp.	29,897
Total	300,288

El bosque abierto alto de tierra firme presenta un volumen del fuste por ha de 249,16 m³ distribuidos en las 9 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 33,37 m³ (Figura 26).

47,14 50 45 38,92 36,97 40 Volumen de fuste 35 27,09 26,68 30 21,71 21,77 25 17,32 20 11,57 15 10 5 VI I ||Ш IV VII VIII XIII Clase diamétrica

Figura 26. Distribución del volumen del fuste por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen del fuste por especie se halla un promedio de 5,30 m³ y un volumen promedio por especie por individuo de 0,82 m³; en la Tabla 79 se evidencia el

detallado del volumen de cada una de las especies y en la Tabla 80 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 79. Indicadores por especie de volumen de fuste

Especie	VF/sp / Ha	VF ind/sp/Ha
Albizia saman (Jacq.) Merr.	1,29	1,29
Annona purpurea Moc. & Sessé ex Dunal	0,19	0,19
Apeiba glabra Aubl.	11,44	0,76
Apeiba membranacea Spruce ex Benth.	1,70	0,34
Aspidosperma desmanthum Benth. ex Müll.Arg.	15,85	0,88
Aspidosperma polyneuron Müll.Arg.	0,55	0,55
Bursera simaruba (L.) Sarg.	2,79	0,40
Casearia decandra Jacq.	0,85	0,28
Cecropia peltata L.	0,94	0,19
Cedrela odorata L.	4,24	0,85
Centrolobium paraense Tul.	5,29	1,76
Clarisia racemosa Ruiz & Pav.	17,44	1,94
Clidemia andersonii Wurdack	3,15	0,26
Cordia collococca L.	0,19	0,19
Couratari sp.	3,06	0,76
Couroupita guianensis Aubl.	0,55	0,55
Crateva tapia L.	1,86	0,23
Dipteryx sp.	0,53	0,53
Ficus citrifolia Mill.	8,72	1,45
Genipa americana L.	7,46	0,57
Gliricidia sepium (Jacq.) Walp.	0,41	0,41
Goethalsia meiantha (Donn.Sm.) Burret	2,13	1,07
Gustavia superba (Kunth) O.Berg	0,84	0,09
Heliocarpus americanus L.	11,13	0,74
Humiriastrum sp.	0,84	0,84
Inga edulis Mart.	0,11	0,11
Inga macrophylla Willd.	5,60	0,93
Inga sp.	5,45	0,23
Jacaranda copaia (Aubl.) D.Don	2,93	0,49
Lecythis ampla Miers	1,12	0,37
Lecythis minor Jacq.	2,68	1,34
Lecythis sp.	0,67	0,22
Luehea seemannii Triana & Planch	11,64	1,46
Malouetia sp.	1,09	0,36
Matisia sp.	0,15	0,15

Especie	VF/sp / Ha	VF ind/sp/Ha
Mouriri sp.	2,67	0,89
Pentaclethra macroloba (Willd.) Kuntze	3,37	3,37
Platymiscium pinnatum (Jacq.) Dugand	4,56	0,76
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,74	0,25
Schizolobium parahyba (Vell.) S.F.Blake	14,87	4,96
Sloanea sp.	56,23	3,51
Spondias mombin L.	15,24	0,69
Swietenia macrophylla King	2,89	0,58
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,64	0,32
Trichospermum sp.	0,22	0,22
Vismia macrophylla Kunth	0,24	0,12
Xylopia sp.	12,61	0,38

Tabla 80. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /Ha /Ct diam.
I	11,57
Annona purpurea Moc. & Sessé ex Dunal	0,19
Apeiba glabra Aubl.	1,06
Apeiba membranacea Spruce ex Benth.	0,44
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,68
Bursera simaruba (L.) Sarg.	0,44
Casearia decandra Jacq.	0,11
Cecropia peltata L.	0,38
Clarisia racemosa Ruiz & Pav.	0,21
Clidemia andersonii Wurdack	0,57
Crateva tapia L.	1,16
Ficus citrifolia Mill.	0,11
Genipa americana L.	0,54
Gustavia superba (Kunth) O.Berg	0,47
Heliocarpus americanus L.	0,37
Inga edulis Mart.	0,11
Inga macrophylla Willd.	0,13
Inga sp.	1,64
Jacaranda copaia (Aubl.) D.Don	0,30
Lecythis ampla Miers	0,13
Lecythis sp.	0,31
Luehea seemannii Triana & Planch	0,15
Platymiscium pinnatum (Jacq.) Dugand	0,46

Clase diamétrica / Especie	VFsp /Ha /Ct diam.
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,16
Sloanea sp.	0,22
Spondias mombin L.	0,16
Trichospermum sp.	0,22
Xylopia sp.	0,87
II	38,92
Apeiba glabra Aubl.	0,99
Apeiba membranacea Spruce ex Benth.	0,43
Aspidosperma desmanthum Benth. ex Müll.Arg.	2,02
Aspidosperma polyneuron Müll.Arg.	0,55
Bursera simaruba (L.) Sarg.	0,48
Casearia decandra Jacq.	0,74
Cedrela odorata L.	0,80
Clarisia racemosa Ruiz & Pav.	0,96
Clidemia andersonii Wurdack	1,26
Cordia collococca L.	0,19
Couratari sp.	1,39
Couroupita guianensis Aubl.	0,55
Dipteryx sp.	0,53
Ficus citrifolia Mill.	0,47
Genipa americana L.	3,21
Gustavia superba (Kunth) O.Berg	0,37
Heliocarpus americanus L.	2,08
Inga macrophylla Willd.	0,60
Inga sp.	2,60
Jacaranda copaia (Aubl.) D.Don	0,36
Lecythis ampla Miers	0,99
Lecythis minor Jacq.	0,60
Lecythis sp.	0,36
Luehea seemannii Triana & Planch	1,73
Malouetia sp.	0,51
Matisia sp.	0,15
Platymiscium pinnatum (Jacq.) Dugand	0,33
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,58
Sloanea sp.	2,50
Spondias mombin L.	3,20
Swietenia macrophylla King	1,48
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,64
Vismia macrophylla Kunth	0,24
Xylopia sp.	5,02

Clase diamétrica / Especie	VFsp /Ha /Ct diam.
III	36,97
Apeiba glabra Aubl.	0,72
Apeiba membranacea Spruce ex Benth.	0,83
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,61
Bursera simaruba (L.) Sarg.	1,88
Cecropia peltata L.	0,56
Clidemia andersonii Wurdack	1,32
Couratari sp.	1,66
Crateva tapia L.	0,70
Ficus citrifolia Mill.	0,98
Gliricidia sepium (Jacq.) Walp.	0,41
Goethalsia meiantha (Donn.Sm.) Burret	2,13
Heliocarpus americanus L.	2,87
Inga macrophylla Willd.	1,21
Inga sp.	1,21
Jacaranda copaia (Aubl.) D.Don	2,27
Malouetia sp.	0,58
Mouriri sp.	2,67
Platymiscium pinnatum (Jacq.) Dugand	2,00
Sloanea sp.	0,89
Spondias mombin L.	6,82
Swietenia macrophylla King	1,41
Xylopia sp.	3,23
IV	21,71
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,52
Cedrela odorata L.	1,63
Centrolobium paraense Tul.	3,73
Clarisia racemosa Ruiz & Pav.	0,86
Heliocarpus americanus L.	5,82
Humiriastrum sp.	0,84
Inga macrophylla Willd.	1,69
Spondias mombin L.	2,14
Xylopia sp.	3,49
V	47,14
Albizia saman (Jacq.) Merr.	1,29
Apeiba glabra Aubl.	6,03
Aspidosperma desmanthum Benth. ex Müll.Arg.	2,40
Cedrela odorata L.	1,82
Centrolobium paraense Tul.	1,56
Clarisia racemosa Ruiz & Pav.	6,04

Clase diamétrica / Especie	VFsp /Ha /Ct diam.
Ficus citrifolia Mill.	1,24
Genipa americana L.	3,71
Inga macrophylla Willd.	1,97
Lecythis minor Jacq.	2,08
Luehea seemannii Triana & Planch	1,77
Pentaclethra macroloba (Willd.) Kuntze	3,37
Platymiscium pinnatum (Jacq.) Dugand	1,76
Schizolobium parahyba (Vell.) S.F.Blake	2,87
Sloanea sp.	7,83
Spondias mombin L.	1,39
VI	26,68
Apeiba glabra Aubl.	2,64
Aspidosperma desmanthum Benth. ex Müll.Arg.	2,51
Clarisia racemosa Ruiz & Pav.	5,17
Ficus citrifolia Mill.	5,92
Schizolobium parahyba (Vell.) S.F.Blake	4,99
Sloanea sp.	3,93
Spondias mombin L.	1,53
VII	17,32
Aspidosperma desmanthum Benth. ex Müll.Arg.	6,11
Clarisia racemosa Ruiz & Pav.	4,20
Schizolobium parahyba (Vell.) S.F.Blake	7,01
VIII	21,77
Luehea seemannii Triana & Planch	8,00
Sloanea sp.	13,77
XIII	27,09
Sloanea sp.	27,09

En el caso del volumen comercial se obtiene 139, 06 m³ por hectárea distribuido en las 9 clases diamétricas, con un volumen promedio por clase diamétrica de 15,45 m³, en la Figura 27 se presenta la distribución del volumen comercial por clase diamétrica.

30 27,08 23,75 21,25 14,01 14.01 10,98 10,86 8,96 8,16 10 0 || \vee \forall |||IV $\forall \parallel$ VIIIXIIIClase diamétrica

Figura 27. Distribución del volumen comercial por clase diamétrica

De igual manera, el volumen comercial por especie se halla un promedio de 2,95 m³ y un volumen promedio por especie por individuo de 0,46 m³; en la Tabla 81 se evidencia el detallado del volumen de cada una de las especies y en la Tabla 82 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 81. Indicadores por especie de volumen comercial

Especie	VC/sp/ha	VC ind/sp/ha
Albizia saman (Jacq.) Merr.	0,52	0,52
Annona purpurea Moc. & Sessé ex Dunal	0,15	0,15
Apeiba glabra Aubl.	6,21	0,41
Apeiba membranacea Spruce ex Benth.	1,23	0,25
Aspidosperma desmanthum Benth. ex Müll.Arg.	8,13	0,45
Aspidosperma polyneuron Müll.Arg.	0,51	0,51
Bursera simaruba (L.) Sarg.	1,46	0,21
Casearia decandra Jacq.	0,42	0,14
Cecropia peltata L.	0,77	0,15
Cedrela odorata L.	1,52	0,30
Centrolobium paraense Tul.	2,47	0,82
Clarisia racemosa Ruiz & Pav.	12,60	1,40
Clidemia andersonii Wurdack	1,37	0,11
Cordia collococca L.	0,21	0,21
Couratari sp.	1,65	0,41
Couroupita guianensis Aubl.	0,23	0,23

Especie	VC/sp/ha	VC ind/sp/ha
Crateva tapia L.	1,26	0,16
Dipteryx sp.	0,36	0,36
Ficus citrifolia Mill.	3,18	0,53
Genipa americana L.	5,15	0,40
Gliricidia sepium (Jacq.) Walp.	0,12	0,12
Goethalsia meiantha (Donn.Sm.) Burret	0,13	0,06
Gustavia superba (Kunth) O.Berg	0,44	0,05
Heliocarpus americanus L.	5,66	0,38
Humiriastrum sp.	0,48	0,48
Inga edulis Mart.	0,08	0,08
Inga macrophylla Willd.	2,92	0,49
Inga sp.	3,26	0,14
Jacaranda copaia (Aubl.) D.Don	1,49	0,25
Lecythis ampla Miers	0,60	0,20
Lecythis minor Jacq.	2,00	1,00
Lecythis sp.	0,48	0,16
Luehea seemannii Triana & Planch	4,05	0,51
Malouetia sp.	0,77	0,26
Matisia sp.	0,05	0,05
Mouriri sp.	1,66	0,55
Pentaclethra macroloba (Willd.) Kuntze	2,30	2,30
Platymiscium pinnatum (Jacq.) Dugand	3,59	0,60
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,44	0,15
Schizolobium parahyba (Vell.) S.F.Blake	8,93	2,98
Sloanea sp.	30,39	1,90
Spondias mombin L.	10,30	0,47
Swietenia macrophylla King	1,86	0,37
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,31	0,15
Trichospermum sp.	0,19	0,19
Vismia macrophylla Kunth	0,17	0,09
Xylopia sp.	7,01	0,21

Tabla 82. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VC sp /ha /Ct diam.
I	8,16
Annona purpurea Moc. & Sessé ex Dunal	0,15
Apeiba glabra Aubl.	0,52

Clase diamétrica / Especie	VC sp /ha /Ct diam.
Apeiba membranacea Spruce ex Benth.	0,29
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,52
Bursera simaruba (L.) Sarg.	0,26
Casearia decandra Jacq.	0,01
Cecropia peltata L.	0,37
Clarisia racemosa Ruiz & Pav.	0,09
Clidemia andersonii Wurdack	0,40
Crateva tapia L.	0,74
Ficus citrifolia Mill.	0,10
Genipa americana L.	0,50
Gustavia superba (Kunth) O.Berg	0,25
Heliocarpus americanus L.	0,25
Inga edulis Mart.	0,08
Inga macrophylla Willd.	0,11
Inga sp.	1,21
Jacaranda copaia (Aubl.) D.Don	0,21
Lecythis ampla Miers	0,03
Lecythis sp.	0,20
Luehea seemannii Triana & Planch	0,07
Platymiscium pinnatum (Jacq.) Dugand	0,42
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,08
Sloanea sp.	0,19
Spondias mombin L.	0,11
Trichospermum sp.	0,19
Xylopia sp.	0,79
II	23,75
Apeiba glabra Aubl.	0,80
Apeiba membranacea Spruce ex Benth.	0,25
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,45
Aspidosperma polyneuron Müll.Arg.	0,51
Bursera simaruba (L.) Sarg.	0,36
Casearia decandra Jacq.	0,40
Cedrela odorata L.	0,38
Clarisia racemosa Ruiz & Pav.	0,77
Clidemia andersonii Wurdack	0,46
Cordia collococca L.	0,21
Couratari sp.	0,66

Clase diamétrica / Especie	VC sp /ha /Ct diam.
Couroupita guianensis Aubl.	0,23
Dipteryx sp.	0,36
Ficus citrifolia Mill.	0,16
Genipa americana L.	2,39
Gustavia superba (Kunth) O.Berg	0,18
Heliocarpus americanus L.	1,18
Inga macrophylla Willd.	0,48
Inga sp.	1,47
Jacaranda copaia (Aubl.) D.Don	0,21
Lecythis ampla Miers	0,57
Lecythis minor Jacq.	0,40
Lecythis sp.	0,28
Luehea seemannii Triana & Planch	0,87
Malouetia sp.	0,36
Matisia sp.	0,05
Platymiscium pinnatum (Jacq.) Dugand	0,25
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,36
Sloanea sp.	1,38
Spondias mombin L.	2,02
Swietenia macrophylla King	1,08
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,31
Vismia macrophylla Kunth	0,17
Xylopia sp.	2,75
III	21,25
Apeiba glabra Aubl.	0,54
Apeiba membranacea Spruce ex Benth.	0,68
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,46
Bursera simaruba (L.) Sarg.	0,84
Cecropia peltata L.	0,41
Clidemia andersonii Wurdack	0,51
Couratari sp.	1,00
Crateva tapia L.	0,51
Ficus citrifolia Mill.	0,76
Gliricidia sepium (Jacq.) Walp.	0,12
Goethalsia meiantha (Donn.Sm.) Burret	0,13
Heliocarpus americanus L.	1,90
Inga macrophylla Willd.	0,57

Clase diamétrica / Especie	VC sp /ha /Ct diam.
Inga sp.	0,58
Jacaranda copaia (Aubl.) D.Don	1,08
Malouetia sp.	0,41
Mouriri sp.	1,66
Platymiscium pinnatum (Jacq.) Dugand	1,69
Sloanea sp.	0,23
Spondias mombin L.	4,53
Swietenia macrophylla King	0,78
Xylopia sp.	1,87
IV	10,98
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,01
Cedrela odorata L.	0,77
Centrolobium paraense Tul.	2,12
Clarisia racemosa Ruiz & Pav.	0,17
Heliocarpus americanus L.	2,33
Humiriastrum sp.	0,48
Inga macrophylla Willd.	0,63
Spondias mombin L.	1,86
Xylopia sp.	1,61
V	27,08
Albizia saman (Jacq.) Merr.	0,52
Apeiba glabra Aubl.	2,93
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,60
Cedrela odorata L.	0,38
Centrolobium paraense Tul.	0,35
Clarisia racemosa Ruiz & Pav.	4,89
Ficus citrifolia Mill.	0,27
Genipa americana L.	2,26
Inga macrophylla Willd.	1,13
Lecythis minor Jacq.	1,60
Luehea seemannii Triana & Planch	0,71
Pentaclethra macroloba (Willd.) Kuntze	2,30
Platymiscium pinnatum (Jacq.) Dugand	1,22
Schizolobium parahyba (Vell.) S.F.Blake	2,27
Sloanea sp.	3,82
Spondias mombin L.	0,83
VI	14,01

Clase diamétrica / Especie	VC sp /ha /Ct diam.
Apeiba glabra Aubl.	1,42
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,25
Clarisia racemosa Ruiz & Pav.	3,44
Ficus citrifolia Mill.	1,90
Schizolobium parahyba (Vell.) S.F.Blake	2,77
Sloanea sp.	2,28
Spondias mombin L.	0,95
VII	8,96
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,83
Clarisia racemosa Ruiz & Pav.	3,23
Schizolobium parahyba (Vell.) S.F.Blake	3,89
VIII	10,86
Luehea seemannii Triana & Planch	2,40
Sloanea sp.	8,46
XIII	14,01
Sloanea sp.	14,01

El volumen cosechable calculado para el bosque abierto alto de tierra firme es de 117,67 m³ con un promedio por especie de 2,50 m³, en la Tabla 83 se muestra el volumen cosechable por cada una de las especies y en la Tabla 84 se presenta la distribución de volumen cosechable por especie y por clase diamétrica.

Tabla 83. Indicadores por especie de volumen cosechable

Especie	VCs/sp/ ha
Albizia saman (Jacq.) Merr.	0,44
Annona purpurea Moc. & Sessé ex Dunal	0,13
Apeiba glabra Aubl.	5,26
Apeiba membranacea Spruce ex Benth.	1,04
Aspidosperma desmanthum Benth. ex Müll.Arg.	6,88
Aspidosperma polyneuron Müll.Arg.	0,43
Bursera simaruba (L.) Sarg.	1,24
Casearia decandra Jacq.	0,35
Cecropia peltata L.	0,65
Cedrela odorata L.	1,29
Centrolobium paraense Tul.	2,09
Clarisia racemosa Ruiz & Pav.	10,66
Clidemia andersonii Wurdack	1,16

Especie	VCs/sp/ ha
Cordia collococca L.	0,18
Couratari sp.	1,40
Couroupita guianensis Aubl.	0,19
Crateva tapia L.	1,06
Dipteryx sp.	0,30
Ficus citrifolia Mill.	2,69
Genipa americana L.	4,36
Gliricidia sepium (Jacq.) Walp.	0,10
Goethalsia meiantha (Donn.Sm.) Burret	0,11
Gustavia superba (Kunth) O.Berg	0,37
Heliocarpus americanus L.	4,79
Humiriastrum sp.	0,40
Inga edulis Mart.	0,07
Inga macrophylla Willd.	2,47
Inga sp.	2,76
Jacaranda copaia (Aubl.) D.Don	1,26
Lecythis ampla Miers	0,51
Lecythis minor Jacq.	1,69
Lecythis sp.	0,40
Luehea seemannii Triana & Planch	3,43
Malouetia sp.	0,65
Matisia sp.	0,04
Mouriri sp.	1,41
Pentaclethra macroloba (Willd.) Kuntze	1,94
Platymiscium pinnatum (Jacq.) Dugand	3,04
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,37
Schizolobium parahyba (Vell.) S.F.Blake	7,56
Sloanea sp.	25,71
Spondias mombin L.	8,71
Swietenia macrophylla King	1,58
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,26
Trichospermum sp.	0,16
Vismia macrophylla Kunth	0,15
Xylopia sp.	5,93
l	I

Tabla 84. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie VCs sp /ha /Ct	diam.
---	-------

Clase diamétrica / Especie	VCs sp /ha /Ct diam.			
I	6,91			
Annona purpurea Moc. & Sessé ex Dunal	0,13			
Apeiba glabra Aubl.	0,44			
Apeiba membranacea Spruce ex Benth.	0,25			
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,44			
Bursera simaruba (L.) Sarg.	0,22			
Casearia decandra Jacq.	0,01			
Cecropia peltata L.	0,31			
Clarisia racemosa Ruiz & Pav.	0,08			
Clidemia andersonii Wurdack	0,34			
Crateva tapia L.	0,63			
Ficus citrifolia Mill.	0,08			
Genipa americana L.	0,42			
Gustavia superba (Kunth) O.Berg	0,21			
Heliocarpus americanus L.	0,21			
Inga edulis Mart.	0,07			
Inga macrophylla Willd.	0,10			
Inga sp.	1,03			
Jacaranda copaia (Aubl.) D.Don	0,18			
Lecythis ampla Miers	0,02			
Lecythis sp.	0,17			
Luehea seemannii Triana & Planch	0,06			
Platymiscium pinnatum (Jacq.) Dugand	0,36			
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,07			
Sloanea sp.	0,16			
Spondias mombin L.	0,09			
Trichospermum sp.	0,16			
Xylopia sp.	0,66			
II	20,10			
Apeiba glabra Aubl.	0,67			
Apeiba membranacea Spruce ex Benth.	0,21			
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,23			
Aspidosperma polyneuron Müll.Arg.	0,43			
Bursera simaruba (L.) Sarg.	0,30			
Casearia decandra Jacq.	0,34			
Cedrela odorata L.	0,32			
Clarisia racemosa Ruiz & Pav.	0,65			

Clase diamétrica / Especie	VCs sp /ha /Ct diam.
Clidemia andersonii Wurdack	0,39
Cordia collococca L.	0,18
Couratari sp.	0,55
Couroupita guianensis Aubl.	0,19
Dipteryx sp.	0,30
Ficus citrifolia Mill.	0,13
Genipa americana L.	2,02
Gustavia superba (Kunth) O.Berg	0,15
Heliocarpus americanus L.	1,00
Inga macrophylla Willd.	0,41
Inga sp.	1,25
Jacaranda copaia (Aubl.) D.Don	0,18
Lecythis ampla Miers	0,49
Lecythis minor Jacq.	0,34
Lecythis sp.	0,23
Luehea seemannii Triana & Planch	0,74
Malouetia sp.	0,30
Matisia sp.	0,04
Platymiscium pinnatum (Jacq.) Dugand	0,21
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,30
Sloanea sp.	1,17
Spondias mombin L.	1,71
Swietenia macrophylla King	0,91
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,26
Vismia macrophylla Kunth	0,15
Xylopia sp.	2,33
III	17,98
Apeiba glabra Aubl.	0,46
Apeiba membranacea Spruce ex Benth.	0,58
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,39
Bursera simaruba (L.) Sarg.	0,71
Cecropia peltata L.	0,34
Clidemia andersonii Wurdack	0,43
Couratari sp.	0,84
Crateva tapia L.	0,43
Ficus citrifolia Mill.	0,64
Gliricidia sepium (Jacq.) Walp.	0,10

Clase diamétrica / Especie	VCs sp /ha /Ct diam.
Goethalsia meiantha (Donn.Sm.) Burret	0,11
Heliocarpus americanus L.	1,61
Inga macrophylla Willd.	0,48
Inga sp.	0,49
Jacaranda copaia (Aubl.) D.Don	0,91
Malouetia sp.	0,34
Mouriri sp.	1,41
Platymiscium pinnatum (Jacq.) Dugand	1,43
Sloanea sp.	0,20
Spondias mombin L.	3,83
Swietenia macrophylla King	0,66
Xylopia sp.	1,58
IV	9,29
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,86
Cedrela odorata L.	0,65
Centrolobium paraense Tul.	1,80
Clarisia racemosa Ruiz & Pav.	0,15
Heliocarpus americanus L.	1,97
Humiriastrum sp.	0,40
Inga macrophylla Willd.	0,54
Spondias mombin L.	1,57
Xylopia sp.	1,36
V	22,91
Albizia saman (Jacq.) Merr.	0,44
Apeiba glabra Aubl.	2,48
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,36
Cedrela odorata L.	0,32
Centrolobium paraense Tul.	0,29
Clarisia racemosa Ruiz & Pav.	4,14
Ficus citrifolia Mill.	0,23
Genipa americana L.	1,91
Inga macrophylla Willd.	0,95
Lecythis minor Jacq.	1,36
Luehea seemannii Triana & Planch	0,60
Pentaclethra macroloba (Willd.) Kuntze	1,94
Platymiscium pinnatum (Jacq.) Dugand	1,03
Schizolobium parahyba (Vell.) S.F.Blake	1,92

Clase diamétrica / Especie	VCs sp /ha /Ct diam.
Sloanea sp.	3,24
Spondias mombin L.	0,71
VI	11,86
Apeiba glabra Aubl.	1,20
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,06
Clarisia racemosa Ruiz & Pav.	2,91
Ficus citrifolia Mill.	1,60
Schizolobium parahyba (Vell.) S.F.Blake	2,35
Sloanea sp.	1,93
Spondias mombin L.	0,81
VII	7,58
Aspidosperma desmanthum Benth. ex Müll.Arg.	1,55
Clarisia racemosa Ruiz & Pav.	2,74
Schizolobium parahyba (Vell.) S.F.Blake	3,29
VIII	9,19
Luehea seemannii Triana & Planch	2,03
Sloanea sp.	7,16
XIII	11,86
Sloanea sp.	11,86

5.5.2.2.2. Indicadores estructurales del bosque abierto alto de tierra firme

5.5.2.2.2.1. Estructura horizontal

En la Tabla 85 se observa los datos obtenidos del análisis de la estructura horizontal del bosque abierto alto de tierra firme:

Tabla 85. Estructura horizontal para el bosque abierto alto de tierra firme

Especie	N° de	Abund	ancia	Domino	ancia	Frecuer	ncia	
200 0000	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	FR%	IVI
Sloanea sp.	16	0,053	5,316	0,159	15,923	0,7	4,17	25,40
Xylopia sp.	33	0,110	10,963	0,057	5,734	1	5,95	22,65
Spondias mombin L.	22	0,073	7,309	0,080	7,959	0,8	4,76	20,03
Aspidosperma desmanthum Benth. ex Müll.Arg.	18	0,060	5,980	0,066	6,644	0,7	4,17	16,79
Inga sp.	24	0,080	7,973	0,028	2,810	0,9	5,36	16,14
Heliocarpus americanus L.	15	0,050	4,983	0,046	4,587	0,9	5,36	14,93

Ernocio	N° de	Abunde	ancia	Dominancia		Frecuencia		
Especie	ind	Ab		Do		Fr	FR%	IVI
	1.5	absoluta	AB%	absoluta	Do%	absoluta		1.400
Apeiba glabra Aubl.	15	0,050	4,983	0,057	5,671	0,7	4,17	14,82
Clarisia racemosa Ruiz & Pav.	9	0,030	2,990	0,060	6,032	0,6	3,57	12,59
Genipa americana L.	13	0,043	4,319	0,036	3,587	0,5	2,98	10,88
Clidemia andersonii Wurdack	12	0,040	3,987	0,015	1,540	0,8	4,76	10,29
Luehea seemannii Triana & Planch	8	0,027	2,658	0,044	4,371	0,5	2,98	10,01
Ficus citrifolia Mill.	6	0,020	1,993	0,044	4,424	0,4	2,38	8,80
Crateva tapia L.	8	0,027	2,658	0,009	0,947	0,6	3,57	7,18
Bursera simaruba (L.) Sarg.	7	0,023	2,326	0,013	1,300	0,5	2,98	6,60
Platymiscium pinnatum (Jacq.) Dugand	6	0,020	1,993	0,021	2,149	0,4	2,38	6,52
Schizolobium parahyba (Vell.) S.F.Blake	3	0,010	0,997	0,036	3,619	0,3	1,79	6,40
Gustavia superba (Kunth) O.Berg	9	0,030	2,990	0,008	0,830	0,4	2,38	6,20
Cedrela odorata L.	5	0,017	1,661	0,019	1,946	0,4	2,38	5,99
Swietenia macrophylla King	5	0,017	1,661	0,012	1,193	0,5	2,98	5,83
Jacaranda copaia (Aubl.) D.Don	6	0,020	1,993	0,014	1,372	0,4	2,38	5,75
Inga macrophylla Willd.	6	0,020	1,993	0,024	2,404	0,2	1,19	5,59
Centrolobium paraense Tul.	3	0,010	0,997	0,023	2,274	0,3	1,79	5,06
Cecropia peltata L.	5	0,017	1,661	0,006	0,556	0,4	2,38	4,60
Mouriri sp.	3	0,010	0,997	0,011	1,080	0,3	1,79	3,86
Apeiba membranacea Spruce ex Benth.	5	0,017	1,661	0,008	0,847	0,2	1,19	3,70
Couratari sp.	4	0,013	1,329	0,012	1,172	0,2	1,19	3,69
Malouetia sp.	3	0,010	0,997	0,007	0,716	0,3	1,79	3,50
Casearia decandra Jacq.	3	0,010	0,997	0,005	0,478	0,3	1,79	3,26
Lecythis sp.	3	0,010	0,997	0,003	0,331	0,3	1,79	3,11
Lecythis minor Jacq.	2	0,007	0,664	0,012	1,175	0,2	1,19	3,03
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	3	0,010	0,997	0,005	0,455	0,2	1,19	2,64
Lecythis ampla Miers	3	0,010	0,997	0,004	0,438	0,2	1,19	2,63
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2	0,007	0,664	0,004	0,373	0,2	1,19	2,23
Vismia macrophylla Kunth	2	0,007	0,664	0,003	0,266	0,2	1,19	2,12
Goethalsia meiantha (Donn.Sm.) Burret	2	0,007	0,664	0,008	0,790	0,1	0,60	2,05
Pentaclethra macroloba (Willd.) Kuntze	1	0,003	0,332	0,009	0,930	0,1	0,60	1,86
Albizia saman (Jacq.) Merr.	1	0,003	0,332	0,008	0,785	0,1	0,60	1,71
Humiriastrum sp.	1	0,003	0,332	0,007	0,726	0,1	0,60	1,65
Gliricidia sepium (Jacq.) Walp.	1	0,003	0,332	0,004	0,353	0,1	0,60	1,28
Aspidosperma polyneuron Müll.Arg.	1	0,003	0,332	0,002	0,222	0,1	0,60	1,15

Especie	N° de	Abunde	ancia	Domino	ancia	Frecuer	ncia	
23,000.0	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	FR%	IVI
Dipteryx sp.	1	0,003	0,332	0,002	0,217	0,1	0,60	1,14
Couroupita guianensis Aubl.	1	0,003	0,332	0,002	0,196	0,1	0,60	1,12
Matisia sp.	1	0,003	0,332	0,002	0,154	0,1	0,60	1,08
Cordia collococca L.	1	0,003	0,332	0,001	0,141	0,1	0,60	1,07
Annona purpurea Moc. & Sessé ex Dunal	1	0,003	0,332	0,001	0,113	0,1	0,60	1,04
Trichospermum sp.	1	0,003	0,332	0,001	0,113	0,1	0,60	1,04
Inga edulis Mart.	1	0,003	0,332	0,001	0,055	0,1	0,60	0,98
	301	1	100	1	100	16,8	100	300

<u>Abundancia</u>

La abundancia absoluta y relativa presente en la cobertura de bosque abierto alto de tierra firme muestra que la especie que mas abunda es *Xylopia sp.* con 33 individuos y 10,96% de abundancia relativa, seguido de la especie *Inga sp.* con 24 individuos y 7,97% de abundancia relativa (Figura 28).

Figura 28. Distribución de la abundancia relativa para el bosque abierto alto de tierra firme

Frecuencia

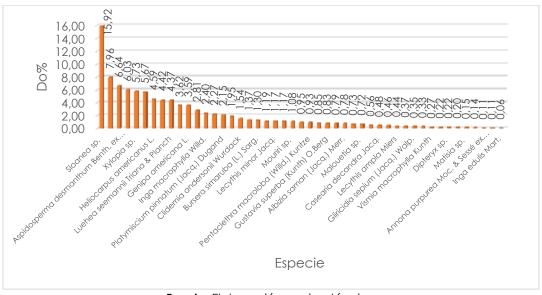
La especie *Xylopia* sp. es la más frecuente con presencia en las 10 parcelas realizadas, seguida de la especie *Heliocarpus americanus* L. e *Inga* sp. con presencia en 9 parcelas de las 10 parcelas realizadas. La especie *Spondias mombin* L. y *Clidemia andersonii* Wurdack presentes en 8 parcelas de las 10 realizadas, las demás especies oscilan desde 7 a 1 vez en las 10 parcelas de muestreo (Figura 29).

Especie

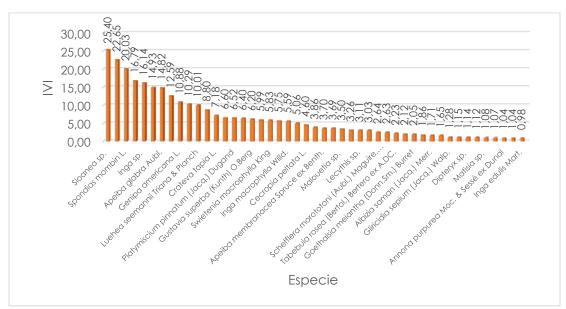
Especie

Figura 29. Distribución de frecuencia relativa para el bosque abierto alto de tierra firme

Fuente: Elaboración equipo técnico


Dominancia

La especie con mayor dominancia es *Sloanea* sp. con 15, 92% y área basal de 4,03 m², seguida de la especie *Spondias mombin* L. con 7,95% y área basal de 2,01 m². También la especie *Aspidosperma desmanthum* Benth. ex Müll.Arg. con una dominancia relativa 6,64% y un área basal de 1,68 m² (Figura 30).


Figura 30. Distribución de la dominancia relativa para el bosque abierto alto de tierra firme

Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es *Sloanea sp.* con un IVI de 25,40, seguida de la especie *Xylopia sp.* con un peso ecológico de 22,65; evidenciándose en el bosque el comportamiento de J invertida característica de bosque natural (Figura 31).

Figura 31. Distribución del IVI para el bosque abierto alto de tierra firme

Cociente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1 / \frac{47}{301}$$

$$CM = 1 / 0,156$$

$$CM = 6,41$$

El coeficiente de mezcla obtenido implica que por cada 6,4 individuos estudiados hay una especie nueva para el bosque abierto alto de tierra firme.

5.5.2.2.2. Estructura vertical

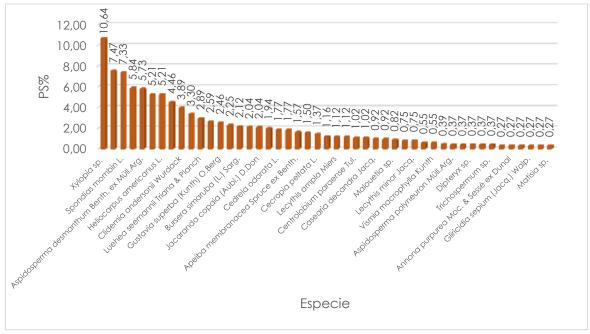
Posición sociológica

La posición sociológica muestra la especie con mayor peso a *Xylopia sp.* con 10,63%, aunque no presenta individuos en el estrato dominante (Figura 32). La especie *Inga sp.* se muestra en segundo lugar con un peso de 7,46% también sin presencia de individuos en estratos dominantes.

La única especie que presenta un alto valor de posición sociológica y presenta individuos en estrato dominante es *Sloanea sp*; como de muestra en la Tabla 86.

Tabla 86. Posición sociológica de las especies del bosque abierto alto de tierra firme

Especie	Suprimido	Codominante	Dominante	Ps	Ps%
Xylopia sp.	17	16	0	4943	10,64
Inga sp.	15	9	0	3471	7,47
Spondias mombin L.	9	13	0	3405	7,33
Sloanea sp.	2	14	3	2714	5,84
Aspidosperma desmanthum Benth. ex Müll.Arg.	10	8	0	2662	5,73
Apeiba glabra Aubl.	4	11	0	2422	5,21
Heliocarpus americanus L.	4	11	0	2422	5,21
Genipa americana L.	4	9	0	2074	4,46
Clidemia andersonii Wurdack	6	6	0	1806	3,89
Clarisia racemosa Ruiz & Pav.	1	8	2	1535	3,30
Luehea seemannii Triana & Planch	1	7	0	1345	2,89
Crateva tapia L.	4	4	0	1204	2,59
Gustavia superba (Kunth) O.Berg	9	0	0	1143	2,46



Especie	Suprimido	Codominante	Dominante	Ps	Ps%
Platymiscium pinnatum (Jacq.)	0	6	0	1044	2,25
Dugand			-		
Bursera simaruba (L.) Sarg.	5	2	0	983	2,12
Ficus citrifolia Mill.	2	4	0	950	2,04
Jacaranda copaia (Aubl.) D.Don	2	4	0	950	2,04
Inga macrophylla Willd.	3	3	0	903	1,94
Cedrela odorata L.	1	4	0	823	1,77
Swietenia macrophylla King	1	4	0	823	1,77
Apeiba membranacea Spruce ex Benth.	3	2	0	729	1,57
Couratari sp.	0	4	0	696	1,50
Cecropia peltata L.	5	0	0	635	1,37
Schizolobium parahyba (Vell.) S.F.Blake	0	3	2	538	1,16
Lecythis ampla Miers	0	3	0	522	1,12
Mouriri sp.	0	3	0	522	1,12
Centrolobium paraense Tul.	1	2	0	475	1,02
Lecythis sp.	1	2	0	475	1,02
Casearia decandra Jacq.	2	1	0	428	0,92
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	2	1	0	428	0,92
Malouetia sp.	3	0	0	381	0,82
Goethalsia meiantha (Donn.Sm.) Burret	0	2	0	348	0,75
Lecythis minor Jacq.	0	2	0	348	0,75
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2	0	0	254	0,55
Vismia macrophylla Kunth	2	0	0	254	0,55
Pentaclethra macroloba (Willd.) Kuntze	0	1	1	182	0,39
Aspidosperma polyneuron Müll.Arg.	0	1	0	174	0,37
Couroupita guianensis Aubl.	0	1	0	174	0,37
Dipteryx sp.	0	1	0	174	0,37
Inga edulis Mart.	0	1	0	174	0,37
Trichospermum sp.	0	1	0	174	0,37
Albizia saman (Jacq.) Merr.	1	0	0	127	0,27
Annona purpurea Moc. & Sessé ex Dunal	1	0	0	127	0,27
Cordia collococca L.	1	0	0	127	0,27
Gliricidia sepium (Jacq.) Walp.	1	0	0	127	0,27
Humiriastrum sp.	1	0	0	127	0,27
Matisia sp.	1	0	0	127	0,27

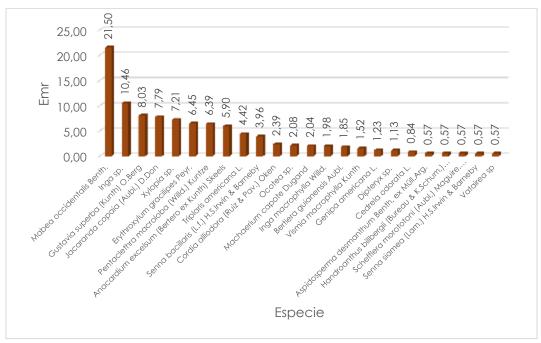
Figura 32. Distribución de la posición sociológica de las especies del bosque abierto alto de tierra firme

5.5.2.2.3. Analisis del sotobosque

Categoría de tamaño absoluta

En el análisis de la regeneración natural la especie que presenta mayor participación es *Mabea occidentalis* Benth. con un categoría de tamaño de 28,73%; seguido de *Inga sp.* con una categoría de tamaño de 11,11% (Tabla 87) (Figura 33).

Tabla 87. Cálculo de la estructura de sotobosque en el bosque abierto alto de tierra firme


Especie	AB%	FA%	СТаЕМ%	Emr
Mabea occidentalis Benth.	25,43	10,34	28,73	21,50
Inga sp.	11,11	9,20	11,06	10,46
Gustavia superba (Kunth) O.Berg	7,65	9,20	7,24	8,03
Jacaranda copaia (Aubl.) D.Don	7,65	9,20	6,52	7,79
Xylopia sp.	7,16	6,90	7,58	7,21
Erythroxylum gracilipes Peyr.	8,40	3,45	7,51	6,45
Pentaclethra macroloba (Willd.) Kuntze	5,19	9,20	4,79	6,39
Anacardium excelsum (Bertero ex Kunth) Skeels	6,42	5,75	5,53	5,90
Triplaris americana L.	3,70	5,75	3,80	4,42
Senna bacillaris (L.f.) H.S.Irwin & Barneby	2,47	6,90	2,52	3,96

Especie	AB%	FA%	СТаЕМ%	Emr
Cordia alliodora (Ruiz & Pav.) Oken	2,47	2,30	2,40	2,39
Ocotea sp.	1,48	3,45	1,32	2,08
Machaerium capote Dugand	1,73	2,30	2,10	2,04
Inga macrophylla Willd.	1,98	2,30	1,66	1,98
Bertiera guianensis Aubl.	2,22	1,15	2,18	1,85
Vismia macrophylla Kunth	1,73	1,15	1,70	1,52
Genipa americana L.	0,74	2,30	0,64	1,23
Dipteryx sp.	0,49	2,30	0,60	1,13
Cedrela odorata L.	0,74	1,15	0,64	0,84
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,25	1,15	0,30	0,57
Handroanthus billbergii (Bureau & K.Schum.) S.O.Grose	0,25	1,15	0,30	0,57
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,25	1,15	0,30	0,57
Senna siamea (Lam.) H.S.Irwin & Barneby	0,25	1,15	0,30	0,57
Vatairea sp	0,25	1,15	0,30	0,57

Figura 33. Distribución del sotobosque del bosque abierto alto de tierra firme

Fuente: Elaboración equipo técnico

Índice de valor de importancia ampliado (IVIA)

La especie con mayor valor de importancia en el bosque es *Xylopia sp.*, el cual obtuvo un valor de 40,50 de IVIA con la mayor significancia, debido a los valores de IVI y Ps. La

especie *Inga sp.* presenta un valor de IVI de 34,07, siendo el IVI y Emr los dominantes para su posición (Tabla 88) (Figura 34).

Tabla 88. Índice de valor de importancia ampliado para el bosque abierto alto de tierra firme

Especie	IVI	PSr%	Emr	IVIA
Xylopia sp.	22,65	10,64	7,21	40,50
Inga sp.	16,14	7,47	10,46	34,07
Sloanea sp.	25,40	5,84	0,00	31,25
Spondias mombin L.	20,03	7,33	0,00	27,36
Aspidosperma desmanthum Benth. ex Müll.Arg.	16,79	5,73	0,57	23,09
Mabea occidentalis Benth.	0,00	0,00	21,50	21,50
Heliocarpus americanus L.	14,93	5,21	0,00	20,14
Apeiba glabra Aubl.	14,82	5,21	0,00	20,03
Gustavia superba (Kunth) O.Berg	6,20	2,46	8,03	16,69
Genipa americana L.	10,88	4,46	1,23	16,57
Clarisia racemosa Ruiz & Pav.	12,59	3,30	0,00	15,90
Jacaranda copaia (Aubl.) D.Don	5,75	2,04	7,79	15,58
Clidemia andersonii Wurdack	10,29	3,89	0,00	14,17
Luehea seemannii Triana & Planch	10,01	2,89	0,00	12,90
Ficus citrifolia Mill.	8,80	2,04	0,00	10,84
Crateva tapia L.	7,18	2,59	0,00	9,77
Inga macrophylla Willd.	5,59	1,94	1,98	9,51
Platymiscium pinnatum (Jacq.) Dugand	6,52	2,25	0,00	8,77
Bursera simaruba (L.) Sarg.	6,60	2,12	0,00	8,72
Pentaclethra macroloba (Willd.) Kuntze	1,86	0,39	6,39	8,64
Cedrela odorata L.	5,99	1,77	0,84	8,60
Swietenia macrophylla King	5,83	1,77	0,00	7,60
Schizolobium parahyba (Vell.) S.F.Blake	6,40	1,16	0,00	7,56
Erythroxylum gracilipes Peyr.	0,00	0,00	6,45	6,45
Centrolobium paraense Tul.	5,06	1,02	0,00	6,08
Cecropia peltata L.	4,60	1,37	0,00	5,96
Anacardium excelsum (Bertero ex Kunth) Skeels	0,00	0,00	5,90	5,90
Apeiba membranacea Spruce ex Benth.	3,70	1,57	0,00	5,27
Couratari sp.	3,69	1,50	0,00	5,19
Mouriri sp.	3,86	1,12	0,00	4,99
Triplaris americana L.	0,00	0,00	4,42	4,42
Malouetia sp.	3,50	0,82	0,00	4,32
Vismia macrophylla Kunth	2,12	0,55	1,52	4,19
Casearia decandra Jacq.	3,26	0,92	0,00	4,18
Lecythis sp.	3,11	1,02	0,00	4,14

Especie	IVI	PSr%	Emr	IVIA
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	2,64	0,92	0,57	4,13
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,00	0,00	3,96	3,96
Lecythis minor Jacq.	3,03	0,75	0,00	3,78
Lecythis ampla Miers	2,63	1,12	0,00	3,75
Goethalsia meiantha (Donn.Sm.) Burret	2,05	0,75	0,00	2,80
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,23	0,55	0,00	2,77
Dipteryx sp.	1,14	0,37	1,13	2,65
Cordia alliodora (Ruiz & Pav.) Oken	0,00	0,00	2,39	2,39
Ocotea sp.	0,00	0,00	2,08	2,08
Machaerium capote Dugand	0,00	0,00	2,04	2,04
Albizia saman (Jacq.) Merr.	1,71	0,27	0,00	1,99
Humiriastrum sp.	1,65	0,27	0,00	1,93
Bertiera guianensis Aubl.	0,00	0,00	1,85	1,85
Gliricidia sepium (Jacq.) Walp.	1,28	0,27	0,00	1,55
Aspidosperma polyneuron Müll.Arg.	1,15	0,37	0,00	1,52
Couroupita guianensis Aubl.	1,12	0,37	0,00	1,50
Trichospermum sp.	1,04	0,37	0,00	1,42
Inga edulis Mart.	0,98	0,37	0,00	1,36
Matisia sp.	1,08	0,27	0,00	1,35
Cordia collococca L.	1,07	0,27	0,00	1,34
Annona purpurea Moc. & Sessé ex Dunal	1,04	0,27	0,00	1,31
Handroanthus billbergii (Bureau & K.Schum.) S.O.Grose	0,00	0,00	0,57	0,57
Senna siamea (Lam.) H.S.Irwin & Barneby	0,00	0,00	0,57	0,57
Vatairea sp	0,00	0,00	0,57	0,57

8,72 Bursera simaruba (L.) Sarg. Platymiscium pinnatum (Jacq.) Dugand 9,51 Inga macrophylla Willd. 9.77 Crateva tapia L. 10.84 Ficus citrifolia Mill. 12,90 Luehea seemannii Triana & Planch 14,17 Clidemia andersonii Wurdack 15,58 Jacaranda copaia (Aubl.) D.Don 15,90 Clarisia racemosa Ruiz & Pav. 16,57 Genipa americana L. 16,69 Gustavia superba (Kunth) O.Berg 20,03 Apeiba glabra Aubl. 20,14 Heliocarpus americanus L. 21,50 Mabea occidentalis Benth. 23,09 Aspidosperma desmanthum Benth. ex Müll.Arg. 27,36 Spondias mombin L. 31.25 Sloanea sp. 34,07 Inga sp. 40,50 Xylopia sp. 0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 ■ IVI ■ PSr% ■ Emr ■ IVIA

Figura 34. Distribución del IVIA para el bosque abierto alto de tierra firme

5.5.2.2.2.4. Indicadores de diversidad alfa del bosque abierto alto de tierra firme

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 89.

Tabla 89. Índices de biodiversidad alfa del bosque abierto alto de tierra firme

Parámetro	Valor
Dmn	2,71
Dsi	(1/0,05) = 20
d	(1/1,12)= 0.89
H'	3,38
dmg	8,06

Fuente: Elaboración equipo técnico

El índice de Menhinick muestra una tendencia alta a la diversidad, siendo heterogéneo en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra una alta diversidad del bosque, teniendo en cuenta que la probabilidad de sacar individuos iguales es muy baja, no obstante, presenta baja dominancia de especies.

Para la cobertura de bosque abierto alto de tierra firme, el índice de Shannon establece que es típicamente diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es altamente biodiverso.

5.5.2.3. Cobertura de Bosque Abierto Bajo de Tierra Firme

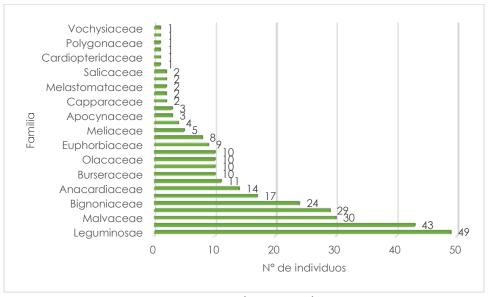
El bosque abierto bajo de tierra firme se encuentra constituido por un total de 89 especies distribuidas en 29 familias registradas en el inventario forestal.

En la Tabla 90, se identifica la familia Leguminosae y Araliaceae las que presentan la mayor representación. A su vez se identifica que la familia Araliaceae se encuentra representada en 3 generos y 3 especies, resaltando la especie *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con 30 individuos (Figura 35).

Tabla 90. Composición florística del bosque abierto bajo de tierra firme

Familia	N° de ind / Familia	Especie	N° de ind/ especie
		Tapirira guianensis Aubl.	1
		Anacardium excelsum (Bertero ex Kunth) Skeels	1
Anacardiaceae	14	Astronium graveolens Jacq.	9
Anacaralaceae	14	Mangifera sp.	1
		Ochoterenaea colombiana F.A.Barkley	1
		Spondias mombin L.	1
		Unonopsis sp.	1
Annonaceae	8	Duguetia sp.	1
7 il il ioriaceae	O	Guatteria sp.	3
		Xylopia sp.	3
		Aspidosperma album (Vahl) Benoist ex Pichon	1
Apocynaceae	3	Aspidosperma desmanthum Benth. ex Müll.Arg.	1
		Aspidosperma sp.	
		Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	30
Araliaceae	43	Aralia excelsa (Griseb.) J.Wen	1
		Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	12
Arecaceae	3	Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	2
7 (10000000		Wettinia hirsuta Burret	1
		Handroanthus chrysanthus (Jacq.) S.O.Grose	15
Bignoniaceae	24	Handroanthus guayacan (Seem.) S.O.Grose	2
bigi loi liaccac	24	Jacaranda copaia (Aubl.) D.Don	4
		Tabebuia rosea (Bertol.) Bertero ex A.DC.	3
Bixaceae	1	Cochlospermum vitifolium (Willd.) Spreng.	1
		Cordia alliodora (Ruiz & Pav.) Oken	15
Boraginaceae	29	Cordia collococca L.	13
		Cordia sp.	1
Burseraceae	10	Bursera simaruba (L.) Sarg.	8

Familia	N° de ind / Familia	Especie	N° de ind/ especie
		Protium sagotianum Marchand	2
	0	Crateva tapia L.	1
Capparaceae	2	Cynophalla verrucosa (Jacq.) J.Presl	1
Cardiopteridace ae	1	Dendrobangia boliviana Rusby	1
Combrotacoa	2	Buchenavia tetraphylla (Aubl.) R.A.Howard	1
Combretaceae	2	Terminalia sp.	1
- Fundarbiggogg	9	Sapium glandulosum (L.) Morong	5
Euphorbiaceae	7	Sapium sp.	4
Lly vo avia a a a a a	1.1	Vismia baccifera (L.) Planch. & Triana	1
Hypericaceae	11	Vismia macrophylla Kunth	10
Lauraceae	1	Persea caerulea (Ruiz & Pav.) Mez	1
		Cariniana pyriformis Miers	1
		Couratari sp.	1
1 11.5.1	17	Eschweilera caudiculata R.Knuth	2
Lecythidaceae	17	Eschweilera sp.	1
		Lecythis minor Jacq.	11
		Lecythis tuyrana Pittier	1
		Albizia niopoides (Benth.) Burkart	1
		Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2
		Albizia saman (Jacq.) Merr.	4
		Bauhinia aculeata L.	1
		Brownea ariza Benth.	1
		Enterolobium cyclocarpum (Jacq.) Griseb.	4
		Hymenaea courbaril L.	1
		Inga edulis Mart.	1
Leguminosae	49	Inga macrophylla Willd.	2
		Inga oerstediana Benth.	3
		Inga sp.	9
		Macrolobium sp.	1
		Pentaclethra macroloba (Willd.) Kuntze	2
		Pithecellobium lanceolatum (Willd.) Benth.	1
		Schizolobium parahyba (Vell.) S.F.Blake	1
		Senna bacillaris (L.f.) H.S.Irwin & Barneby	1
		Vatairea sp	14
		Apeiba glabra Aubl.	2
		Ceiba pentandra (L.) Gaertn.	5
Malvaceae	30	Goethalsia meiantha (Donn.Sm.) Burret	3
		Guazuma ulmifolia Lam.	10



Familia	N° de ind / Familia	Especie	N° de ind/ especie
		Heliocarpus americanus L.	1
		Matisia sp.	1
		Ochroma pyramidale (Cav. ex Lam.) Urb.	4
		Pseudobombax septenatum (Jacq.) Dugand	1
		Sterculia apetala (Jacq.) H.Karst.	3
Melastomatace		Bellucia pentamera Naudin	1
ae	2	Bellucia sp.	1
		Cedrela odorata L.	3
Meliaceae		Cedrela sp.	1
	5	Trichilia hirta L.	1
		Ficus insipida Willd.	2
Moraceae		Maclura tinctoria (L.) D.Don ex Steud.	4
	10	Trophis caucana (Pittier) C.C. Berg	4
Muristiagaaga		Virola sebifera Aubl.	1
Myristicaceae	2	Virola sp.	1
Olacaceae	10	Heisteria acuminata (Humb. & Bonpl.) Engl.	10
Polygonaceae	1	Triplaris americana L.	1
Salicaceae	2	Casearia arborea (Rich.) Urb.	2
		Matayba sp.	3
Sapindaceae	4	Talisia sp.	1
Solanaceae	1	Solanum microleprodes Bitter	1
Urtiogoogs		Cecropia insignis Liebm.	1
Urticaceae	10	Cecropia peltata L.	9
Vochysiaceae	1	Vochysia ferruginea Mart.	1

Figura 35. Distribución florística de las familias identificadas en el bosque abierto bajo de tierra firme

5.5.2.3.1. Indicadores dasométricos del bosque abierto bajo de tierra firme.

El bosque abierto bajo de tierra firme presenta un total de 305 individuos / ha en 89 especies; siendo la de mayor número la especie *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con 30 individuos, seguido de la especie *Cordia alliodora* (Ruiz & Pav.) Oken y *Handroanthus chrysanthus* (Jacq.) S.O.Grose con 15 individuos por ha. En la Tabla 91, se presenta el N° de individuos de cada una de las especies por ha (Figura 36).

Tabla 91. Nº de individuos/especie/Ha del bosque abierto bajo de tierra firme

Especie	N° de Ind /especie/ ha
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	30
Cordia alliodora (Ruiz & Pav.) Oken	15
Handroanthus chrysanthus (Jacq.) S.O.Grose	15
Vatairea sp	14
Cordia collococca L.	13
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	12
Lecythis minor Jacq.	11
Guazuma ulmifolia Lam.	10
Heisteria acuminata (Humb. & Bonpl.) Engl.	10
Vismia macrophylla Kunth	10
Astronium graveolens Jacq.	9
Cecropia peltata L.	9
Inga sp.	9

Especie	N° de Ind /especie/ ha
Bursera simaruba (L.) Sarg.	8
Ceiba pentandra (L.) Gaertn.	5
Sapium glandulosum (L.) Morong	5
Albizia saman (Jacq.) Merr.	4
Enterolobium cyclocarpum (Jacq.) Griseb.	4
Jacaranda copaia (Aubl.) D.Don	4
Maclura tinctoria (L.) D.Don ex Steud.	4
Ochroma pyramidale (Cav. ex Lam.) Urb.	4
Sapium sp.	4
Trophis caucana (Pittier) C.C. Berg	4
Cedrela odorata L.	3
Goethalsia meiantha (Donn.Sm.) Burret	3
Guatteria sp.	3
Inga oerstediana Benth.	3
Matayba sp.	3
Sterculia apetala (Jacq.) H.Karst.	3
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3
Xylopia sp.	3
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2
Apeiba glabra Aubl.	2
Casearia arborea (Rich.) Urb.	2
Eschweilera caudiculata R.Knuth	2
Ficus insipida Willd.	2
Handroanthus guayacan (Seem.) S.O.Grose	2
Inga macrophylla Willd.	2
Pentaclethra macroloba (Willd.) Kuntze	2
Protium sagotianum Marchand	2
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	2
Albizia niopoides (Benth.) Burkart	1
Anacardium excelsum (Bertero ex Kunth) Skeels	1
Aralia excelsa (Griseb.) J.Wen	1
Aspidosperma album (Vahl) Benoist ex Pichon	1
Aspidosperma desmanthum Benth. ex Müll.Arg.	1
Aspidosperma sp.	1
Bauhinia aculeata L.	1
Bellucia pentamera Naudin	1
Bellucia sp.	1
Brownea ariza Benth.	1
Buchenavia tetraphylla (Aubl.) R.A.Howard	1
Cariniana pyriformis Miers	1

Especie	N° de Ind /especie/ ha
Cecropia insignis Liebm.	1
Cedrela sp.	1
Cochlospermum vitifolium (Willd.) Spreng.	1
Cordia sp.	1
Couratari sp.	1
Crateva tapia L.	1
Cynophalla verrucosa (Jacq.) J.Presl	1
Dendrobangia boliviana Rusby	1
Duguetia sp.	1
Eschweilera sp.	1
Heliocarpus americanus L.	1
Hymenaea courbaril L.	1
Inga edulis Mart.	1
Lecythis tuyrana Pittier	1
Macrolobium sp.	1
Mangifera sp.	1
Matisia sp.	1
Ochoterenaea colombiana F.A.Barkley	1
Persea caerulea (Ruiz & Pav.) Mez	1
Pithecellobium lanceolatum (Willd.) Benth.	1
Pseudobombax septenatum (Jacq.) Dugand	1
Schizolobium parahyba (Vell.) S.F.Blake	1
Senna bacillaris (L.f.) H.S.Irwin & Barneby	1
Solanum microleprodes Bitter	1
Spondias mombin L.	1
Talisia sp.	1
Tapirira guianensis Aubl.	1
Terminalia sp.	1
Trichilia hirta L.	1
Triplaris americana L.	1
Unonopsis sp.	1
Virola sebifera Aubl.	1
Virola sp.	1
Vismia baccifera (L.) Planch. & Triana	1
Vochysia ferruginea Mart.	1
Wettinia hirsuta Burret	1

30 N° de individuos 25 20 15 10 10 5 ologo control de la control de 0 3. Handrodylinis chalchins. Blittlindologide Rudhir Jorg 3 Centilled the total of the state of the st the stand local THE POSTON HAND SOUTH OF THE POSTON OF THE P by self all dud liver in the Let Alle Inter Justick Lorn Heisteria Green of the Hard of Especie

Figura 36. Distribución de Nº de individuos por especie

La cobertura de bosque abierto bajo de tierra firme presenta un área basal por ha de 15,3139 m² en las 89 especies, obteniendo un área basal promedio/individuo/especie de 0,0504 m² y área basal promedio/especie /hectárea de 0,1710 m²; en la Tabla 92 se presenta los indicadores detallados por especie.

Tabla 92. Indicadores por especie de área basal

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Albizia niopoides (Benth.) Burkart	0,0501	0,0568
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,0933	0,0529
Albizia saman (Jacq.) Merr.	0,4395	0,1150
Anacardium excelsum (Bertero ex Kunth) Skeels	0,1075	0,1827
Apeiba glabra Aubl.	0,0401	0,0171
Aralia excelsa (Griseb.) J.Wen	0,0627	0,0710
Aspidosperma album (Vahl) Benoist ex Pichon	0,0277	0,0314
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,0130	0,0220
Aspidosperma sp.	0,0073	0,0073
Astronium graveolens Jacq.	0,6567	0,0720
Bauhinia aculeata L.	0,0024	0,0024
Bellucia pentamera Naudin	0,0305	0,0207
Bellucia sp.	0,0079	0,0079
Brownea ariza Benth.	0,0099	0,0168
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,0261	0,0444
Bursera simaruba (L.) Sarg.	0,5024	0,0657

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Cariniana pyriformis Miers	0,0142	0,0142
Casearia arborea (Rich.) Urb.	0,0564	0,0274
Cecropia insignis Liebm.	0,0259	0,0440
Cecropia peltata L.	0,3538	0,0388
Cedrela odorata L.	0,0784	0,0296
Cedrela sp.	0,0231	0,0196
Ceiba pentandra (L.) Gaertn.	0,7543	0,1603
Cochlospermum vitifolium (Willd.) Spreng.	0,0143	0,0121
Cordia alliodora (Ruiz & Pav.) Oken	0,4867	0,0285
Cordia collococca L.	0,4480	0,0311
Cordia sp.	0,0415	0,0282
Couratari sp.	0,0269	0,0458
Crateva tapia L.	0,0072	0,0123
Cynophalla verrucosa (Jacq.) J.Presl	0,0047	0,0047
Dendrobangia boliviana Rusby	0,1619	0,1619
Duguetia sp.	0,1892	0,3216
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0312	0,0353
Eschweilera caudiculata R.Knuth	0,1239	0,0301
Eschweilera sp.	0,0837	0,0474
Ficus insipida Willd.	0,0128	0,0128
Goethalsia meiantha (Donn.Sm.) Burret	0,2287	0,1111
Guatteria sp.	0,1267	0,0431
Guazuma ulmifolia Lam.	0,0585	0,0181
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1869	0,0187
Handroanthus guayacan (Seem.) S.O.Grose	0,4926	0,0233
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,0855	0,0415
Heliocarpus americanus L.	0,7779	0,0802
Hymenaea courbaril L.	0,0715	0,0486
Inga edulis Mart.	0,0025	0,0025
Inga macrophylla Willd.	0,0071	0,0071
Inga oerstediana Benth.	0,1127	0,0639
Inga sp.	0,3547	0,1096
Jacaranda copaia (Aubl.) D.Don	0,7153	0,0811
Lecythis minor Jacq.	0,2810	0,0637
Lecythis tuyrana Pittier	0,3427	0,0307
Maclura tinctoria (L.) D.Don ex Steud.	0,0303	0,0257
Macrolobium sp.	0,2445	0,0640
Mangifera sp.	0,0128	0,0218
Matayba sp.	0,0181	0,0616
Matisia sp.	0,0572	0,0194

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Ochoterenaea colombiana F.A.Barkley	0,0217	0,0368
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,0032	0,0032
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,5212	0,1477
Pentaclethra macroloba (Willd.) Kuntze	0,3171	0,0229
Persea caerulea (Ruiz & Pav.) Mez	0,0515	0,0292
Pithecellobium lanceolatum (Willd.) Benth.	0,0546	0,0928
Protium sagotianum Marchand	0,0173	0,0173
Pseudobombax septenatum (Jacq.) Dugand	0,3262	0,1584
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,0619	0,1052
Sapium glandulosum (L.) Morong	0,0752	0,0365
Sapium sp.	0,1144	0,0243
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,7944	0,2251
Schizolobium parahyba (Vell.) S.F.Blake	1,8788	0,0528
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,0414	0,0704
Solanum microleprodes Bitter	0,0567	0,0643
Spondias mombin L.	0,0036	0,0036
Sterculia apetala (Jacq.) H.Karst.	0,0447	0,0380
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,4259	0,1609
Talisia sp.	0,0806	0,0305
Tapirira guianensis Aubl.	0,0025	0,0025
Terminalia sp.	0,0244	0,0244
Trichilia hirta L.	0,0339	0,0577
Triplaris americana L.	0,0204	0,0347
Trophis caucana (Pittier) C.C. Berg	0,0273	0,0273
Unonopsis sp.	0,0619	0,0162
Vatairea sp	0,0449	0,0305
Virola sebifera Aubl.	0,5198	0,0321
Virola sp.	0,0361	0,0409
Vismia baccifera (L.) Planch. & Triana	0,0305	0,0207
Vismia macrophylla Kunth	0,0112	0,0191
Vochysia ferruginea Mart.	0,2865	0,0295
Wettinia hirsuta Burret	0,0071	0,0071
Xylopia sp.	0,0029	0,0029

En cuanto a los indicadores de volumen se encuentra distribuido en 10 clases diamétricas, siendo la clase II que presenta los mayores volúmenes.

Para el caso del volumen total se obtiene 144,086 m³; en la Figura 37 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de bosque abierto bajo de

tierra firme, encontrándose la clase II con un volumen de 39,0383 m³ seguido de la clase III con 30,2780 m³.

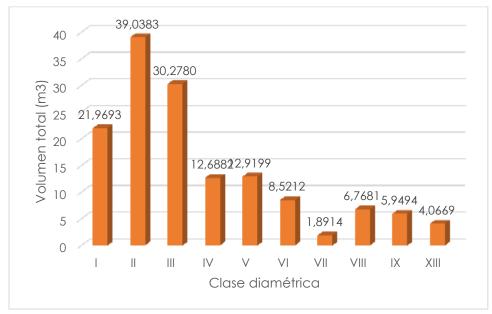


Figura 37. Distribución del volumen total por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen total por especie se calcula un promedio de 1,60 m³ y un volumen promedio por especie por individuo de 0,47 m³; en la Tabla 93 se evidencia el volumen de cada una de las especies por hectárea y en la Tabla 94 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 93. Indicadores por especie de volumen total

Especie	VT/sp / ha	VT ind/sp/ha
Albizia niopoides (Benth.) Burkart	0,4510	0,5111
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,9158	0,5189
Albizia saman (Jacq.) Merr.	3,7104	0,9704
Anacardium excelsum (Bertero ex Kunth) Skeels	1,2270	2,0859
Apeiba glabra Aubl.	0,2262	0,0961
Aralia excelsa (Griseb.) J.Wen	0,5853	0,6634
Aspidosperma album (Vahl) Benoist ex Pichon	0,2950	0,3343
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,1234	0,2098
Aspidosperma sp.	0,0382	0,0382
Astronium graveolens Jacq.	5,2909	0,5803
Bauhinia aculeata L.	0,0109	0,0109
Bellucia pentamera Naudin	0,2148	0,1460

Especie	VT/sp / ha	VT ind/sp/ha
Bellucia sp.	0,0563	0,0563
Brownea ariza Benth.	0,0678	0,1152
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,2070	0,3520
Bursera simaruba (L.) Sarg.	5,3812	0,7037
Cariniana pyriformis Miers	0,1388	0,1388
Casearia arborea (Rich.) Urb.	0,4431	0,2152
Cecropia insignis Liebm.	0,2910	0,4947
Cecropia peltata L.	3,1181	0,3420
Cedrela odorata L.	0,7225	0,2730
Cedrela sp.	0,1666	0,1416
Ceiba pentandra (L.) Gaertn.	8,3332	1,7708
Cochlospermum vitifolium (Willd.) Spreng.	0,0785	0,0667
Cordia alliodora (Ruiz & Pav.) Oken	3,8092	0,2233
Cordia collococca L.	3,5958	0,2495
Cordia sp.	0,3858	0,2624
Couratari sp.	0,3853	0,6551
Crateva tapia L.	0,0282	0,0480
Cynophalla verrucosa (Jacq.) J.Presl	0,0308	0,0308
Dendrobangia boliviana Rusby	3,5283	3,5283
Duguetia sp.	0,2058	0,2332
Enterolobium cyclocarpum (Jacq.) Griseb.	0,8007	0,1945
Eschweilera caudiculata R.Knuth	0,8687	0,4923
Eschweilera sp.	0,0916	0,0916
Ficus insipida Willd.	2,6443	1,2844
Goethalsia meiantha (Donn.Sm.) Burret	1,2732	0,4329
Guatteria sp.	0,4588	0,1418
Guazuma ulmifolia Lam.	1,1783	0,1178
Handroanthus chrysanthus (Jacq.) S.O.Grose	3,3000	0,1558
Handroanthus guayacan (Seem.) S.O.Grose	0,6669	0,3239
Heisteria acuminata (Humb. & Bonpl.) Engl.	9,8496	1,0148
Heliocarpus americanus L.	0,6119	0,4161
Hymenaea courbaril L.	0,0133	0,0133
Inga edulis Mart.	0,0276	0,0276
Inga macrophylla Willd.	0,8919	0,5054
Inga oerstediana Benth.	3,3773	1,0439
Inga sp.	7,6796	0,8704
Jacaranda copaia (Aubl.) D.Don	3,3886	0,7681
Lecythis minor Jacq.	2,7988	0,2504
Lecythis tuyrana Pittier	0,1868	0,1588
Maclura tinctoria (L.) D.Don ex Steud.	1,6106	0,4212

Especie	VT/sp / ha	VT ind/sp/ha
Macrolobium sp.	0,0783	0,1330
Mangifera sp.	0,0825	0,2804
Matayba sp.	0,3999	0,1360
Matisia sp.	0,1342	0,2281
Ochoterenaea colombiana F.A.Barkley	0,0208	0,0208
Ochroma pyramidale (Cav. ex Lam.) Urb.	6,3799	1,8076
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	3,0951	0,2239
Pentaclethra macroloba (Willd.) Kuntze	0,4064	0,2303
Persea caerulea (Ruiz & Pav.) Mez	0,5146	0,8748
Pithecellobium lanceolatum (Willd.) Benth.	0,1463	0,1463
Protium sagotianum Marchand	4,3142	2,0955
Pseudobombax septenatum (Jacq.) Dugand	0,9255	1,5734
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,5476	0,2660
Sapium glandulosum (L.) Morong	0,7820	0,1662
Sapium sp.	4,9233	1,3949
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	18,2719	0,5134
Schizolobium parahyba (Vell.) S.F.Blake	0,4564	0,7759
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,4102	0,4648
Solanum microleprodes Bitter	0,0139	0,0139
Spondias mombin L.	0,3307	0,2811
Sterculia apetala (Jacq.) H.Karst.	5,1791	1,9566
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,6642	0,2509
Talisia sp.	0,0149	0,0149
Tapirira guianensis Aubl.	0,2374	0,2374
Terminalia sp.	0,2574	0,4376
Trichilia hirta L.	0,1530	0,2600
Triplaris americana L.	0,3549	0,3549
Trophis caucana (Pittier) C.C. Berg	0,4235	0,1108
Unonopsis sp.	0,3054	0,2077
Vatairea sp	5,0188	0,3103
Virola sebifera Aubl.	0,3189	0,3615
Virola sp.	0,2079	0,1414
Vismia baccifera (L.) Planch. & Triana	0,0694	0,1180
Vismia macrophylla Kunth	2,0530	0,2115
Vochysia ferruginea Mart.	0,0552	0,0552
Wettinia hirsuta Burret	0,0149	0,0149
Xylopia sp.	0,7482	0,2827

Tabla 94. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /ha/Ct diam.
I	21,9693
Albizia niopoides (Benth.) Burkart	0,0665
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,0638
Apeiba glabra Aubl.	0,2262
Aralia excelsa (Griseb.) J.Wen	0,0385
Aspidosperma album (Vahl) Benoist ex Pichon	0,0478
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,1234
Aspidosperma sp.	0,0382
Astronium graveolens Jacq.	0,1053
Bauhinia aculeata L.	0,0109
Bellucia pentamera Naudin	0,2148
Bellucia sp.	0,0563
Brownea ariza Benth.	0,0678
Bursera simaruba (L.) Sarg.	0,4032
Casearia arborea (Rich.) Urb.	0,2519
Cecropia insignis Liebm.	0,0620
Cecropia peltata L.	0,9135
Cedrela odorata L.	0,2469
Cedrela sp.	0,1666
Ceiba pentandra (L.) Gaertn.	0,2808
Cochlospermum vitifolium (Willd.) Spreng.	0,0785
Cordia alliodora (Ruiz & Pav.) Oken	1,7361
Cordia collococca L.	1,1129
Cordia sp.	0,1171
Crateva tapia L.	0,0282
Cynophalla verrucosa (Jacq.) J.Presl	0,0308
Duguetia sp.	0,0384
Enterolobium cyclocarpum (Jacq.) Griseb.	0,2819
Eschweilera caudiculata R.Knuth	0,0450
Ficus insipida Willd.	0,0593
Goethalsia meiantha (Donn.Sm.) Burret	0,3103
Guatteria sp.	0,4588
Guazuma ulmifolia Lam.	1,1100
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,7073
Handroanthus guayacan (Seem.) S.O.Grose	0,2330
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,7169
Heliocarpus americanus L.	0,0923
Hymenaea courbaril L.	0,0133

Clase diamétrica / Especie	VTsp /ha/Ct diam.	
Inga edulis Mart.	0,0276	
Inga oerstediana Benth.	0,0672	
Inga sp.	0,4955	
Jacaranda copaia (Aubl.) D.Don	0,1059	
Lecythis minor Jacq.	0,9021	
Lecythis tuyrana Pittier	0,0970	
Maclura tinctoria (L.) D.Don ex Steud.	0,0881	
Macrolobium sp.	0,0783	
Matayba sp.	0,2141	
Ochoterenaea colombiana F.A.Barkley	0,0208	
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,0460	
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,8566	
Pentaclethra macroloba (Willd.) Kuntze	0,2798	
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,3110	
Sapium glandulosum (L.) Morong	0,5679	
Sapium sp.	0,2458	
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	1,6437	
Solanum microleprodes Bitter	0,0139	
Spondias mombin L.	0,0585	
Sterculia apetala (Jacq.) H.Karst.	0,0166	
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,3405	
Talisia sp.	0,0149	
Terminalia sp.	0,0365	
Trophis caucana (Pittier) C.C. Berg	0,3366	
Unonopsis sp.	0,0818	
Vatairea sp	1,3287	
Virola sebifera Aubl.	0,0791	
Virola sp.	0,0684	
Vismia baccifera (L.) Planch. & Triana	0,0694	
Vismia macrophylla Kunth	0,7149	
Vochysia ferruginea Mart.	0,0552	
Wettinia hirsuta Burret	0,0149	
Xylopia sp.	0,1374	
ll .	39,0383	
Eschweilera sp.	0,0916	
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2968	
Anacardium excelsum (Bertero ex Kunth) Skeels	0,1534	
Aralia excelsa (Griseb.) J.Wen	0,2016	
Astronium graveolens Jacq.	2,3279	
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,2070	

Clase diamétrica / Especie	VTsp /ha/Ct diam.
Bursera simaruba (L.) Sarg.	1,1638
Cariniana pyriformis Miers	0,1388
Casearia arborea (Rich.) Urb.	0,1913
Cecropia insignis Liebm.	0,2290
Cecropia peltata L.	1,6803
Cedrela odorata L.	0,2520
Ceiba pentandra (L.) Gaertn.	0,2620
Cordia alliodora (Ruiz & Pav.) Oken	1,8345
Cordia collococca L.	1,9307
Cordia sp.	0,2688
Couratari sp.	0,3853
Enterolobium cyclocarpum (Jacq.) Griseb.	0,5188
Eschweilera caudiculata R.Knuth	0,5863
Ficus insipida Willd.	0,3651
Goethalsia meiantha (Donn.Sm.) Burret	0,7393
Guazuma ulmifolia Lam.	0,0683
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,4105
Heisteria acuminata (Humb. & Bonpl.) Engl.	1,1377
Heliocarpus americanus L.	0,5196
Inga macrophylla Willd.	0,3872
Inga oerstediana Benth.	0,6053
Inga sp.	0,7245
Jacaranda copaia (Aubl.) D.Don	0,8166
Lecythis minor Jacq.	0,4602
Lecythis tuyrana Pittier	0,0898
Maclura tinctoria (L.) D.Don ex Steud.	0,5481
Mangifera sp.	0,0825
Matayba sp.	0,1858
Matisia sp.	0,1342
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,8782
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,2386
Pentaclethra macroloba (Willd.) Kuntze	0,1267
Pithecellobium lanceolatum (Willd.) Benth.	0,1463
Protium sagotianum Marchand	0,1250
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2366
Sapium glandulosum (L.) Morong	0,2141
Sapium sp.	0,6107
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	8,2598
Schizolobium parahyba (Vell.) S.F.Blake	0,2096
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,2040

Clase diamétrica / Especie	VTsp /ha/Ct diam.
Spondias mombin L.	0,2722
Sterculia apetala (Jacq.) H.Karst.	0,1713
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,3236
Trichilia hirta L.	0,1530
Trophis caucana (Pittier) C.C. Berg	0,0869
Unonopsis sp.	0,2236
Vatairea sp	2,2356
Virola sebifera Aubl.	0,2399
Virola sp.	0,1394
Vismia macrophylla Kunth	1,3380
Xylopia sp.	0,6108
III	30,2780
Albizia niopoides (Benth.) Burkart	0,3844
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,5552
Albizia saman (Jacq.) Merr.	1,9904
Aralia excelsa (Griseb.) J.Wen	0,3452
Aspidosperma album (Vahl) Benoist ex Pichon	0,2471
Astronium graveolens Jacq.	1,3725
Bursera simaruba (L.) Sarg.	0,7621
Cedrela odorata L.	0,2237
Ceiba pentandra (L.) Gaertn.	0,2192
Cordia alliodora (Ruiz & Pav.) Oken	0,2386
Cordia collococca L.	0,5522
Dendrobangia boliviana Rusby	0,2662
Duguetia sp.	0,1673
Eschweilera caudiculata R.Knuth	0,2374
Goethalsia meiantha (Donn.Sm.) Burret	0,2237
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1823
Handroanthus guayacan (Seem.) S.O.Grose	0,4339
Heisteria acuminata (Humb. & Bonpl.) Engl.	1,8211
Inga macrophylla Willd.	0,5047
Inga oerstediana Benth.	0,2817
Inga sp.	2,6774
Jacaranda copaia (Aubl.) D.Don	2,4661
Lecythis minor Jacq.	1,0626
Maclura tinctoria (L.) D.Don ex Steud.	0,9744
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,3219
Persea caerulea (Ruiz & Pav.) Mez	0,5146
Protium sagotianum Marchand	0,9811
Pseudobombax septenatum (Jacq.) Dugand	0,9255

Clase diamétrica / Especie	VTsp /ha/Ct diam.
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	6,6248
Schizolobium parahyba (Vell.) S.F.Blake	0,2468
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,2062
Tapirira guianensis Aubl.	0,2374
Terminalia sp.	0,2209
Triplaris americana L.	0,3549
Vatairea sp	1,4544
IV	12,6882
Albizia saman (Jacq.) Merr.	0,7053
Astronium graveolens Jacq.	0,9388
Bursera simaruba (L.) Sarg.	0,4831
Ceiba pentandra (L.) Gaertn.	1,1856
Heisteria acuminata (Humb. & Bonpl.) Engl.	1,8719
Inga sp.	1,8908
Lecythis minor Jacq.	0,3739
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,4528
Protium sagotianum Marchand	0,7232
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	1,1920
Sterculia apetala (Jacq.) H.Karst.	1,8707
V	12,9199
Albizia saman (Jacq.) Merr.	1,0147
Astronium graveolens Jacq.	0,5464
Bursera simaruba (L.) Sarg.	2,5690
Cecropia peltata L.	0,5243
Ceiba pentandra (L.) Gaertn.	0,7821
Ficus insipida Willd.	2,2199
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,6467
Inga oerstediana Benth.	1,5993
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,8461
Protium sagotianum Marchand	0,8284
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,5516
Sterculia apetala (Jacq.) H.Karst.	0,7914
VI	8,5212
Anacardium excelsum (Bertero ex Kunth) Skeels	1,0736
Ceiba pentandra (L.) Gaertn.	1,2525
Inga oerstediana Benth.	0,8238
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,3857
Protium sagotianum Marchand	1,6565
Sterculia apetala (Jacq.) H.Karst.	2,3292
VII	1,8914

Clase diamétrica / Especie	VTsp /ha/Ct diam.
Inga sp.	1,8914
VIII	6,7681
Ceiba pentandra (L.) Gaertn.	2,0568
Dendrobangia boliviana Rusby	3,2621
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,4492
IX	5,9494
Ceiba pentandra (L.) Gaertn.	2,2941
Heisteria acuminata (Humb. & Bonpl.) Engl.	3,6553
XIII	4,0669
Sapium sp.	4,0669

El bosque abierto bajo de tierra firme presenta un volumen de fuste por ha de 118,02 m³, distribuido en 10 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 11,80 m³ (Figura 38)

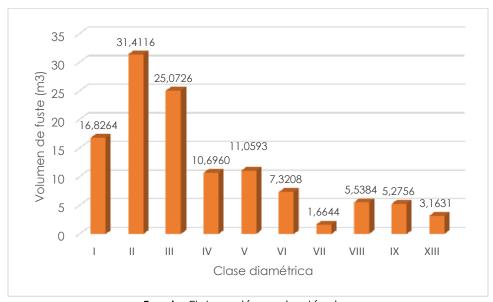


Figura 38. Distribución del volumen del fuste por clase diamétrica

Fuente: Elaboración equipo técnico

De igual forma, el volumen de fuste por especie promedio es de 1,36 m³ y un volumen promedio por especie por individuo de 0,38 m³ de volumen de fuste por individuo por especie. En la Tabla 95 se evidencia el volumen de cada una de las especies y en la Tabla 96 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 95. Indicadores por especie de volumen de fuste

Especie	VF/sp/ha	VF ind/sp/ha
Albizia niopoides (Benth.) Burkart	0,3532	0,4003
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,7509	0,4255
Albizia saman (Jacq.) Merr.	2,9388	0,7686
Anacardium excelsum (Bertero ex Kunth) Skeels	1,0276	1,7470
Apeiba glabra Aubl.	0,1536	0,0653
Aralia excelsa (Griseb.) J.Wen	0,4862	0,5510
Aspidosperma album (Vahl) Benoist ex Pichon	0,2433	0,2758
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,1065	0,1811
Aspidosperma sp.	0,0239	0,0239
Astronium graveolens Jacq.	4,1522	0,4554
Bauhinia aculeata L.	0,0078	0,0078
Bellucia pentamera Naudin	0,1676	0,1140
Bellucia sp.	0,0409	0,0409
Brownea ariza Benth.	0,0549	0,0933
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,1669	0,2837
Bursera simaruba (L.) Sarg.	4,5149	0,5904
Cariniana pyriformis Miers	0,1203	0,1203
Casearia arborea (Rich.) Urb.	0,3474	0,1687
Cecropia insignis Liebm.	0,2526	0,4294
Cecropia peltata L.	2,5144	0,2758
Cedrela odorata L.	0,6030	0,2278
Cedrela sp.	0,1285	0,1092
Ceiba pentandra (L.) Gaertn.	6,9778	1,4828
Cochlospermum vitifolium (Willd.) Spreng.	0,0540	0,0459
Cordia alliodora (Ruiz & Pav.) Oken	2,9937	0,1755
Cordia collococca L.	2,8400	0,1971
Cordia sp.	0,3049	0,2073
Couratari sp.	0,3433	0,5836
Crateva tapia L.	0,0141	0,0240
Cynophalla verrucosa (Jacq.) J.Presl	0,0216	0,0216
Dendrobangia boliviana Rusby	2,8614	2,8614
Duguetia sp.	0,1450	0,1643
Enterolobium cyclocarpum (Jacq.) Griseb.	0,5870	0,1426
Eschweilera caudiculata R.Knuth	0,7422	0,4206
Eschweilera sp.	0,0750	0,0750
Ficus insipida Willd.	2,3470	1,1400
Goethalsia meiantha (Donn.Sm.) Burret	1,0348	0,3518
Guatteria sp.	0,3520	0,1088

Especie	VF/sp/ha	VF ind/sp/ha
Guazuma ulmifolia Lam.	0,8598	0,0860
Handroanthus chrysanthus (Jacq.) S.O.Grose	2,4678	0,1165
Handroanthus guayacan (Seem.) S.O.Grose	0,5452	0,2648
Heisteria acuminata (Humb. & Bonpl.) Engl.	8,5783	0,8838
Heliocarpus americanus L.	0,4850	0,3298
Hymenaea courbaril L.	0,0083	0,0083
Inga edulis Mart.	0,0138	0,0138
Inga macrophylla Willd.	0,7002	0,3968
Inga oerstediana Benth.	2,7033	0,8356
Inga sp.	6,4421	0,7301
Jacaranda copaia (Aubl.) D.Don	2,8650	0,6494
Lecythis minor Jacq.	2,2758	0,2036
Lecythis tuyrana Pittier	0,1377	0,1171
Maclura tinctoria (L.) D.Don ex Steud.	1,2477	0,3263
Macrolobium sp.	0,0616	0,1047
Mangifera sp.	0,0471	0,1602
Matayba sp.	0,3104	0,1055
Matisia sp.	0,0986	0,1676
Ochoterenaea colombiana F.A.Barkley	0,0167	0,0167
Ochroma pyramidale (Cav. ex Lam.) Urb.	5,4198	1,5356
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2,5352	0,1834
Pentaclethra macroloba (Willd.) Kuntze	0,3106	0,1760
Persea caerulea (Ruiz & Pav.) Mez	0,4259	0,7240
Pithecellobium lanceolatum (Willd.) Benth.	0,1125	0,1125
Protium sagotianum Marchand	3,7422	1,8176
Pseudobombax septenatum (Jacq.) Dugand	0,8048	1,3681
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,4218	0,2049
Sapium glandulosum (L.) Morong	0,6008	0,1277
Sapium sp.	3,8449	1,0894
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	15,0057	0,4216
Schizolobium parahyba (Vell.) S.F.Blake	0,3756	0,6386
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,3183	0,3608
Solanum microleprodes Bitter	0,0093	0,0093
Spondias mombin L.	0,2574	0,2188
Sterculia apetala (Jacq.) H.Karst.	4,5167	1,7063
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,5390	0,2036
Talisia sp.	0,0099	0,0099
Tapirira guianensis Aubl.	0,1899	0,1899
Terminalia sp.	0,2097	0,3564
Trichilia hirta L.	0,1132	0,1924

Especie	VF/sp/ha	VF ind/sp/ha
Triplaris americana L.	0,3017	0,3017
Trophis caucana (Pittier) C.C. Berg	0,3052	0,0798
Unonopsis sp.	0,2276	0,1548
Vatairea sp	4,0811	0,2523
Virola sebifera Aubl.	0,2485	0,2817
Virola sp.	0,1485	0,1010
Vismia baccifera (L.) Planch. & Triana	0,0475	0,0807
Vismia macrophylla Kunth	1,5378	0,1584
Vochysia ferruginea Mart.	0,0460	0,0460
Wettinia hirsuta Burret	0,0093	0,0093
Xylopia sp.	0,5983	0,2260

Tabla 96. Distribución de volumen del fuste por especie y por clase diamétrica

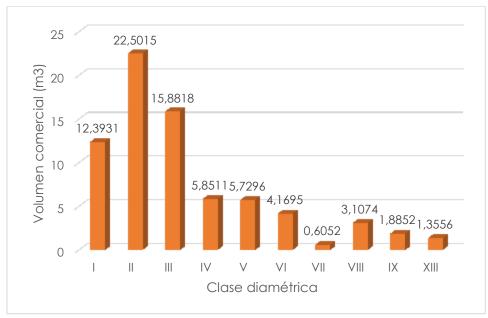
Clase diamétrica / Especie	VFsp /ha/Ct diam
1	16,8264
Albizia niopoides (Benth.) Burkart	0,0512
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,0532
Apeiba glabra Aubl.	0,1536
Aralia excelsa (Griseb.) J.Wen	0,0256
Aspidosperma album (Vahl) Benoist ex Pichon	0,0374
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,1065
Aspidosperma sp.	0,0239
Astronium graveolens Jacq.	0,0738
Bauhinia aculeata L.	0,0078
Bellucia pentamera Naudin	0,1676
Bellucia sp.	0,0409
Brownea ariza Benth.	0,0549
Bursera simaruba (L.) Sarg.	0,3083
Casearia arborea (Rich.) Urb.	0,1847
Cecropia insignis Liebm.	0,0477
Cecropia peltata L.	0,7010
Cedrela odorata L.	0,1824
Cedrela sp.	0,1285
Ceiba pentandra (L.) Gaertn.	0,2216
Cochlospermum vitifolium (Willd.) Spreng.	0,0540
Cordia alliodora (Ruiz & Pav.) Oken	1,3353
Cordia collococca L.	0,8681
Cordia sp.	0,0884

Clase diamétrica / Especie	VFsp /ha/Ct diam.	
Crateva tapia L.	0,0141	
Cynophalla verrucosa (Jacq.) J.Presl	0,0216	
Duguetia sp.	0,0233	
Enterolobium cyclocarpum (Jacq.) Griseb.	0,2087	
Eschweilera caudiculata R.Knuth	0,0366	
Ficus insipida Willd.	0,0494	
Goethalsia meiantha (Donn.Sm.) Burret	0,2643	
Guatteria sp.	0,3520	
Guazuma ulmifolia Lam.	0,8120	
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,2387	
Handroanthus guayacan (Seem.) S.O.Grose	0,1835	
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,5746	
Heliocarpus americanus L.	0,0646	
Hymenaea courbaril L.	0,0083	
Inga edulis Mart.	0,0138	
Inga oerstediana Benth.	0,0470	
Inga sp.	0,3727	
Jacaranda copaia (Aubl.) D.Don	0,0885	
Lecythis minor Jacq.	0,6808	
Lecythis tuyrana Pittier	0,0679	
Maclura tinctoria (L.) D.Don ex Steud.	0,0686	
Macrolobium sp.	0,0616	
Matayba sp.	0,1555	
Ochoterenaea colombiana F.A.Barkley	0,0167	
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,0322	
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,5093	
Pentaclethra macroloba (Willd.) Kuntze	0,2184	
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2527	
Sapium glandulosum (L.) Morong	0,4402	
Sapium sp.	0,1847	
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	1,3122	
Solanum microleprodes Bitter	0,0093	
Spondias mombin L.	0,0468	
Sterculia apetala (Jacq.) H.Karst.	0,0116	
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,2709	
Talisia sp.	0,0099	
Terminalia sp.	0,0256	
Trophis caucana (Pittier) C.C. Berg	0,2400	
Unonopsis sp.	0,0636	
Vatairea sp	1,0386	

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Virola sebifera Aubl.	0,0643
Virola sp.	0,0470
Vismia baccifera (L.) Planch. & Triana	0,0475
Vismia macrophylla Kunth	0,5049
Vochysia ferruginea Mart.	0,0460
Wettinia hirsuta Burret	0,0093
Xylopia sp.	0,1003
II	31,4116
Eschweilera sp.	0,0750
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2403
Anacardium excelsum (Bertero ex Kunth) Skeels	0,1330
Aralia excelsa (Griseb.) J.Wen	0,1613
Astronium graveolens Jacq.	1,8038
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,1669
Bursera simaruba (L.) Sarg.	0,9435
Cariniana pyriformis Miers	0,1203
Casearia arborea (Rich.) Urb.	0,1627
Cecropia insignis Liebm.	0,2049
Cecropia peltata L.	1,3844
Cedrela odorata L.	0,2268
Ceiba pentandra (L.) Gaertn.	0,2231
Cordia alliodora (Ruiz & Pav.) Oken	1,4646
Cordia collococca L.	1,5188
Cordia sp.	0,2165
Couratari sp.	0,3433
Enterolobium cyclocarpum (Jacq.) Griseb.	0,3782
Eschweilera caudiculata R.Knuth	0,4999
Ficus insipida Willd.	0,3113
Goethalsia meiantha (Donn.Sm.) Burret	0,5916
Guazuma ulmifolia Lam.	0,0478
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,0889
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,9048
Heliocarpus americanus L.	0,4204
Inga macrophylla Willd.	0,2936
Inga oerstediana Benth.	0,4801
Inga sp.	0,5680
Jacaranda copaia (Aubl.) D.Don	0,6834
Lecythis minor Jacq.	0,3582
Lecythis tuyrana Pittier	0,0699
Maclura tinctoria (L.) D.Don ex Steud.	0,4332

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Mangifera sp.	0,0471
Matayba sp.	0,1549
Matisia sp.	0,0986
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,7423
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,0259
Pentaclethra macroloba (Willd.) Kuntze	0,0921
Pithecellobium lanceolatum (Willd.) Benth.	0,1125
Protium sagotianum Marchand	0,1000
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,1691
Sapium glandulosum (L.) Morong	0,1606
Sapium sp.	0,4970
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	6,8083
Schizolobium parahyba (Vell.) S.F.Blake	0,1782
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,1496
Spondias mombin L.	0,2106
Sterculia apetala (Jacq.) H.Karst.	0,1285
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,2681
Trichilia hirta L.	0,1132
Trophis caucana (Pittier) C.C. Berg	0,0652
Unonopsis sp.	0,1640
Vatairea sp	1,7910
Virola sebifera Aubl.	0,1843
Virola sp.	0,1015
Vismia macrophylla Kunth	1,0330
Xylopia sp.	0,4980
ill i	25,0726
Albizia niopoides (Benth.) Burkart	0,3021
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,4574
Albizia saman (Jacq.) Merr.	1,6091
Aralia excelsa (Griseb.) J.Wen	0,2992
Aspidosperma album (Vahl) Benoist ex Pichon	0,2060
Astronium graveolens Jacq.	1,0321
Bursera simaruba (L.) Sarg.	0,6577
Cedrela odorata L.	0,1938
Ceiba pentandra (L.) Gaertn.	0,1753
Cordia alliodora (Ruiz & Pav.) Oken	0,1938
Cordia collococca L.	0,4532
Dendrobangia boliviana Rusby	0,2307
Duguetia sp.	0,1217
Eschweilera caudiculata R.Knuth	0,2058

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Goethalsia meiantha (Donn.Sm.) Burret	0,1789
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1402
Handroanthus guayacan (Seem.) S.O.Grose	0,3616
Heisteria acuminata (Humb. & Bonpl.) Engl.	1,4988
Inga macrophylla Willd.	0,4066
Inga oerstediana Benth.	0,2213
Inga sp.	2,2841
Jacaranda copaia (Aubl.) D.Don	2,0931
Lecythis minor Jacq.	0,9128
Maclura tinctoria (L.) D.Don ex Steud.	0,7459
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,2616
Persea caerulea (Ruiz & Pav.) Mez	0,4259
Protium sagotianum Marchand	0,8226
Pseudobombax septenatum (Jacq.) Dugand	0,8048
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	5,4830
Schizolobium parahyba (Vell.) S.F.Blake	0,1975
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,1687
Tapirira guianensis Aubl.	0,1899
Terminalia sp.	0,1841
Triplaris americana L.	0,3017
Vatairea sp	1,2516
IV	10,6960
Albizia saman (Jacq.) Merr.	0,5487
Astronium graveolens Jacq.	0,7871
Bursera simaruba (L.) Sarg.	0,4106
Ceiba pentandra (L.) Gaertn.	0,9606
Heisteria acuminata (Humb. & Bonpl.) Engl.	1,6631
Inga sp.	1,5528
Lecythis minor Jacq.	0,3240
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,2502
Protium sagotianum Marchand	0,6246
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,9356
Sterculia apetala (Jacq.) H.Karst.	1,6387
V	11,0593
Albizia saman (Jacq.) Merr.	0,7810
Astronium graveolens Jacq.	0,4553
Bursera simaruba (L.) Sarg.	2,1949
Cecropia peltata L.	0,4290
Ceiba pentandra (L.) Gaertn.	0,6518
Ficus insipida Willd.	1,9863


Clase diamétrica / Especie	VFsp /ha/Ct diam.
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,5255
Inga oerstediana Benth.	1,3507
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,7692
Protium sagotianum Marchand	0,7455
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,4667
Sterculia apetala (Jacq.) H.Karst.	0,7035
VI	7,3208
Anacardium excelsum (Bertero ex Kunth) Skeels	0,8946
Ceiba pentandra (L.) Gaertn.	1,1332
Inga oerstediana Benth.	0,6041
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,2049
Protium sagotianum Marchand	1,4494
Sterculia apetala (Jacq.) H.Karst.	2,0344
VII	1,6644
Inga sp.	1,6644
VIII	5,5384
Ceiba pentandra (L.) Gaertn.	1,7483
Dendrobangia boliviana Rusby	2,6307
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,1593
IX	5,2756
Ceiba pentandra (L.) Gaertn.	1,8640
Heisteria acuminata (Humb. & Bonpl.) Engl.	3,4116
XIII	3,1631
Sapium sp.	3,1631

En el caso del volumen comercial se obtiene un volumen de 73,48 m³ por hectárea distribuido en las 10 clases diamétricas, con un volumen promedio por clase diamétrica de 7,34 m³. En la Figura 39 se presenta la distribución del volumen comercial por clase diamétrica.

Figura 39. Distribución del volumen comercial por clase diamétrica

De igual manera, el volumen comercial por especie un promedio de 0,82 m³ y un volumen promedio por especie por individuo de 0,23 m³. En la Tabla 97 se evidencia el volumen de cada una de las especies y en la

Tabla 98 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 97. Indicadores por especie de volumen comercial

Especie	VC/sp /ha	VC ind/sp/ha
Albizia niopoides (Benth.) Burkart	0,140546922	0,159286511
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,369350993	0,209298896
Albizia saman (Jacq.) Merr.	1,11033346	0,290394905
Anacardium excelsum (Bertero ex Kunth) Skeels	0,507827379	0,863306545
Apeiba glabra Aubl.	0,143781278	0,061107043
Aralia excelsa (Griseb.) J.Wen	0,270168383	0,306190834
Aspidosperma album (Vahl) Benoist ex Pichon	0,157952504	0,179012838
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,078330446	0,133161758
Aspidosperma sp.	0,028625421	0,028625421
Astronium graveolens Jacq.	1,663428072	0,182440498
Bauhinia aculeata L.	0,002336769	0,002336769
Bellucia pentamera Naudin	0,164229528	0,111676079
Bellucia sp.	0,046059909	0,046059909
Brownea ariza Benth.	0,012882656	0,021900516
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,126721038	0,215425765
Bursera simaruba (L.) Sarg.	2,413403966	0,31559898
Cariniana pyriformis Miers	0,055534777	0,055534777
Casearia arborea (Rich.) Urb.	0,282552803	0,137239933
Cecropia insignis Liebm.	0,115487508	0,196328763
Cecropia peltata L.	2,059991228	0,225934522
Cedrela odorata L.	0,3744216	0,14144816
Cedrela sp.	0,113188772	0,096210456
Ceiba pentandra (L.) Gaertn.	3,085681467	0,655707312
Cochlospermum vitifolium (Willd.) Spreng.	0,031450538	0,026732957
Cordia alliodora (Ruiz & Pav.) Oken	1,574497793	0,092298146
Cordia collococca L.	2,407270708	0,16703511
Cordia sp.	0,238510183	0,162186924
Couratari sp.	0,168259542	0,286041221
Crateva tapia L.	0,011759912	0,01999185
Cynophalla verrucosa (Jacq.) J.Presl	0,006161403	0,006161403
Dendrobangia boliviana Rusby	2,405005441	2,405005441
Duguetia sp.	0,089119747	0,101002379
Enterolobium cyclocarpum (Jacq.) Griseb.	0,366310607	0,088961148
Eschweilera caudiculata R.Knuth	0,380621036	0,215685254
Eschweilera sp.	0,037488713	0,037488713
Ficus insipida Willd.	1,565721977	0,760493532

Especie	VC/sp /ha	VC ind/sp/ha
Goethalsia meiantha (Donn.Sm.) Burret	0,78991009	0,268569431
Guatteria sp.	0,355823291	0,109981745
Guazuma ulmifolia Lam.	0,377066591	0,037706659
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,325102465	0,062574283
Handroanthus guayacan (Seem.) S.O.Grose	0,171111587	0,083111342
Heisteria acuminata (Humb. & Bonpl.) Engl.	4,268578756	0,439792963
Heliocarpus americanus L.	0,397589995	0,270361197
Hymenaea courbaril L.	0,009940396	0,009940396
Inga edulis Mart.	0,027612212	0,027612212
Inga macrophylla Willd.	0,582853488	0,330283643
Inga oerstediana Benth.	1,674777285	0,517658434
Inga sp.	3,385856642	0,383730419
Jacaranda copaia (Aubl.) D.Don	2,2580035	0,511814127
Lecythis minor Jacq.	1,506195524	0,134764863
Lecythis tuyrana Pittier	0,048319394	0,041071485
Maclura tinctoria (L.) D.Don ex Steud.	0,529775665	0,138556712
Macrolobium sp.	0,009946482	0,016909019
Mangifera sp.	0,023562421	0,080112232
Matayba sp.	0,200219727	0,068074707
Matisia sp.	0,070407338	0,119692475
Ochoterenaea colombiana F.A.Barkley	0,008330825	0,008330825
Ochroma pyramidale (Cav. ex Lam.) Urb.	3,043049885	0,862197467
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2,522636509	0,182488599
Pentaclethra macroloba (Willd.) Kuntze	0,263171007	0,149130237
Persea caerulea (Ruiz & Pav.) Mez	0,301662279	0,512825875
Pithecellobium lanceolatum (Willd.) Benth.	0,056258932	0,056258932
Protium sagotianum Marchand	1,538553995	0,747297655
Pseudobombax septenatum (Jacq.) Dugand	0,563349986	0,957694976
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,32441459	0,157572801
Sapium glandulosum (L.) Morong	0,284344934	0,060423298
Sapium sp.	1,763170442	0,499564959
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	13,11475111	0,368513668
Schizolobium parahyba (Vell.) S.F.Blake	0,216266758	0,367653489
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,310426684	0,351816909
Solanum microleprodes Bitter	0,004627898	0,004627898
Spondias mombin L.	0,156198406	0,132768645
Sterculia apetala (Jacq.) H.Karst.	2,200737445	0,831389701
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,390424512	0,147493705
Talisia sp.	0,008283664	0,008283664
Tapirira guianensis Aubl.	0,110795714	0,110795714

Especie	VC/sp /ha	VC ind/sp/ha
Terminalia sp.	0,088243458	0,150013879
Trichilia hirta L.	0,059295515	0,100802375
Triplaris americana L.	0,212938079	0,212938079
Trophis caucana (Pittier) C.C. Berg	0,272836042	0,071357119
Unonopsis sp.	0,245564609	0,166983934
Vatairea sp	3,008925602	0,18600631
Virola sebifera Aubl.	0,134107115	0,151988063
Virola sp.	0,09855506	0,067017441
Vismia baccifera (L.) Planch. & Triana	0,040179953	0,06830592
Vismia macrophylla Kunth	0,9641824	0,099340005
Vochysia ferruginea Mart.	0,036816283	0,036816283
Wettinia hirsuta Burret	0,003727268	0,003727268
Xylopia sp.	0,519293674	0,19617761

Tabla 98. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam
l	12,3968277
Albizia niopoides (Benth.) Burkart	0,030706606
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,018913224
Apeiba glabra Aubl.	0,143781278
Aralia excelsa (Griseb.) J.Wen	0,014956995
Aspidosperma album (Vahl) Benoist ex Pichon	0,034382149
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,078330446
Aspidosperma sp.	0,028625421
Astronium graveolens Jacq.	0,032072003
Bauhinia aculeata L.	0,002336769
Bellucia pentamera Naudin	0,164229528
Bellucia sp.	0,046059909
Brownea ariza Benth.	0,012882656
Bursera simaruba (L.) Sarg.	0,244028061
Casearia arborea (Rich.) Urb.	0,168282362
Cecropia insignis Liebm.	0,019083614
Cecropia peltata L.	0,648877863
Cedrela odorata L.	0,139440912
Cedrela sp.	0,113188772
Ceiba pentandra (L.) Gaertn.	0,14268896
Cochlospermum vitifolium (Willd.) Spreng.	0,031450538
Cordia alliodora (Ruiz & Pav.) Oken	0,757987938
Cordia collococca L.	0,791121072
Cordia sp.	0,074190896
Crateva tapia L.	0,011759912
Cynophalla verrucosa (Jacq.) J.Presl	0,006161403
Duguetia sp.	0,02218105
Enterolobium cyclocarpum (Jacq.) Griseb.	0,157832319
Eschweilera caudiculata R.Knuth	0,014064733
Ficus insipida Willd.	0,029656885
Goethalsia meiantha (Donn.Sm.) Burret	0,168711378
Guatteria sp.	0,355823291
Guazuma ulmifolia Lam.	0,342920249
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,694485935
Handroanthus guayacan (Seem.) S.O.Grose	0,054579683
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,451147038
Heliocarpus americanus L.	0,060506496
Hymenaea courbaril L.	0,009940396

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Inga edulis Mart.	0,027612212
Inga oerstediana Benth.	0,026885015
Inga sp.	0,286086861
Jacaranda copaia (Aubl.) D.Don	0,094123414
Lecythis minor Jacq.	0,31996271
Lecythis tuyrana Pittier	0,038337921
Maclura tinctoria (L.) D.Don ex Steud.	0,035392315
Macrolobium sp.	0,009946482
Matayba sp.	0,12901521
Ochoterenaea colombiana F.A.Barkley	0,008330825
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,032214248
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,485377285
Pentaclethra macroloba (Willd.) Kuntze	0,159536213
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,239360609
Sapium glandulosum (L.) Morong	0,204675714
Sapium sp.	0,099824461
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	1,230311946
Solanum microleprodes Bitter	0,004627898
Spondias mombin L.	0,023392032
Sterculia apetala (Jacq.) H.Karst.	0,009940396
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,213529878
Talisia sp.	0,008283664
Terminalia sp.	0,014610892
Trophis caucana (Pittier) C.C. Berg	0,214891472
Unonopsis sp.	0,059201192
Vatairea sp	0,754265234
Virola sebifera Aubl.	0,034599699
Virola sp.	0,031948014
Vismia baccifera (L.) Planch. & Triana	0,040179953
Vismia macrophylla Kunth	0,345418127
Vochysia ferruginea Mart.	0,036816283
Wettinia hirsuta Burret	0,003727268
Xylopia sp.	0,057013514
II	22,5014664
Eschweilera sp.	0,037488713
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,13900581
Anacardium excelsum (Bertero ex Kunth) Skeels	0,03068835
Aralia excelsa (Griseb.) J.Wen	0,094097551
Astronium graveolens Jacq.	0,730720551
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,126721038

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Bursera simaruba (L.) Sarg.	0,59625568
Cariniana pyriformis Miers	0,055534777
Casearia arborea (Rich.) Urb.	0,114270441
Cecropia insignis Liebm.	0,096403894
Cecropia peltata L.	0,982156505
Cedrela odorata L.	0,100785336
Ceiba pentandra (L.) Gaertn.	0,083960903
Cordia alliodora (Ruiz & Pav.) Oken	0,682314502
Cordia collococca L.	1,175600211
Cordia sp.	0,164319287
Couratari sp.	0,168259542
Enterolobium cyclocarpum (Jacq.) Griseb.	0,208478289
Eschweilera caudiculata R.Knuth	0,295330487
Ficus insipida Willd.	0,211895966
Goethalsia meiantha (Donn.Sm.) Burret	0,546645738
Guazuma ulmifolia Lam.	0,034146342
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,546492844
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,674027035
Heliocarpus americanus L.	0,337083499
Inga macrophylla Willd.	0,260379359
Inga oerstediana Benth.	0,343056256
Inga sp.	0,325118207
Jacaranda copaia (Aubl.) D.Don	0,576655573
Lecythis minor Jacq.	0,389735348
Lecythis tuyrana Pittier	0,009981472
Maclura tinctoria (L.) D.Don ex Steud.	0,176485395
Mangifera sp.	0,023562421
Matayba sp.	0,071204517
Matisia sp.	0,070407338
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,536684043
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,037259223
Pentaclethra macroloba (Willd.) Kuntze	0,103634794
Pithecellobium lanceolatum (Willd.) Benth.	0,056258932
Protium sagotianum Marchand	0,04998495
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,085053981
Sapium glandulosum (L.) Morong	0,07966922
Sapium sp.	0,307723274
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	6,234942525
Schizolobium parahyba (Vell.) S.F.Blake	0,12576564
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,141727477

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Spondias mombin L.	0,132806374
Sterculia apetala (Jacq.) H.Karst.	0,100152461
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,176894634
Trichilia hirta L.	0,059295515
Trophis caucana (Pittier) C.C. Berg	0,05794457
Unonopsis sp.	0,186363417
Vatairea sp	1,302877296
Virola sebifera Aubl.	0,099507415
Virola sp.	0,066607046
Vismia macrophylla Kunth	0,618764273
Xylopia sp.	0,46228016
III	15,88181473
Albizia niopoides (Benth.) Burkart	0,109840316
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,211431959
Albizia saman (Jacq.) Merr.	0,641239245
Aralia excelsa (Griseb.) J.Wen	0,161113836
Aspidosperma album (Vahl) Benoist ex Pichon	0,123570355
Astronium graveolens Jacq.	0,278304934
Bursera simaruba (L.) Sarg.	0,342070432
Cedrela odorata L.	0,134195352
Ceiba pentandra (L.) Gaertn.	0,058443568
Cordia alliodora (Ruiz & Pav.) Oken	0,134195352
Cordia collococca L.	0,440549425
Dendrobangia boliviana Rusby	0,195193239
Duguetia sp.	0,066938697
Eschweilera caudiculata R.Knuth	0,071225816
Goethalsia meiantha (Donn.Sm.) Burret	0,074552973
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,084123686
Handroanthus guayacan (Seem.) S.O.Grose	0,116531904
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,830231527
Inga macrophylla Willd.	0,322474128
Inga oerstediana Benth.	0,160957139
Inga sp.	1,269233755
Jacaranda copaia (Aubl.) D.Don	1,587224512
Lecythis minor Jacq.	0,572167638
Maclura tinctoria (L.) D.Don ex Steud.	0,317897956
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,201196423
Persea caerulea (Ruiz & Pav.) Mez	0,301662279
Protium sagotianum Marchand	0,332813114
Pseudobombax septenatum (Jacq.) Dugand	0,563349986

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	4,570735423
Schizolobium parahyba (Vell.) S.F.Blake	0,090501118
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,168699208
Tapirira guianensis Aubl.	0,110795714
Terminalia sp.	0,073632566
Triplaris americana L.	0,212938079
Vatairea sp	0,951783072
IV	5,851122124
Albizia saman (Jacq.) Merr.	0,235380799
Astronium graveolens Jacq.	0,394670555
Bursera simaruba (L.) Sarg.	0,144916193
Ceiba pentandra (L.) Gaertn.	0,426227587
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,893231489
Inga sp.	0,900182465
Lecythis minor Jacq.	0,224329828
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,708856456
Protium sagotianum Marchand	0,493117601
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,696904856
Sterculia apetala (Jacq.) H.Karst.	0,733304294
V	5,729613176
Albizia saman (Jacq.) Merr.	0,233713417
Astronium graveolens Jacq.	0,227660029
Bursera simaruba (L.) Sarg.	1,0861336
Cecropia peltata L.	0,42895686
Ceiba pentandra (L.) Gaertn.	0,347606566
Ficus insipida Willd.	1,324169127
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,323362588
Inga oerstediana Benth.	0,649597454
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,346147607
Protium sagotianum Marchand	0,248509911
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,381856359
Sterculia apetala (Jacq.) H.Karst.	0,131899659
VI	4,169542955
Anacardium excelsum (Bertero ex Kunth) Skeels	0,47713903
Ceiba pentandra (L.) Gaertn.	0,775350923
Inga oerstediana Benth.	0,494281421
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,783202528
Protium sagotianum Marchand	0,414128418
Sterculia apetala (Jacq.) H.Karst.	1,225440634
VII	0,605235354

Clase diamétrica / Especie	VCsp /ha/Ct diam.				
Inga sp.	0,605235354				
VIII	3,107350588				
Ceiba pentandra (L.) Gaertn.	0,462789807				
Dendrobangia boliviana Rusby	2,209812202				
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,434748579				
IX	1,885192232				
Ceiba pentandra (L.) Gaertn.	0,788613153				
Heisteria acuminata (Humb. & Bonpl.) Engl.	1,096579079				
XIII	1,355622707				
Sapium sp.	1,355622707				

El volumen cosechable calculado para el bosque abierto bajo de tierra firme es de 62,17 m³ con un promedio por especie de 0,698 m³. En la Tabla 99 se evidencia el volumen de cada una de las especies y en la Tabla 100 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 99. Indicadores por especie de volumen cosechable

Especie	VCs/sp / ha
Albizia niopoides (Benth.) Burkart	0,1189
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,3125
Albizia saman (Jacq.) Merr.	0,9395
Anacardium excelsum (Bertero ex Kunth) Skeels	0,4297
Apeiba glabra Aubl.	0,1217
Aralia excelsa (Griseb.) J.Wen	0,2286
Aspidosperma album (Vahl) Benoist ex Pichon	0,1337
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,0663
Aspidosperma sp.	0,0242
Astronium graveolens Jacq.	1,4075
Bauhinia aculeata L.	0,0020
Bellucia pentamera Naudin	0,1390
Bellucia sp.	0,0390
Brownea ariza Benth.	0,0109
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,1072
Bursera simaruba (L.) Sarg.	2,0421
Cariniana pyriformis Miers	0,0470
Casearia arborea (Rich.) Urb.	0,2391
Cecropia insignis Liebm.	0,0977
Cecropia peltata L.	1,7431
Cedrela odorata L.	0,3168

Especie	VCs/sp / ha			
Cedrela sp.	0,0958			
Ceiba pentandra (L.) Gaertn.	2,6110			
Cochlospermum vitifolium (Willd.) Spreng.	0,0266			
Cordia alliodora (Ruiz & Pav.) Oken	1,3323			
Cordia collococca L.	2,0369			
Cordia sp.	0,2018			
Couratari sp.	0,1424			
Crateva tapia L.	0,0100			
Cynophalla verrucosa (Jacq.) J.Presl	0,0052			
Dendrobangia boliviana Rusby	2,0350			
Duguetia sp.	0,0754			
Enterolobium cyclocarpum (Jacq.) Griseb.	0,3100			
Eschweilera caudiculata R.Knuth	0,3221			
Eschweilera sp.	0,0317			
Ficus insipida Willd.	1,3248			
Goethalsia meiantha (Donn.Sm.) Burret	0,6684			
Guatteria sp.	0,3011			
Guazuma ulmifolia Lam.	0,3191			
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,1212			
Handroanthus guayacan (Seem.) S.O.Grose	0,1448 3,6119			
Heisteria acuminata (Humb. & Bonpl.) Engl.				
Heliocarpus americanus L.	0,3364			
Hymenaea courbaril L.	0,0084			
Inga edulis Mart.	0,0234			
Inga macrophylla Willd.	0,4932			
Inga oerstediana Benth.	1,4171			
Inga sp.	2,8650			
Jacaranda copaia (Aubl.) D.Don	1,9106			
Lecythis minor Jacq.	1,2745			
Lecythis tuyrana Pittier	0,0409			
Maclura tinctoria (L.) D.Don ex Steud.	0,4483			
Macrolobium sp.	0,0084			
Mangifera sp.	0,0199			
Matayba sp.	0,1694			
Matisia sp.	0,0596			
Ochoterenaea colombiana F.A.Barkley	0,0070			
Ochroma pyramidale (Cav. ex Lam.) Urb.	2,5749			
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2,1345			
Pentaclethra macroloba (Willd.) Kuntze	0,2227			
Persea caerulea (Ruiz & Pav.) Mez	0,2553			

Especie	VCs/sp / ha
Pithecellobium lanceolatum (Willd.) Benth.	0,0476
Protium sagotianum Marchand	1,3019
Pseudobombax septenatum (Jacq.) Dugand	0,4767
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2745
Sapium glandulosum (L.) Morong	0,2406
Sapium sp.	1,4919
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	11,0971
Schizolobium parahyba (Vell.) S.F.Blake	0,1830
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,2627
Solanum microleprodes Bitter	0,0039
Spondias mombin L.	0,1322
Sterculia apetala (Jacq.) H.Karst.	1,8622
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,3304
Talisia sp.	0,0070
Tapirira guianensis Aubl.	0,0938
Terminalia sp.	0,0747
Trichilia hirta L.	0,0502
Triplaris americana L.	0,1802
Trophis caucana (Pittier) C.C. Berg	0,2309
Unonopsis sp.	0,2078
Vatairea sp	2,5460
Virola sebifera Aubl.	0,1135
Virola sp.	0,0834
Vismia baccifera (L.) Planch. & Triana	0,0340
Vismia macrophylla Kunth	0,8158
Vochysia ferruginea Mart.	0,0312
Wettinia hirsuta Burret	0,0032
Xylopia sp.	0,4394

Tabla 100. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.		
_	10,4896		
Albizia niopoides (Benth.) Burkart	0,0260		
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,0160		
Apeiba glabra Aubl.	0,1217		
Aralia excelsa (Griseb.) J.Wen	0,0127		
Aspidosperma album (Vahl) Benoist ex Pichon	0,0291		
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,0663		

Clase diamétrica / Especie	VCsp /ha/Ct diam.				
Aspidosperma sp.	0,0242				
Astronium graveolens Jacq.	0,0271				
Bauhinia aculeata L.	0,0020				
Bellucia pentamera Naudin	0,1390				
Bellucia sp.	0,0390				
Brownea ariza Benth.	0,0109				
Bursera simaruba (L.) Sarg.	0,2065				
Casearia arborea (Rich.) Urb.	0,1424				
Cecropia insignis Liebm.	0,0161				
Cecropia peltata L.	0,5491				
Cedrela odorata L.	0,1180				
Cedrela sp.	0,0958				
Ceiba pentandra (L.) Gaertn.	0,1207				
Cochlospermum vitifolium (Willd.) Spreng.	0,0266				
Cordia alliodora (Ruiz & Pav.) Oken	0,6414				
Cordia collococca L.	0,6694				
Cordia sp.	0,0628				
Crateva tapia L.	0,0100				
Cynophalla verrucosa (Jacq.) J.Presl	0,0052				
Duguetia sp.	0,0188				
Enterolobium cyclocarpum (Jacq.) Griseb.	0,1336				
Eschweilera caudiculata R.Knuth	0,0119				
Ficus insipida Willd.	0,0251				
Goethalsia meiantha (Donn.Sm.) Burret	0,1428				
Guatteria sp.	0,3011				
Guazuma ulmifolia Lam.	0,2902				
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,5876				
Handroanthus guayacan (Seem.) S.O.Grose	0,0462				
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,3817				
Heliocarpus americanus L.	0,0512				
Hymenaea courbaril L.	0,0084				
Inga edulis Mart.	0,0234				
Inga oerstediana Benth.	0,0227				
Inga sp.	0,2421				
Jacaranda copaia (Aubl.) D.Don	0,0796				
Lecythis minor Jacq.	0,2707				
Lecythis tuyrana Pittier	0,0324				
Maclura tinctoria (L.) D.Don ex Steud.	0,0299				
Macrolobium sp.	0,0084				
Matayba sp.	0,1092				

Clase diamétrica / Especie	VCsp /ha/Ct diam.			
Ochoterenaea colombiana F.A.Barkley	0,0070			
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,0273			
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,2569			
Pentaclethra macroloba (Willd.) Kuntze	0,1350			
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2025			
Sapium glandulosum (L.) Morong	0,1732			
Sapium sp.	0,0845			
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	1,0410			
Solanum microleprodes Bitter	0,0039			
Spondias mombin L.	0,0198			
Sterculia apetala (Jacq.) H.Karst.	0,0084			
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,1807			
Talisia sp.	0,0070			
Terminalia sp.	0,0124			
Trophis caucana (Pittier) C.C. Berg	0,1818			
Unonopsis sp.	0,0501			
Vatairea sp	0,6382			
Virola sebifera Aubl.	0,0293 0,0270 0,0340 0,2923 0,0312			
Virola sp.				
Vismia baccifera (L.) Planch. & Triana				
Vismia macrophylla Kunth				
Vochysia ferruginea Mart.				
Wettinia hirsuta Burret	0,0032			
Xylopia sp.	0,0482			
ll .	19,0397			
Eschweilera sp.	0,0317			
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,1176			
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0260			
Aralia excelsa (Griseb.) J.Wen	0,0796			
Astronium graveolens Jacq.	0,6183			
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,1072			
Bursera simaruba (L.) Sarg.	0,5045			
Cariniana pyriformis Miers	0,0470			
Casearia arborea (Rich.) Urb.	0,0967			
Cecropia insignis Liebm. 0,08				
Cecropia peltata L. 0,83				
Cedrela odorata L. 0,08:				
Ceiba pentandra (L.) Gaertn.	0,0710			
Cordia alliodora (Ruiz & Pav.) Oken	0,5773			
Cordia collococca L.	0,9947			

Clase diamétrica / Especie	VCsp /ha/Ct diam.				
Cordia sp.	0,1390				
Couratari sp.	0,1424				
Enterolobium cyclocarpum (Jacq.) Griseb.	0,1764				
Eschweilera caudiculata R.Knuth	0,2499				
Ficus insipida Willd.	0,1793				
Goethalsia meiantha (Donn.Sm.) Burret	0,4625				
Guazuma ulmifolia Lam.	0,0289				
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,4624				
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,5703				
Heliocarpus americanus L.	0,2852				
Inga macrophylla Willd.	0,2203				
Inga oerstediana Benth.	0,2903				
Inga sp.	0,2751				
Jacaranda copaia (Aubl.) D.Don	0,4879				
Lecythis minor Jacq.	0,3298				
Lecythis tuyrana Pittier	0,0084				
Maclura tinctoria (L.) D.Don ex Steud.	0,1493				
Mangifera sp.	0,0199				
Matayba sp.	0,0602 0,0596 0,4541 0,8777 0,0877				
Matisia sp.					
Ochroma pyramidale (Cav. ex Lam.) Urb.					
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.					
Pentaclethra macroloba (Willd.) Kuntze					
Pithecellobium lanceolatum (Willd.) Benth.	0,0476				
Protium sagotianum Marchand	0,0423				
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,0720				
Sapium glandulosum (L.) Morong	0,0674				
Sapium sp.	0,2604				
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	5,2757				
Schizolobium parahyba (Vell.) S.F.Blake	0,1064				
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,1199				
Spondias mombin L.	0,1124				
Sterculia apetala (Jacq.) H.Karst.	0,0847				
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,1497				
Trichilia hirta L.	0,0502				
Trophis caucana (Pittier) C.C. Berg					
		0 ps. 0 gp.			
Vatairea sp Virola sebifera Aubl.	0,0842				
Virola sp.	0,0564				

Clase diamétrica / Especie	VCsp /ha/Ct diam.				
Vismia macrophylla Kunth	0,5236				
Xylopia sp.	0,3912				
III	13,4385				
Albizia niopoides (Benth.) Burkart	0,0929				
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,1789				
Albizia saman (Jacq.) Merr.	0,5426				
Aralia excelsa (Griseb.) J.Wen	0,1363				
Aspidosperma album (Vahl) Benoist ex Pichon	0,1046				
Astronium graveolens Jacq.	0,2355				
Bursera simaruba (L.) Sarg.	0,2894				
Cedrela odorata L.	0,1135				
Ceiba pentandra (L.) Gaertn.	0,0495				
Cordia alliodora (Ruiz & Pav.) Oken	0,1135				
Cordia collococca L.	0,3728				
Dendrobangia boliviana Rusby	0,1652				
Duguetia sp.	0,0566				
Eschweilera caudiculata R.Knuth	0,0603				
Goethalsia meiantha (Donn.Sm.) Burret	0,0631				
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0712				
Handroanthus guayacan (Seem.) S.O.Grose	0,0986 0,7025 0,2729				
Heisteria acuminata (Humb. & Bonpl.) Engl.					
Inga macrophylla Willd.					
Inga oerstediana Benth.	0,1362				
Inga sp.	1,0740				
Jacaranda copaia (Aubl.) D.Don	1,3430				
Lecythis minor Jacq.	0,4841				
Maclura tinctoria (L.) D.Don ex Steud.	0,2690				
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,1702				
Persea caerulea (Ruiz & Pav.) Mez	0,2553				
Protium sagotianum Marchand	0,2816				
Pseudobombax septenatum (Jacq.) Dugand	0,4767				
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	3,8675				
Schizolobium parahyba (Vell.) S.F.Blake	0,0766				
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,1427				
Tapirira guianensis Aubl.	0,0938				
Terminalia sp.	0,0623				
Triplaris americana L.	0,1802				
Vatairea sp	0,8054				
IV	4,9509				
Albizia saman (Jacq.) Merr.	0,1992				

Clase diamétrica / Especie	VCsp /ha/Ct diam
Astronium graveolens Jacq.	0,3340
Bursera simaruba (L.) Sarg.	0,1226
Ceiba pentandra (L.) Gaertn.	0,3607
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,7558
Inga sp.	0,7617
Lecythis minor Jacq.	0,1898
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,5998
Protium sagotianum Marchand	0,4173
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,5897
Sterculia apetala (Jacq.) H.Karst.	0,6205
V	4,8481
Albizia saman (Jacq.) Merr.	0,1978
Astronium graveolens Jacq.	0,1926
Bursera simaruba (L.) Sarg.	0,9190
Cecropia peltata L.	0,3630
Ceiba pentandra (L.) Gaertn.	0,2941
Ficus insipida Willd.	1,1205
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,2736
Inga oerstediana Benth.	0,5497
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,2929
Protium sagotianum Marchand	0,2103
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0,3231
Sterculia apetala (Jacq.) H.Karst.	0,1116
VI	3,5281
Anacardium excelsum (Bertero ex Kunth) Skeels	0,4037
Ceiba pentandra (L.) Gaertn.	0,6561
Inga oerstediana Benth.	0,4182
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,6627
Protium sagotianum Marchand	0,3504
Sterculia apetala (Jacq.) H.Karst.	1,0369
VII	0,5121
Inga sp.	0,5121
VIII	2,6293
Ceiba pentandra (L.) Gaertn.	0,3916
Dendrobangia boliviana Rusby	1,8698
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,3679
IX	1,5952
Ceiba pentandra (L.) Gaertn.	0,6673
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,9279
XIII	1,1471

Clase diamétrica / Especie	VCsp /ha/Ct diam.			
Sapium sp.	1,1471			

5.5.2.3.2. Indicadores estructurales del bosque abierto alto de tierra firme

5.5.2.3.2.1. Estructura horizontal

En la Tabla 101 se observa los datos obtenidos del análisis de la estructura horizontal del bosque abierto bajo de tierra firme.

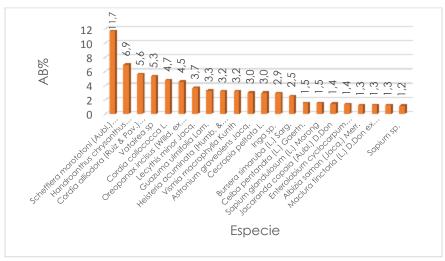
Tabla 101. Estructura horizontal para el bosque abierto alto de tierra firme

Especies		N° de Abundancia		Dominancia		Frecuencia		IVI
		Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	121	0,117	11,680	0,123	12,269	0,500	4,116	28,064
Handroanthus chrysanthus (Jacq.) S.O.Grose	72	0,069	6,950	0,032	3,217	0,382	3,148	13,314
Vatairea sp	55	0,053	5,309	0,034	3,394	0,412	3,390	12,093
Heisteria acuminata (Humb. & Bonpl.) Engl.	33	0,032	3,185	0,051	5,080	0,412	3,390	11,655
Cordia alliodora (Ruiz & Pav.) Oken	58	0,056	5,598	0,032	3,178	0,324	2,663	11,440
Cordia collococca L.	49	0,047	4,730	0,029	2,925	0,412	3,390	11,045
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	47	0,045	4,537	0,021	2,071	0,529	4,358	10,966
Inga sp.	30	0,029	2,896	0,047	4,671	0,324	2,663	10,230
Astronium graveolens Jacq.	31	0,030	2,992	0,043	4,288	0,353	2,906	10,186
Vismia macrophylla Kunth	33	0,032	3,185	0,019	1,871	0,471	3,874	8,931
Cecropia peltata L.	31	0,030	2,992	0,023	2,310	0,382	3,148	8,450
Ceiba pentandra (L.) Gaertn.	16	0,015	1,544	0,049	4,926	0,147	1,211	7,681
Sapium sp.	12	0,012	1,158	0,052	5,188	0,147	1,211	7,557
Lecythis minor Jacq.	38	0,037	3,668	0,022	2,238	0,147	1,211	7,116
Guazuma ulmifolia Lam.	34	0,033	3,282	0,012	1,220	0,294	2,421	6,924
Bursera simaruba (L.) Sarg.	26	0,025	2,510	0,033	3,280	0,118	0,969	6,759
Jacaranda copaia (Aubl.) D.Don	15	0,014	1,448	0,018	1,835	0,382	3,148	6,431
Albizia saman (Jacq.) Merr.	13	0,013	1,255	0,029	2,870	0,235	1,937	6,062
Ochroma pyramidale (Cav. ex Lam.) Urb.	12	0,012	1,158	0,034	3,404	0,118	0,969	5,530
Maclura tinctoria (L.) D.Don ex Steud.	13	0,013	1,255	0,016	1,597	0,265	2,179	5,031
Inga oerstediana Benth.	11	0,011	1,062	0,023	2,316	0,176	1,453	4,831
Sterculia apetala (Jacq.) H.Karst.	9	0,009	0,869	0,028	2,781	0,118	0,969	4,618
Sapium glandulosum (L.) Morong	16	0,015	1,544	0,007	0,747	0,206	1,695	3,986
Enterolobium cyclocarpum (Jacq.) Griseb.	14	0,014	1,351	0,008	0,809	0,206	1,695	3,855
Ficus insipida Willd.	7	0,007	0,676	0,015	1,494	0,176	1,453	3,622

Especies	N° de	Abundar	ncia	Dominar	Dominancia		cia	IVI
	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	
Trophis caucana (Pittier) C.C. Berg	13	0,013	1,255	0,004	0,404	0,235	1,937	3,596
Goethalsia meiantha (Donn.Sm.) Burret	10	0,010	0,965	0,008	0,827	0,206	1,695	3,487
Protium sagotianum Marchand	7	0,007	0,676	0,021	2,130	0,059	0,484	3,290
Xylopia sp.	9	0,009	0,869	0,006	0,596	0,206	1,695	3,160
Tabebuia rosea (Bertol.) Bertero ex A.DC.	9	0,009	0,869	0,005	0,527	0,206	1,695	3,090
Dendrobangia boliviana Rusby	3	0,00289575	0,290	1,194	2,293	0,059	0,484	3,066
Guatteria sp.	11	0,011	1,062	0,004	0,382	0,176	1,453	2,897
Inga macrophylla Willd.	6	0,006	0,579	0,007	0,736	0,176	1,453	2,768
Cedrela odorata L.	9	0,009	0,869	0,005	0,512	0,147	1,211	2,591
Casearia arborea (Rich.) Urb.	7	0,007	0,676	0,004	0,369	0,176	1,453	2,497
Handroanthus guayacan (Seem.) S.O.Grose	7	0,007	0,676	0,006	0,558	0,147	1,211	2,445
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	6	0,006	0,579	0,006	0,609	0,147	1,211	2,399
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	7	0,007	0,676	0,005	0,491	0,118	0,969	2,136
Pentaclethra macroloba (Willd.) Kuntze	6	0,006	0,579	0,003	0,336	0,147	1,211	2,126
Apeiba glabra Aubl.	8	0,008	0,772	0,003	0,262	0,118	0,969	2,003
Heliocarpus americanus L.	5	0,005	0,483	0,005	0,467	0,118	0,969	1,918
Bellucia pentamera Naudin	5	0,005	0,483	0,002	0,199	0,147	1,211	1,892
Eschweilera caudiculata R.Knuth	6	0,006	0,579	0,005	0,546	0,088	0,726	1,852
Unonopsis sp.	5	0,005	0,483	0,003	0,293	0,118	0,969	1,744
Virola sp.	5	0,005	0,483	0,002	0,199	0,118	0,969	1,650
Spondias mombin L.	4	0,004	0,386	0,003	0,292	0,118	0,969	1,647
Matayba sp.	10	0,010	0,965	0,004	0,373	0,029	0,242	1,581
Cochlospermum vitifolium (Willd.) Spreng.	4	0,004	0,386	0,001	0,093	0,118	0,969	1,448
Anacardium excelsum (Bertero ex Kunth) Skeels	2	0,002	0,193	0,007	0,702	0,059	0,484	1,379
Cedrela sp.	4	0,004	0,386	0,002	0,151	0,088	0,726	1,263
Cordia sp.	5	0,005	0,483	0,003	0,271	0,059	0,484	1,238
Aralia excelsa (Griseb.) J.Wen	3	0,003	0,290	0,004	0,409	0,059	0,484	1,183
Pseudobombax septenatum (Jacq.) Dugand	2	0,002	0,193	0,004	0,404	0,059	0,484	1,082
Persea caerulea (Ruiz & Pav.) Mez	2	0,002	0,193	0,004	0,357	0,059	0,484	1,034
Virola sebifera Aubl.	3	0,003	0,290	0,002	0,236	0,059	0,484	1,010
Duguetia sp.	3	0,003	0,290	0,002	0,204	0,059	0,484	0,977
Aspidosperma album (Vahl) Benoist ex Pichon	3	0,003	0,290	0,002	0,181	0,059	0,484	0,955
Schizolobium parahyba (Vell.) S.F.Blake	2	0,002	0,193	0,003	0,271	0,059	0,484	0,948
Senna bacillaris (L.f.) H.S.Irwin & Barneby	3	0,003	0,290	0,004	0,370	0,029	0,242	0,902
Albizia niopoides (Benth.) Burkart	3	0,003	0,290	0,003	0,327	0,029	0,242	0,859
Cecropia insignis Liebm.	2	0,002	0,193	0,002	0,169	0,059	0,484	0,846

Especies	N° de	Abunda	undancia Dominancia		ncia	Frecuen	cia	IVI
·	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	
Lecythis tuyrana Pittier	4	0,004	0,386	0,002	0,198	0,029	0,242	0,826
Matisia sp.	2	0,002	0,193	0,001	0,141	0,059	0,484	0,819
Aspidosperma desmanthum Benth. ex Müll.Arg.	2	0,002	0,193	0,001	0,085	0,059	0,484	0,762
Macrolobium sp.	2	0,002	0,193	0,001	0,084	0,059	0,484	0,761
Vismia baccifera (L.) Planch. & Triana	2	0,002	0,193	0,001	0,073	0,059	0,484	0,751
Brownea ariza Benth.	2	0,002	0,193	0,001	0,065	0,059	0,484	0,742
Crateva tapia L.	2	0,002	0,193	0,000	0,047	0,059	0,484	0,725
Terminalia sp.	2	0,002	0,193	0,002	0,222	0,029	0,242	0,657
Couratari sp.	2	0,002	0,193	0,002	0,176	0,029	0,242	0,611
Buchenavia tetraphylla (Aubl.) R.A.Howard	2	0,002	0,193	0,002	0,170	0,029	0,242	0,606
Trichilia hirta L.	2	0,002	0,193	0,001	0,133	0,029	0,242	0,568
Triplaris americana L.	1	0,001	0,097	0,002	0,178	0,029	0,242	0,517
Tapirira guianensis Aubl.	1	0,001	0,097	0,002	0,159	0,029	0,242	0,498
Mangifera sp.	1	0,001	0,097	0,001	0,118	0,029	0,242	0,457
Pithecellobium lanceolatum (Willd.) Benth.	1	0,001	0,097	0,001	0,113	0,029	0,242	0,452
Cariniana pyriformis Miers	1	0,001	0,097	0,001	0,093	0,029	0,242	0,432
Eschweilera sp.	1	0,001	0,097	0,001	0,084	0,029	0,242	0,422
Bellucia sp.	1	0,001	0,097	0,001	0,051	0,029	0,242	0,390
Aspidosperma sp.	1	0,001	0,097	0,000	0,048	0,029	0,242	0,387
Inga edulis Mart.	1	0,001	0,097	0,000	0,046	0,029	0,242	0,385
Vochysia ferruginea Mart.	1	0,001	0,097	0,000	0,046	0,029	0,242	0,385
Cynophalla verrucosa (Jacq.) J.Presl	1	0,001	0,097	0,000	0,031	0,029	0,242	0,370
Solanum microleprodes Bitter	1	0,001	0,097	0,000	0,023	0,029	0,242	0,362
Ochoterenaea colombiana F.A.Barkley	1	0,001	0,097	0,000	0,021	0,029	0,242	0,360
Wettinia hirsuta Burret	1	0,001	0,097	0,000	0,019	0,029	0,242	0,357
Hymenaea courbaril L.	1	0,001	0,097	0,000	0,017	0,029	0,242	0,355
Talisia sp.	1	0,001	0,097	0,000	0,017	0,029	0,242	0,355
Bauhinia aculeata L.	1	0,001	0,097	0,000	0,016	0,029	0,242	0,354
Total		1	100	1	100	12,147	100	300

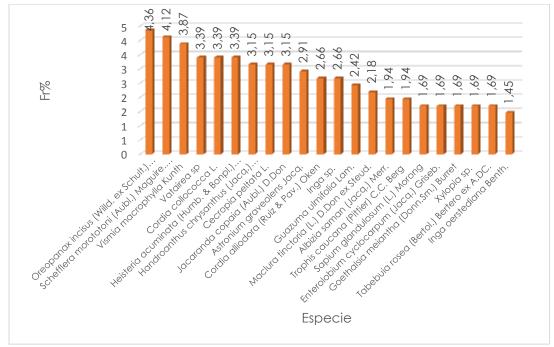
5.5.2.3.2.2. Abundancia


La abundancia absoluta y relativa presente en la cobertura de bosque abierto bajo de tierra firme muestra que la especie más abundante es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con 30 individuos en una hectárea y de abundancia relativa 11,7%. Igualmente la especie *Handroanthus chrysanthus* (Jacq.) S.O.Grose presenta la

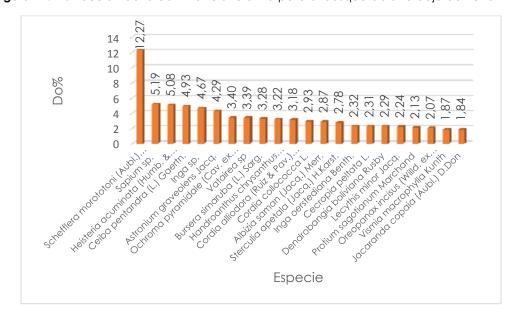
segunda mayor abundancia con 15 individuos por hectárea y una abundancia realtiva de 6,9% (Figura 40).

Figura 40. Distribución de la abundancia relativa para el bosque abierto bajo de tierra firme

Fuente: Elaboración equipo técnico


5.5.2.3.2.3. <u>Frecuencia</u>

La especie Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. es la mas frecuente con una presencia en 18 parcelas de las 34 realizadas, seguida de *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con una presencia en 17 parcelas de las 34 realizadas y *Vismia macrophylla* Kunth con una frecuencia realtiva de 3,87% (Figura 41).


Figura 41. Distribución de frecuencia relativa para el bosque abierto bajo de tierra firme

5.5.2.3.2.4. <u>Dominancia</u>

La especie de mayor dominancia es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con 12,27% y área basal de 0,7944 m², seguida de la especie *Sapium* sp. con 5,19% y un área basal de 0,1144 m² (Figura 42).

Figura 42. Distribución de la dominancia relativa para el bosque abierto bajo de tierra firme

5.5.2.3.2.5. <u>Indice de valor de importancia (IVI)</u>

La especie de mayor peso ecológico es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con un IVI de 28,1, seguida de la especie *Handroanthus chrysanthus* (Jacq.) S.O.Grose con un peso ecológico de 13,3, evidenciando el comportamiento de J invertida de bosque natural (Figura 43).

≥ 15,0 10,0 5,0 10,0

Figura 43. Distribución del IVI para el bosque abierto bajo de tierra firme

Fuente: Elaboración equipo técnico

Especie

5.5.2.3.2.6. <u>Coeficiente de mezcla (CM)</u>

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1/\frac{89}{1036}$$

$$CM = 1/0.0859$$

$$CM = 11,64$$

El coeficiente de mezcla obtenido implica que por cada 11,64 individuos estudiados hay una especie nueva para el bosque abierto bajo de tierra firme.

5.5.2.3.2.7. Estructura vertical

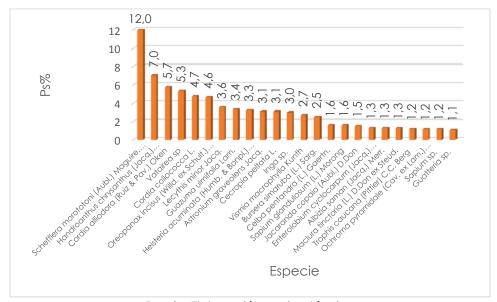
5.5.2.3.2.8. <u>Posición sociólogica</u>

La posición sociológica muestra que la especie con mayor peso es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con 11,96% debido a la presencia de la totalidad de sus individuos en el estrato dominante, el detallado de cada una de las especies se muestra en la Tabla 102 y Figura 44.

Tabla 102. Posición sociológica de las especies del bosque abierto bajo de tierra firme

Especies	Suprimido	Codominante	Dominante	Ps	Ps%
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	0	0	121	122331	11,961
Handroanthus chrysanthus (Jacq.) S.O.Grose	0	1	71	71806	7,021
Cordia alliodora (Ruiz & Pav.) Oken	0	0	58	58638	5,733
Vatairea sp	0	1	54	54619	5,340
Cordia collococca L.	0	1	48	48553	4,747
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0	0	47	47517	4,646
Lecythis minor Jacq.	0	2	36	36446	3,564
Guazuma ulmifolia Lam.	0	0	34	34374	3,361
Heisteria acuminata (Humb. & Bonpl.) Engl.	0	0	33	33363	3,262
Astronium graveolens Jacq.	0	0	31	31341	3,064
Cecropia peltata L.	0	0	31	31341	3,064
Inga sp.	0	0	30	30330	2,966
Vismia macrophylla Kunth	0	6	27	27447	2,684
Bursera simaruba (L.) Sarg.	0	1	25	25300	2,474
Ceiba pentandra (L.) Gaertn.	0	0	16	16176	1,582
Sapium glandulosum (L.) Morong	0	0	16	16176	1,582
Jacaranda copaia (Aubl.) D.Don	0	0	15	15165	1,483
Enterolobium cyclocarpum (Jacq.) Griseb.	0	1	13	13168	1,288
Albizia saman (Jacq.) Merr.	0	0	13	13143	1,285
Maclura tinctoria (L.) D.Don ex Steud.	0	0	13	13143	1,285
Trophis caucana (Pittier) C.C. Berg	0	1	12	12157	1,189
Ochroma pyramidale (Cav. ex Lam.) Urb.	0	0	12	12132	1,186
Sapium sp.	0	0	12	12132	1,186
Guatteria sp.	0	0	11	11121	1,087
Inga oerstediana Benth.	0	0	11	11121	1,087
Goethalsia meiantha (Donn.Sm.) Burret	0	0	10	10110	0,989

Especies	Suprimido	Codominante	Dominante	Ps	Ps%
Matayba sp.	0	1	9	9124	0,892
Sterculia apetala (Jacq.) H.Karst.	0	0	9	9099	0,890
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0	0	9	9099	0,890
Xylopia sp.	0	0	9	9099	0,890
Cedrela odorata L.	0	1	8	8113	0,793
Casearia arborea (Rich.) Urb.	0	0	7	7077	0,692
Ficus insipida Willd.	0	0	7	7077	0,692
Handroanthus guayacan (Seem.) S.O.Grose	0	0	7	7077	0,692
Protium sagotianum Marchand	0	0	7	7077	0,692
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0	0	7	7077	0,692
Apeiba glabra Aubl.	0	2	6	6116	0,598
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0	0	6	6066	0,593
Eschweilera caudiculata R.Knuth	0	0	6	6066	0,593
Inga macrophylla Willd.	0	0	6	6066	0,593
Pentaclethra macroloba (Willd.) Kuntze	0	0	6	6066	0,593
Bellucia pentamera Naudin	0	0	5	5055	0,494
Cordia sp.	0	0	5	5055	0,494
Heliocarpus americanus L.	0	0	5	5055	0,494
Unonopsis sp.	0	0	5	5055	0,494
Virola sp.	0	0	5	5055	0,494
Cedrela sp.	0	0	4	4044	0,395
Cochlospermum vitifolium (Willd.) Spreng.	0	0	4	4044	0,395
Lecythis tuyrana Pittier	0	0	4	4044	0,395
Spondias mombin L.	0	0	4	4044	0,395
Dendrobangia boliviana Rusby	0	0	3	3033	0,297
Albizia niopoides (Benth.) Burkart	0	0	3	3033	0,297
Aralia excelsa (Griseb.) J.Wen	0	0	3	3033	0,297
Aspidosperma album (Vahl) Benoist ex Pichon	0	0	3	3033	0,297
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0	0	3	3033	0,297
Virola sebifera Aubl.	0	0	3	3033	0,297
Duguetia sp.	0	1	2	2047	0,200
Anacardium excelsum (Bertero ex Kunth) Skeels	0	0	2	2022	0,198
Aspidosperma desmanthum Benth. ex Müll.Arg.	0	0	2	2022	0,198
Brownea ariza Benth.	0	0	2	2022	0,198
Buchenavia tetraphylla (Aubl.) R.A.Howard	0	0	2	2022	0,198
Cecropia insignis Liebm.	0	0	2	2022	0,198
Couratari sp.	0	0	2	2022	0,198
Macrolobium sp.	0	0	2	2022	0,198
Matisia sp.	0	0	2	2022	0,198



Especies	Suprimido	Codominante	Dominante	Ps	Ps%
Persea caerulea (Ruiz & Pav.) Mez	0	0	2	2022	0,198
Pseudobombax septenatum (Jacq.) Dugand	0	0	2	2022	0,198
Schizolobium parahyba (Vell.) S.F.Blake	0	0	2	2022	0,198
Terminalia sp.	0	0	2	2022	0,198
Trichilia hirta L.	0	0	2	2022	0,198
Vismia baccifera (L.) Planch. & Triana	0	0	2	2022	0,198
Aspidosperma sp.	0	0	1	1011	0,099
Bellucia sp.	0	0	1	1011	0,099
Cariniana pyriformis Miers	0	0	1	1011	0,099
Cynophalla verrucosa (Jacq.) J.Presl	0	0	1	1011	0,099
Eschweilera sp.	0	0	1	1011	0,099
Hymenaea courbaril L.	0	0	1	1011	0,099
Ochoterenaea colombiana F.A.Barkley	0	0	1	1011	0,099
Pithecellobium lanceolatum (Willd.) Benth.	0	0	1	1011	0,099
Talisia sp.	0	0	1	1011	0,099
Tapirira guianensis Aubl.	0	0	1	1011	0,099
Triplaris americana L.	0	0	1	1011	0,099
Vochysia ferruginea Mart.	0	0	1	1011	0,099
Wettinia hirsuta Burret	0	0	1	1011	0,099
Crateva tapia L.	0	2	0	50	0,005
Bauhinia aculeata L.	0	1	0	25	0,002
Inga edulis Mart.	0	1	0	25	0,002
Mangifera sp.	0	1	0	25	0,002
Solanum microleprodes Bitter	0	1	0	25	0,002

Figura 44. Distribución de la posición sociológica de las especies del bosque abierto bajo de tierra firme

5.5.2.3.2.3. Analisis del sotobosque

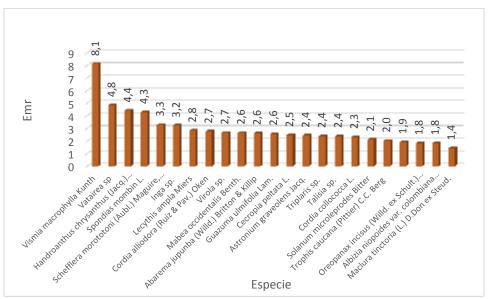
5.5.2.3.2.4. <u>Categoría de tamaño absoluta</u>

El análisis de regeneración natural muestra que la especie que presenta mayor representación es Vismia macrophylla Kunth con una categoría de tamaño de 9,632%, seguido de Vatairea sp. con una categoría de tamaño de 5,05% (Figura 45) (Tabla 103).

Tabla 103. Cálculo de la estructura de sotobosque en el bosque abierto bajo de tierra firme

Especies	AB%	FA%	СтаЕМ%	Emr
Vismia macrophylla Kunth	9,729	5,042	9,632	8,134
Vatairea sp	6,357	3,081	5,056	4,831
Handroanthus chrysanthus (Jacq.) S.O.Grose	4,478	4,482	4,268	4,409
Spondias mombin L.	4,312	4,202	4,325	4,280
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	3,040	3,361	3,426	3,276
Inga sp.	3,206	3,361	3,132	3,233
Lecythis ampla Miers	3,870	0,840	3,761	2,824
Cordia alliodora (Ruiz & Pav.) Oken	2,266	3,922	2,058	2,749
Virola sp.	3,206	1,681	3,084	2,657
Mabea occidentalis Benth.	2,432	2,801	2,700	2,645
Abarema jupunba (Willd.) Britton & Killip	2,709	2,801	2,313	2,607

Especies	AB%	FA%	СтаЕМ%	Emr
Guazuma ulmifolia Lam.	2,653	1,961	3,067	2,560
Cecropia peltata L.	2,709	1,681	2,983	2,458
Astronium graveolens Jacq.	2,432	2,801	2,060	2,431
Triplaris sp.	2,377	2,521	2,278	2,392
Talisia sp.	1,935	2,801	2,357	2,364
Cordia collococca L.	2,488	2,241	2,146	2,292
Solanum microleprodes Bitter	2,045	1,961	2,325	2,110
Trophis caucana (Pittier) C.C. Berg	2,156	1,681	2,185	2,007
Cochlospermum vitifolium (Willd.) Spreng.	1,824	1,681	2,232	1,912
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,327	2,521	1,609	1,819
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,879	1,961	1,588	1,810
Maclura tinctoria (L.) D.Don ex Steud.	1,161	1,961	1,131	1,417
Bursera simaruba (L.) Sarg.	1,437	0,840	1,529	1,269
Aspidosperma sp.	1,437	0,840	1,494	1,257
Sapium glandulosum (L.) Morong	0,995	1,681	1,026	1,234
Casearia arborea (Rich.) Urb.	1,493	0,560	1,645	1,233
Heliocarpus americanus L.	1,050	1,120	1,106	1,092
Macrolobium sp.	0,884	0,840	1,141	0,955
Malvaviscus sp.	1,050	1,120	0,692	0,954
Quararibea asterolepis Pittier	0,940	0,840	0,893	0,891
Cynophalla verrucosa (Jacq.) J.Presl	0,884	0,840	0,901	0,875
Cordia alba (Jacq.) Roem. & Schult.	0,719	0,840	0,495	0,684
Bellucia pentamera Naudin	0,663	0,560	0,804	0,676
Jacaranda copaia (Aubl.) D.Don	0,608	0,840	0,568	0,672
Sapium sp.	0,553	0,840	0,593	0,662
Bellucia grossularioides (L.) Triana	0,498	0,840	0,630	0,656
Matayba sp.	0,829	0,280	0,751	0,620
Bixa sp.	0,774	0,280	0,790	0,615
Dialium sp.	0,774	0,280	0,771	0,609
Cedrela odorata L.	0,719	0,560	0,523	0,601
Chrysophyllum cainito L.	0,553	0,560	0,669	0,594
Anacardium excelsum (Bertero ex Kunth) Skeels	0,332	1,120	0,320	0,591
Myrcia popayanensis Hieron.	0,608	0,560	0,603	0,590
Bauhinia aculeata L.	0,498	0,840	0,373	0,570
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,387	0,840	0,482	0,570
Acacia cornigera (L.) Willd.	0,276	1,120	0,300	0,565
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,442	0,840	0,382	0,555
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,387	0,840	0,400	0,542
Eschweilera caudiculata R.Knuth	0,553	0,280	0,739	0,524
Guatteria sp.	0,498	0,280	0,665	0,481


Especies	AB%	FA%	СТаЕМ%	Emr
Handroanthus guayacan (Seem.) S.O.Grose	0,442	0,560	0,404	0,469
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,442	0,560	0,382	0,461
Callicarpa sp.	0,221	0,840	0,295	0,452
Gustavia superba (Kunth) O.Berg	0,276	0,560	0,369	0,402
Ormosia colombiana Rudd	0,553	0,280	0,365	0,399
Enterolobium cyclocarpum (Jacq.) Griseb.	0,276	0,560	0,328	0,388
Zanthoxylum panamense P.Wilson	0,387	0,280	0,476	0,381
Gliricidia sepium (Jacq.) Walp.	0,276	0,560	0,265	0,367
Adenocalymma aspericarpum (A.H.Gentry) L.G.Lohmann	0,221	0,560	0,295	0,359
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,332	0,280	0,443	0,352
Eschweilera sp.	0,221	0,560	0,261	0,347
Oxandra panamensis R.E. Fr.	0,221	0,560	0,254	0,345
Calliandra magdalenae (DC.) Benth.	0,332	0,280	0,367	0,326
Apeiba glabra Aubl.	0,166	0,560	0,222	0,316
Crescentia cujete L.	0,166	0,560	0,152	0,293
Sterculia apetala (Jacq.) H.Karst.	0,166	0,560	0,152	0,293
Lecythis sp.	0,111	0,560	0,148	0,273
Simaba cedron Planch.	0,111	0,560	0,148	0,273
Goethalsia meiantha (Donn.Sm.) Burret	0,221	0,280	0,295	0,266
Lecythis minor Jacq.	0,221	0,280	0,295	0,266
Albizia saman (Jacq.) Merr.	0,221	0,280	0,261	0,254
Thevetia ahouai (L.) A.DC.	0,276	0,280	0,195	0,250
Hymenaea courbaril L.	0,276	0,280	0,177	0,244
Pachira aquatica Aubl.	0,221	0,280	0,226	0,242
Rollinia mucosa (Jacq.) Baill.	0,221	0,280	0,179	0,227
Coccoloba pubescens L.	0,166	0,280	0,181	0,209
Manilkara bidentata (A.DC.) A.Chev.	0,166	0,280	0,140	0,195
Vismia baccifera (L.) Planch. & Triana	0,166	0,280	0,140	0,195
Aniba sp.	0,111	0,280	0,148	0,179
Ceiba pentandra (L.) Gaertn.	0,111	0,280	0,148	0,179
Centrolobium paraense Tul.	0,111	0,280	0,148	0,179
Triplaris americana L.	0,111	0,280	0,148	0,179
Aspidosperma album (Vahl) Benoist ex Pichon	0,111	0,280	0,113	0,168
Unonopsis sp.	0,111	0,280	0,107	0,166
Couratari sp.	0,111	0,280	0,078	0,156
Vitex cymosa Bertero ex Spreng	0,111	0,280	0,072	0,154
Bactris guineensis (L.) H.E.Moore	0,055	0,280	0,074	0,136
Ficus dugandii Standl.	0,055	0,280	0,074	0,136
Ficus insipida Willd.	0,055	0,280	0,074	0,136
Piptadenia sp.	0,055	0,280	0,074	0,136

Especies	AB%	FA%	СТаЕМ%	Emr
Pseudobombax septenatum (Jacq.) Dugand	0,055	0,280	0,074	0,136
Rhodostemonodaphne kunthiana (Nees) Rohwer	0,055	0,280	0,074	0,136
Psidium guajava L.	0,055	0,280	0,039	0,125
Tapirira guianensis Aubl.	0,055	0,280	0,039	0,125
Trattinnickia aspera (Standl.) Swart	0,055	0,280	0,039	0,125
Cespedesia spathulata (Ruiz & Pav.) Planch.	0,055	0,280	0,033	0,123
Pentaclethra macroloba (Willd.) Kuntze	0,055	0,280	0,033	0,123
Total	100	100	100	100

Figura 45. Distribución del sotobosque del bosque abierto bajo de tierra firme

Fuente: Elaboración equipo técnico

5.5.2.3.2.5. Índice de valor de importancia ampliado (IVIA)

La especie con el mayor valor de importancia en el bosque es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin, la cual obtuvo un valor de 43,30 de IVIA con la mayor significancia asociado al IVI y PS. La especie *Handroanthus chrysanthus* (Jacq.) S.O.Grose presenta un valor de 24,74, también asociado al peso de IVI y Ps (Tabla 104) (Figura 46).

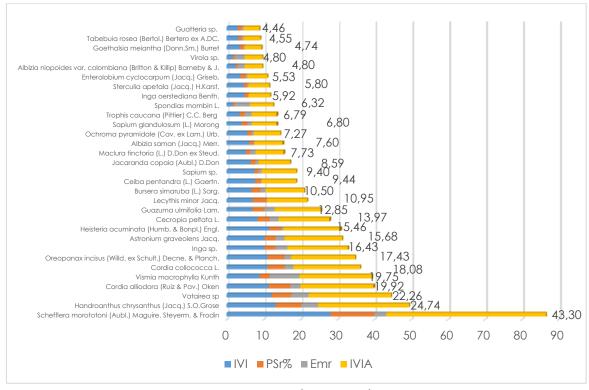
Tabla 104. Índice de valor de importancia ampliado para el bosque abierto bajo de tierra firme

<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	IVIA
Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin	28,06	11,96	3,28	43,30
Handroanthus chrysanthus (Jacq.) S.O.Grose	13,31	7,02	4,41	24,74

<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	<u>IVIA</u>
Vatairea sp	12,09	5,34	4,83	22,26
Cordia alliodora (Ruiz & Pav.) Oken	11,44	5,73	2,75	19,92
Vismia macrophylla Kunth	8,93	2,68	8,13	19,75
Cordia collococca L.	11,04	4,75	2,29	18,08
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	10,97	4,65	1,82	17,43
Inga sp.	10,23	2,97	3,23	16,43
Astronium graveolens Jacq.	10,19	3,06	2,43	15,68
Heisteria acuminata (Humb. & Bonpl.) Engl.	11,66	3,26	0,54	15,46
Cecropia peltata L.	8,45	3,06	2,46	13,97
Guazuma ulmifolia Lam.	6,92	3,36	2,56	12,85
Lecythis minor Jacq.	7,12	3,56	0,27	10,95
Bursera simaruba (L.) Sarg.	6,76	2,47	1,27	10,50
Ceiba pentandra (L.) Gaertn.	7,68	1,58	0,18	9,44
Sapium sp.	7,56	1,19	0,66	9,40
Jacaranda copaia (Aubl.) D.Don	6,43	1,48	0,67	8,59
Maclura tinctoria (L.) D.Don ex Steud.	5,03	1,29	1,42	7,73
Albizia saman (Jacq.) Merr.	6,06	1,29	0,25	7,60
Ochroma pyramidale (Cav. ex Lam.) Urb.	5,53	1,19	0,55	7,27
Sapium glandulosum (L.) Morong	3,99	1,58	1,23	6,80
Trophis caucana (Pittier) C.C. Berg	3,60	1,19	2,01	6,79
Spondias mombin L.	1,65	0,40	4,28	6,32
Inga oerstediana Benth.	4,83	1,09	0,00	5,92
Sterculia apetala (Jacq.) H.Karst.	4,62	0,89	0,29	5,80
Enterolobium cyclocarpum (Jacq.) Griseb.	3,86	1,29	0,39	5,53
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,40	0,59	1,81	4,80
Virola sp.	1,65	0,49	2,66	4,80
Goethalsia meiantha (Donn.Sm.) Burret	3,49	0,99	0,27	4,74
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,09	0,89	0,57	4,55
Guatteria sp.	2,90	1,09	0,48	4,46
Ficus insipida Willd.	3,62	0,69	0,14	4,45
Casearia arborea (Rich.) Urb.	2,50	0,69	1,23	4,42
Xylopia sp.	3,16	0,89	0,00	4,05
Cedrela odorata L.	2,59	0,79	0,60	3,98
Protium sagotianum Marchand	3,29	0,69	0,00	3,98
Cochlospermum vitifolium (Willd.) Spreng.	1,45	0,40	1,91	3,76
Handroanthus guayacan (Seem.) S.O.Grose	2,44	0,69	0,47	3,61

<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	<u>IVIA</u>
Heliocarpus americanus L.	1,92	0,49	1,09	3,50
Inga macrophylla Willd.	2,77	0,59	0,00	3,36
Matayba sp.	1,58	0,89	0,62	3,09
Bellucia pentamera Naudin	1,89	0,49	0,68	3,06
Eschweilera caudiculata R.Knuth	1,85	0,59	0,52	2,97
Apeiba glabra Aubl.	2,00	0,60	0,32	2,92
Pentaclethra macroloba (Willd.) Kuntze	2,13	0,59	0,12	2,84
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	2,14	0,69	0,00	2,83
Lecythis ampla Miers	0,00	0,00	2,82	2,82
Talisia sp.	0,36	0,10	2,36	2,82
Mabea occidentalis Benth.	0,00	0,00	2,64	2,64
Abarema jupunba (Willd.) Britton & Killip	0,00	0,00	2,61	2,61
Solanum microleprodes Bitter	0,36	0,00	2,11	2,47
Unonopsis sp.	1,74	0,49	0,17	2,40
Triplaris sp.	0,00	0,00	2,39	2,39
Anacardium excelsum (Bertero ex Kunth) Skeels	1,38	0,20	0,59	2,17
Macrolobium sp.	0,76	0,20	0,96	1,91
Dendrobangia boliviana Rusby	3,07	0,30	0,00	3,36
Aspidosperma sp.	0,39	0,10	1,26	1,74
Cordia sp.	1,24	0,49	0,00	1,73
Cedrela sp.	1,26	0,40	0,00	1,66
Aralia excelsa (Griseb.) J.Wen	1,18	0,30	0,00	1,48
Aspidosperma desmanthum Benth. ex Müll.Arg.	0,76	0,20	0,46	1,42
Aspidosperma album (Vahl) Benoist ex Pichon	0,95	0,30	0,17	1,42
Pseudobombax septenatum (Jacq.) Dugand	1,08	0,20	0,14	1,42
Cynophalla verrucosa (Jacq.) J.Presl	0,37	0,10	0,88	1,34
Virola sebifera Aubl.	1,01	0,30	0,00	1,31
Persea caerulea (Ruiz & Pav.) Mez	1,03	0,20	0,00	1,23
Lecythis tuyrana Pittier	0,83	0,40	0,00	1,22
Senna bacillaris (L.f.) H.S.Irwin & Barneby	0,90	0,30	0,00	1,20
Duguetia sp.	0,98	0,20	0,00	1,18
Albizia niopoides (Benth.) Burkart	0,86	0,30	0,00	1,16
Schizolobium parahyba (Vell.) S.F.Blake	0,95	0,20	0,00	1,15
Vismia baccifera (L.) Planch. & Triana	0,75	0,20	0,20	1,14
Cecropia insignis Liebm.	0,85	0,20	0,00	1,04
Matisia sp.	0,82	0,20	0,00	1,02

<u>Especie</u>	<u>IVI</u>	PSr%	Emr	IVIA
Couratari sp.	0,61	0,20	0,16	0,97
Malvaviscus sp.	0,00	0,00	0,18	0,95
Brownea ariza Benth.	0,74	0,20	0,00	0,73
Bauhinia aculeata L.	0,35	0,00	0,57	0,93
Quararibea asterolepis Pittier	0,00	0,00	0,89	0,89
Eschweilera sp.	0,42	0,10	0,35	0,87
Terminalia sp.	0,66	0,20	0,00	0,85
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,61	0,20	0,00	0,80
Triplaris americana L.	0,52	0,10	0,18	0,80
Trichilia hirta L.	0,57	0,20	0,00	0,77
Crateva tapia L.	0,72	0,00	0,00	0,73
Tapirira guianensis Aubl.	0,50	0,10	0,12	0,72
Hymenaea courbaril L.	0,36	0,10	0,24	0,70
Cordia alba (Jacq.) Roem. & Schult.	0,00	0,00	0,68	0,68
Bellucia grossularioides (L.) Triana	0,00	0,00	0,66	0,66
Bixa sp.	0,00	0,00	0,61	0,61
Dialium sp.	0,00	0,00	0,61	0,61
Chrysophyllum cainito L.	0,00	0,00	0,59	0,59
Myrcia popayanensis Hieron.	0,00	0,00	0,59	0,59
Acacia cornigera (L.) Willd.	0,00	0,00	0,57	0,57
Pithecellobium lanceolatum (Willd.) Benth.	0,45	0,10	0,00	0,55
Cariniana pyriformis Miers	0,43	0,10	0,00	0,53
Bellucia sp.	0,39	0,10	0,00	0,49
Vochysia ferruginea Mart.	0,38	0,10	0,00	0,48
Mangifera sp.	0,46	0,00	0,00	0,46
Ochoterenaea colombiana F.A.Barkley	0,36	0,10	0,00	0,46
Wettinia hirsuta Burret	0,36	0,10	0,00	0,46
Callicarpa sp.	0,00	0,00	0,45	0,45
Gustavia superba (Kunth) O.Berg	0,00	0,00	0,40	0,40
Ormosia colombiana Rudd	0,00	0,00	0,40	0,40
Inga edulis Mart.	0,38	0,00	0,00	0,39
Zanthoxylum panamense P.Wilson	0,00	0,00	0,38	0,38
Gliricidia sepium (Jacq.) Walp.	0,00	0,00	0,37	0,37
Adenocalymma aspericarpum (A.H.Gentry) L.G.Lohmann	0,00	0,00	0,36	0,36
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,00	0,00	0,35	0,35
Oxandra panamensis R.E. Fr.	0,00	0,00	0,35	0,35



<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	IVIA
Calliandra magdalenae (DC.) Benth.	0,00	0,00	0,33	0,33
Crescentia cujete L.	0,00	0,00	0,29	0,29
Lecythis sp.	0,00	0,00	0,27	0,27
Simaba cedron Planch.	0,00	0,00	0,27	0,27
Thevetia ahouai (L.) A.DC.	0,00	0,00	0,25	0,25
Pachira aquatica Aubl.	0,00	0,00	0,24	0,24
Rollinia mucosa (Jacq.) Baill.	0,00	0,00	0,23	0,23
Coccoloba pubescens L.	0,00	0,00	0,21	0,21
Manilkara bidentata (A.DC.) A.Chev.	0,00	0,00	0,20	0,20
Aniba sp.	0,00	0,00	0,18	0,18
Centrolobium paraense Tul.	0,00	0,00	0,18	0,18
Vitex cymosa Bertero ex Spreng	0,00	0,00	0,15	0,15
Bactris guineensis (L.) H.E.Moore	0,00	0,00	0,14	0,14
Ficus dugandii Standl.	0,00	0,00	0,14	0,14
Piptadenia sp.	0,00	0,00	0,14	0,14
Rhodostemonodaphne kunthiana (Nees) Rohwer	0,00	0,00	0,14	0,14
Psidium guajava L.	0,00	0,00	0,12	0,12
Trattinnickia aspera (Standl.) Swart	0,00	0,00	0,12	0,12
Cespedesia spathulata (Ruiz & Pav.) Planch.	0,00	0,00	0,12	0,12

Figura 46. Distribución del IVIA para el bosque abierto bajo de tierra firme

5.5.2.3.3. Indicadores de diversidad alfa del bosque abierto bajo de tierra firme

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 105.

Tabla 105. Índices de biodiversidad alfa del bosque abierto bajo de tierra firme

Parámetro	Valor
Dmn	2,796
Dsi	1/0,03= 25,33
d	1/1,13= 0,88
H′	3,71
dmg	12,81

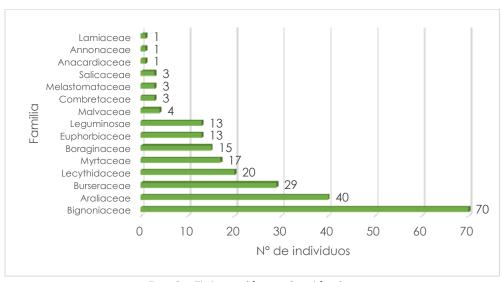
Fuente: Elaboración equipo técnico

El índice de Menhinick muestra una tendencia media a la diversidad, siendo medianamente heterogéneo en su estructura. Sin embargo, el índice de Simpson muestra tendencia a la alta diversidad del bosque, teniendo en cuenta que la probabilidad de sacar individuos iguales es muy baja.

Para la cobertura de bosque abierto bajo de tierra firme, el índice de Shannon establece que es típicamente diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es altamente biodiverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad media.

5.5.2.4. Cobertura de Bosque Abierto Bajo Inundable

El bosque abierto bajo inundable se encuentra constituido por un total de 21 especies distribuidas en 15 familias registradas en el inventario forestal. En la Tabla 106, se identifica la familia Bignoniaceae y Araliaceae las que presentan la mayor representación. A su vez se identifica que la familia Bignociaceae se encuentra representada en 1 generos y 1 especies, resaltando la especie *Jacaranda copaia* (Aubl.) D.Don con 70 individuos (Figura 47).


Tabla 106. Composición florística del bosque abierto bajo inundable

Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
Anacardiaceae	1	Anacardium excelsum (Bertero ex Kunth) Skeels	1
Annonaceae	1	Xylopia aromatica (Lam.) Mart.	1
Araliaceae	40	Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	40
Bignoniaceae	70	Jacaranda copaia (Aubl.) D.Don	70
Boraginaceae	15	Cordia collococca L.	15
Burseraceae	29	Protium sagotianum Marchand	29
Combretaceae	3	Buchenavia tetraphylla (Aubl.) R.A.Howard	3
Euphorbiaceae	13	Sapium sp.	13
Lamiaceae	1	Vitex cymosa Bertero ex Spreng	1
		Cariniana sp.	1
Lecythidaceae		Couratari sp.	3
Lecyffliadcede		Lecythis minor Jacq.	5
	20	Lecythis sp.	11
		Albizia niopoides (Benth.) Burkart	10
		Cassia fistula L.	1
		Hymenaea courbaril L.	1
Leguminosae	13	Schizolobium parahyba (Vell.) S.F.Blake	1
Malvaceae	4	Matisia sp.	4
Melastomatacea			
е	3	Bellucia grossularioides (L.) Triana	3
Myrtaceae	17	Myrcia popayanensis Hieron.	17
Salicaceae	3	Casearia arborea (Rich.) Urb.	3

Figura 47. Distribución florística de las familias identificadas en el bosque abierto bajo inundable

La cobertura de bosque abierto bajo inundable presenta un área basal por ha de 8,4404 m² en las 21 especies, obteniendo un área basal promedio/individuo/especie de 0,0376 m² y área basal promedio/especie /hectárea de 0,4019 m²; en la Tabla 107 se presenta los indicadores detallados por especie.

Tabla 107. Indicadores por especie de área basal

Especie	AB/sp /ha	AB/ ind/ sp/ha
Xylopia aromatica (Lam.) Mart.	0,0115	0,0092
Albizia niopoides (Benth.) Burkart	0,3240	0,0324
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0637	0,0509
Bellucia grossularioides (L.) Triana	0,0377	0,0151
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,0380	0,0152
Cariniana sp.	0,0370	0,0296
Casearia arborea (Rich.) Urb.	0,0602	0,0241
Cassia fistula L.	0,0460	0,0368
Cordia collococca L.	0,3319	0,0221
Couratari sp.	0,1226	0,0490
Hymenaea courbaril L.	0,1076	0,0861
Jacaranda copaia (Aubl.) D.Don	3,0068	0,0430
Lecythis minor Jacq.	0,0978	0,0196
Lecythis sp.	1,0396	0,0924
Matisia sp.	0,0887	0,0236
Myrcia popayanensis Hieron.	0,2316	0,0132
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,3699	0,0342
Protium sagotianum Marchand	0,8810	0,0306
Sapium sp.	0,3809	0,0305

Especie	AB/sp /ha	AB/ ind/ sp/ha
Schizolobium parahyba (Vell.) S.F.Blake	0,1481	0,1184
Vitex cymosa Bertero ex Spreng	0,0159	0,0127

En cuanto a los indicadores de volumen se encuentra distribuido en 5 clases diamétricas, siendo la clase I la que presenta los mayores volúmenes. Para el caso del volumen total se obtiene 75,678 m³; en la Figura 48 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de bosque abierto bajo inundable, encontrándose la clase I con un volumen de 23,2523 m³ seguido de la clase II con 20,3709 m³.

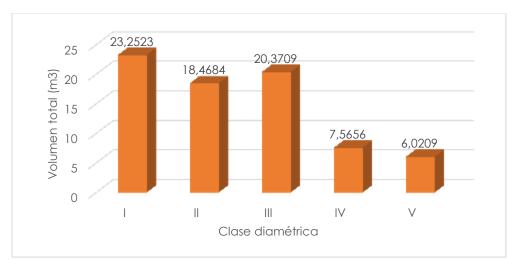


Figura 48. Distribución del volumen total por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen total por especie se calcula un promedio de 3,60 m³ y un volumen promedio por especie por individuo de 0,32 m³; en la Tabla 108 se evidencia el volumen de cada una de las especies por hectárea y en la Tabla 109 se observa la distribución del volumen por especie y clase diamétrica.

Especie	VT/sp /ha	VT ind/sp/ha
Xylopia aromatica (Lam.) Mart.	0,0598	0,0478
Albizia niopoides (Benth.) Burkart	3,0955	0,3095
Anacardium excelsum (Bertero ex Kunth) Skeels	0,4138	0,3310
Bellucia grossularioides (L.) Triana	0,1829	0,0732
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,4159	0,1664
Cariniana sp.	0,3368	0,2695
Casearia arborea (Rich.) Urb.	0,5193	0,2077

0,5382

2,8963

0,4305

0,1931

Cassia fistula L.

Cordia collococca L.

Tabla 108. Indicadores por especie de volumen total

Especie	VT/sp /ha	VT ind/sp/ha
Couratari sp.	0,7989	0,3196
Hymenaea courbaril L.	0,9791	0,7832
Jacaranda copaia (Aubl.) D.Don	28,8505	0,4121
Lecythis minor Jacq.	0,6231	0,1246
Lecythis sp.	10,5040	0,9337
Matisia sp.	0,4289	0,1144
Myrcia popayanensis Hieron.	1,7303	0,0989
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	11,5660	0,2891
Protium sagotianum Marchand	7,4437	0,2589
Sapium sp.	2,8858	0,2309
Schizolobium parahyba (Vell.) S.F.Blake	1,3473	1,0778
Vitex cymosa Bertero ex Spreng	0,0621	0,0497

Tabla 109. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /ha/Ct diam.
I	23,2523
Xylopia aromatica (Lam.) Mart.	0,0598
Albizia niopoides (Benth.) Burkart	0,9998
Bellucia grossularioides (L.) Triana	0,1829
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,4159
Cariniana sp.	0,3368
Casearia arborea (Rich.) Urb.	0,5193
Cordia collococca L.	2,0148
Jacaranda copaia (Aubl.) D.Don	6,4756
Lecythis minor Jacq.	0,6231
Lecythis sp.	0,7923
Matisia sp.	0,2236
Myrcia popayanensis Hieron.	1,7303
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	4,2689
Protium sagotianum Marchand	3,4850
Sapium sp.	1,0621
Vitex cymosa Bertero ex Spreng	0,0621
	18,4684
Albizia niopoides (Benth.) Burkart	0,8210
Anacardium excelsum (Bertero ex Kunth) Skeels	0,4138
Cassia fistula L.	0,5382
Cordia collococca L.	0,8816
Couratari sp.	0,7989
Jacaranda copaia (Aubl.) D.Don	8,0031
Lecythis sp.	0,4752
Matisia sp.	0,2053
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	3,4410

Clase diamétrica / Especie	VTsp /ha/Ct diam.
Protium sagotianum Marchand	1,0666
Sapium sp.	1,8237
III	20,3709
Albizia niopoides (Benth.) Burkart	1,2746
Hymenaea courbaril L.	0,9791
Jacaranda copaia (Aubl.) D.Don	12,6235
Lecythis sp.	1,1764
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2,1146
Protium sagotianum Marchand	0,8554
Schizolobium parahyba (Vell.) S.F.Blake	1,3473
IV	7,5656
Jacaranda copaia (Aubl.) D.Don	1,7483
Lecythis sp.	2,0391
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,7415
Protium sagotianum Marchand	2,0367
V	6,0209
Lecythis sp.	6,0209

El bosque abierto bajo inundable presenta un volumen de fuste por ha 59,82 m³, distribuido en 5 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 5,98 m³ (Figura 49).

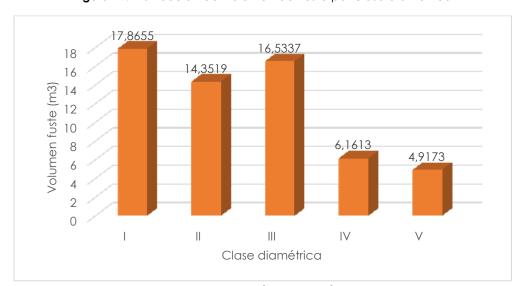


Figura 49. Distribución del volumen del fuste por clase diamétrica

Fuente: Elaboración equipo técnico

De igual forma, el volumen de fuste por especie promedio es de 2,84 m³ y un volumen promedio por especie por individuo de 0,24 m³ de volumen de fuste por individuo por

especie. En la Tabla 110 se evidencia el volumen de cada una de las especies y en la Tabla 111 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 110. Indicadores por especie de volumen de fuste

Especie	VF/sp /ha	VF ind/sp/ha
Xylopia aromatica (Lam.) Mart.	0,0374	0,0299
Albizia niopoides (Benth.) Burkart	2,4230	0,2423
Anacardium excelsum (Bertero ex Kunth) Skeels	0,2897	0,2317
Bellucia grossularioides (L.) Triana	0,1094	0,0438
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,3418	0,1367
Cariniana sp.	0,2646	0,2117
Casearia arborea (Rich.) Urb.	0,4019	0,1608
Cassia fistula L.	0,4485	0,3588
Cordia collococca L.	2,2490	0,1499
Couratari sp.	0,5599	0,2239
Hymenaea courbaril L.	0,7693	0,6154
Jacaranda copaia (Aubl.) D.Don	22,9872	0,3284
Lecythis minor Jacq.	0,4324	0,0865
Lecythis sp.	8,4767	0,7535
Matisia sp.	0,2559	0,0682
Myrcia popayanensis Hieron.	1,2787	0,0731
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	9,6421	0,2411
Protium sagotianum Marchand	5,7258	0,1992
Sapium sp.	2,1431	0,1714
Schizolobium parahyba (Vell.) S.F.Blake	0,9624	0,7699
Vitex cymosa Bertero ex Spreng	0,0310	0,0248

Tabla 111. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /ha/Ct diam.
	17,8655
Xylopia aromatica (Lam.) Mart.	0,0374
Albizia niopoides (Benth.) Burkart	0,7665
Bellucia grossularioides (L.) Triana	0,1094
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,3418
Cariniana sp.	0,2646
Casearia arborea (Rich.) Urb.	0,4019
Cordia collococca L.	1,5496
Jacaranda copaia (Aubl.) D.Don	4,9192
Lecythis minor Jacq.	0,4324

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Lecythis sp.	0,6236
Matisia sp.	0,1276
Myrcia popayanensis Hieron.	1,2787
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	3,5053
Protium sagotianum Marchand	2,6712
Sapium sp.	0,8053
Vitex cymosa Bertero ex Spreng	0,0310
II	14,3519
Albizia niopoides (Benth.) Burkart	0,6209
Anacardium excelsum (Bertero ex Kunth) Skeels	0,2897
Cassia fistula L.	0,4485
Cordia collococca L.	0,6994
Couratari sp.	0,5599
Jacaranda copaia (Aubl.) D.Don	6,2417
Lecythis sp.	0,3802
Matisia sp.	0,1283
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2,8327
Protium sagotianum Marchand	0,8128
Sapium sp.	1,3378
III	16,5337
Albizia niopoides (Benth.) Burkart	1,0356
Hymenaea courbaril L.	0,7693
Jacaranda copaia (Aubl.) D.Don	10,4058
Lecythis sp.	0,9243
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,7948
Protium sagotianum Marchand	0,6416
Schizolobium parahyba (Vell.) S.F.Blake	0,9624
IV	6,1613
Jacaranda copaia (Aubl.) D.Don	1,4205
Lecythis sp.	1,6313
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,5093
Protium sagotianum Marchand	1,6003
V	4,9173
Lecythis sp.	4,9173

En el caso del volumen comercial se obtiene un volumen de 42,99 m³ por hectárea distribuido en las 5 clases diamétricas, con un volumen promedio por clase diamétrica de 4,29 m³. En la Figura 50 se presenta la distribución del volumen comercial por clase diamétrica.

(EU) 12 10,9768 12,5414 10,9768 4,0343 2,2768 20 0 I II III IV V Clase diamétrica

Figura 50. Distribución del volumen comercial por clase diamétrica

De igual manera, el volumen comercial por especie un promedio de 2,04 m³ y un volumen promedio por especie por individuo de 0,15 m³; en la Tabla 112 se evidencia el volumen comercial de cada una de las especies y en la Tabla 113 se observa la distribución del volumen comercial por especie y clase diamétrica.

Tabla 112. Indicadores por especie de volumen comercial

Especie	VC/sp /ha	VC ind/sp/ha
Xylopia aromatica (Lam.) Mart.	0,0374	0,0299
Albizia niopoides (Benth.) Burkart	1,6431	0,1643
Anacardium excelsum (Bertero ex Kunth) Skeels	0,2483	0,1986
Bellucia grossularioides (L.) Triana	0,0604	0,0242
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,1186	0,0474
Cariniana sp.	0,0962	0,0770
Casearia arborea (Rich.) Urb.	0,2702	0,1081
Cassia fistula L.	0,1794	0,1435
Cordia collococca L.	1,5304	0,1020
Couratari sp.	0,3188	0,1275
Hymenaea courbaril L.	0,6294	0,5035
Jacaranda copaia (Aubl.) D.Don	18,3978	0,2628
Lecythis minor Jacq.	0,3952	0,0790
Lecythis sp.	4,3558	0,3872
Matisia sp.	0,3972	0,1059
Myrcia popayanensis Hieron.	1,1531	0,0659
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	7,5579	0,1889
Protium sagotianum Marchand	3,7949	0,1320
Sapium sp.	1,2448	0,0996

Especie	VC/sp /ha	VC ind/sp/ha
Schizolobium parahyba (Vell.) S.F.Blake	0,5293	0,4234
Vitex cymosa Bertero ex Spreng	0,0414	0,0331

Tabla 113. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
I	13,1704
Xylopia aromatica (Lam.) Mart.	0,0374
Albizia niopoides (Benth.) Burkart	0,5440
Bellucia grossularioides (L.) Triana	0,0604
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,1186
Cariniana sp.	0,0962
Casearia arborea (Rich.) Urb.	0,2702
Cordia collococca L.	1,0738
Jacaranda copaia (Aubl.) D.Don	3,7893
Lecythis minor Jacq.	0,3952
Lecythis sp.	0,3781
Matisia sp.	0,1919
Myrcia popayanensis Hieron.	1,1531
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2,4874
Protium sagotianum Marchand	1,9888
Sapium sp.	0,5445
Vitex cymosa Bertero ex Spreng	0,0414
II	10,9768
Albizia niopoides (Benth.) Burkart	0,4618
Anacardium excelsum (Bertero ex Kunth) Skeels	0,2483
Cassia fistula L.	0,1794
Cordia collococca L.	0,4566
Couratari sp.	0,3188
Jacaranda copaia (Aubl.) D.Don	5,1165
Lecythis sp.	0,3168
Matisia sp.	0,2053
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2,4703
Protium sagotianum Marchand	0,5027
Sapium sp.	0,7003
III	12,5414
Albizia niopoides (Benth.) Burkart	0,6373
Hymenaea courbaril L.	0,6294
Jacaranda copaia (Aubl.) D.Don	8,1807
Lecythis sp.	0,8403
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,4392
Protium sagotianum Marchand	0,2851
Schizolobium parahyba (Vell.) S.F.Blake	0,5293

Clase diamétrica / Especie	VCsp /ha/Ct diam.
IV	4,0343
Jacaranda copaia (Aubl.) D.Don	1,3112
Lecythis sp.	0,5438
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,1610
Protium sagotianum Marchand	1,0183
V	2,2768
Lecythis sp.	2,2768

El volumen cosechable calculado para el bosque abierto bajo inundable es de 36,38 m³ con un promedio por especie de 1,73 m³, en la Tabla 114 se evidencia el volumen cosechabe de cada una de las especies y en la Tabla 115 se observa la distribución del volumen cosechable por especie y clase diamétrica.

Tabla 114. Indicadores por especie de volumen cosechable

Especie	VCs/sp /ha
Xylopia aromatica (Lam.) Mart.	0,0316
Albizia niopoides (Benth.) Burkart	1,3903
Anacardium excelsum (Bertero ex Kunth) Skeels	0,2101
Bellucia grossularioides (L.) Triana	0,0511
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,1003
Cariniana sp.	0,0814
Casearia arborea (Rich.) Urb.	0,2287
Cassia fistula L.	0,1518
Cordia collococca L.	1,2950
Couratari sp.	0,2697
Hymenaea courbaril L.	0,5326
Jacaranda copaia (Aubl.) D.Don	15,5673
Lecythis minor Jacq.	0,3344
Lecythis sp.	3,6857
Matisia sp.	0,3361
Myrcia popayanensis Hieron.	0,9757
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	6,3952
Protium sagotianum Marchand	3,2111
Sapium sp.	1,0533
Schizolobium parahyba (Vell.) S.F.Blake	0,4479
Vitex cymosa Bertero ex Spreng	0,0350

Tabla 115. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
I	11,1442
Xylopia aromatica (Lam.) Mart.	0,0316

p /ha/Ct diam
0,4603
0,0511
0,1003
0,0814
0,2287
0,9086
3,2063
0,3344
0,3200
0,1624
0,9757
2,1047
1,6828
0,4607
0,0350
9,2880
0,3908
0,2101
0,1518
0,3864
0,2697
4,3293
0,2681
0,1737
2,0903
0,4253
0,5926
10,6119
0,5393
0,5326
6,9222
0,7110
1,2178
0,2413
0,4479
3,4137
1,1095
0,4601
0,4801
0,8617
1,9265
1,7265

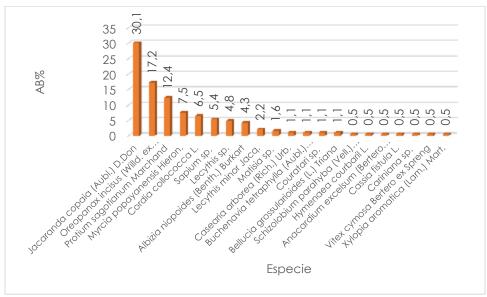
5.5.2.4.1.1. Estructura horizontal

En la Tabla 116 se observa los datos obtenidos del análisis de la estructura horizontal del bosque abierto bajo inundable.

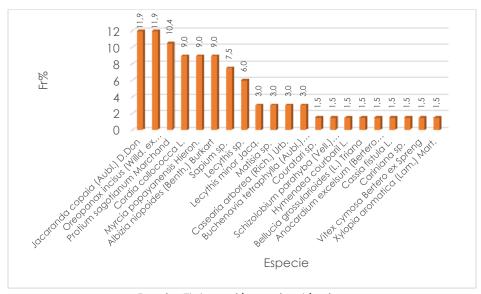
Tabla 116. Estructura horizontal para el bosque abierto bajo inundable

	N° de	Abunda	ncia	Domin	ancia	Frecue	ncia	
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Jacaranda copaia (Aubl.) D.Don	56	0,301	30,108	0,357	35,691	1,000	11,940	77,739
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	32	0.172	17,204	0,161	16,072	1,000	11,940	45,217
Protium sagotianum Marchand	23	0,124	12,366	0,105	10,457	0,875	10,448	33,271
Lecythis sp.	9	0,048	4,839	0,123	12,340	0,500	5,970	23,149
Cordia collococca L.	12	0,065	6,452	0,039	3,940	0,750	8,955	19,347
Myrcia popayanensis Hieron.	14	0,075	7,527	0,027	2,749	0,750	8,955	19,231
Sapium sp.	10	0,054	5,376	0,045	4,521	0,625	7,463	17,360
Albizia niopoides (Benth.) Burkart	8	0,043	4,301	0,038	3,846	0,750	8,955	17,102
Lecythis minor Jacq.	4	0,022	2,151	0,012	1,161	0,250	2,985	6,297
Matisia sp.	3	0,016	1,613	0,011	1,053	0,250	2,985	5,651
Casearia arborea (Rich.) Urb.	2	0,011	1,075	0,007	0,715	0,250	2,985	4,775
Buchenavia tetraphylla (Aubl.) R.A.Howard	2	0,011	1,075	0,005	0,452	0,250	2,985	4,512
Couratari sp.	2	0,011	1,075	0,015	1,455	0,125	1,493	4,023
Schizolobium parahyba (Vell.) S.F.Blake	1	0,005	0,538	0,018	1,757	0,125	1,493	3,788
Hymenaea courbaril L.	1	0,005	0,538	0,013	1,277	0,125	1,493	3,307
Bellucia grossularioides (L.) Triana	2	0,011	1,075	0,004	0,447	0,125	1,493	3,015
Anacardium excelsum (Bertero ex Kunth) Skeels	1	0,005	0,538	0,008	0,756	0,125	1,493	2,786
Cassia fistula L.	1	0,005	0,538	0,005	0,546	0,125	1,493	2,576
Cariniana sp.	1	0,005	0,538	0,004	0,439	0,125	1,493	2,470
Vitex cymosa Bertero ex Spreng	1	0,005	0,538	0,002	0,189	0,125	1,493	2,219
Xylopia aromatica (Lam.) Mart.	1	0,005	0,538	0,001	0,136	0,125	1,493	2,167
Totales		1	100	1	100	8,375	100	300

Fuente: Elaboración equipo técnico


<u>Abundancia</u>

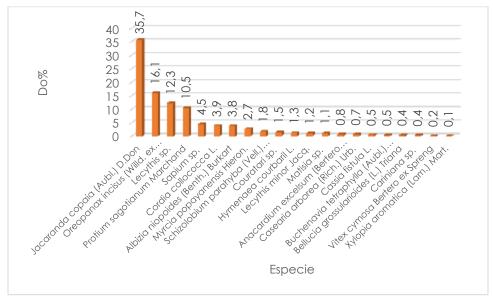
La abundancia absoluta y relativa presente en la cobertura de bosque abierto bajo inundable muestra que la especie más abundante es *Jacaranda copaia* (Aubl.) D.Doncon 70 individuos en una hectárea y de abundancia relativa 30,1 %. Igualmente, la especie *Oreopanax incisus* (Willd. ex Schult.) Decne. & Planch, presenta la segunda mayor abundancia con 40 individuos por hectárea y una abundancia realtiva de 17,2 % (Figura 51).


Figura 51. Distribución de la abundancia relativa para el bosque abierto bajo inundable

<u>Frecuencia</u>

La especie Jacaranda copaia (Aubl.) D.Don y Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. Son las mas frecuentes con una presencia en 6 parcelas de las 8 realizadas, con una abundancia de 11,94 %, seguida de especie Protium sagotianum Marchand con una presencia en 5 parcelas de las 8 con una frecuencia realtiva de 10,44 % (Figura 52).

Figura 52. Distribución de frecuencia relativa para el bosque abierto bajo inundable



Dominancia

La especie de mayor dominancia *Jacaranda copaia* (Aubl.) D.Don con 35,7 % y área basal de 2,4054 m², seguida de la especie *Oreopanax incisus* (Willd. ex Schult.) Decne. & Planch.con 16,1 % y un área basal de 1,0832 m² (Figura 53).

Figura 53. Distribución de la dominancia relativa para el bosque abierto bajo inundable

Fuente: Elaboración equipo técnico

Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es *Jacaranda copaia* (Aubl.) D.Doncon un IVI de 77,7, seguida de la especie *Oreopanax incisus* (Willd. ex Schult.) Decne. & Planch.con un peso ecológico de 45,2 evidenciando el comportamiento de J invertida de bosque natural (Figura 54).

Especie

Solution of the first of the first

Figura 54. Distribución del IVI para el bosque abierto bajo inundable

Coefiente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1 / \frac{21}{186}$$

$$CM = 1 / 0,112$$

$$CM = 8,92$$

El coeficiente de mezcla obtenido implica que por cada 8,92 individuos estudiados hay una especie nueva para el bosque abierto bajo inundable.

5.5.2.4.1.2. Estructura vertical

Posición sociólogica

La posición sociológica muestra que la especie con mayor peso es *Albizia niopoides* (Benth.) Burkart con 30,59 % debido a la presencia de la totalidad de sus individuos en el estrato dominante, el detallado de cada una de las especies se muestra en la Tabla 117 y Figura 55.

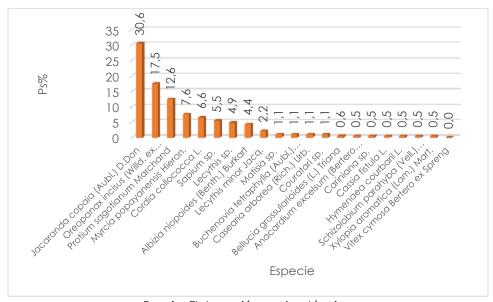


Tabla 117. Posición sociológica de las especies del bosque abierto bajo inundable

Nombre científico	<u>Suprimido</u>	Codominante	<u>Dominante</u>	<u>Ps</u>	<u>Ps%</u>
Jacaranda copaia (Aubl.) D.Don	0	0	56	10248	30,593
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0	0	32	5856	17,482
Protium sagotianum Marchand	0	0	23	4209	12,565
Myrcia popayanensis Hieron.	0	0	14	2562	7,648
Cordia collococca L.	0	0	12	2196	6,556
Sapium sp.	0	0	10	1830	5,463
Lecythis sp.	0	0	9	1647	4,917
Albizia niopoides (Benth.) Burkart	0	0	8	1464	4,370
Lecythis minor Jacq.	0	0	4	732	2,185
Matisia sp.	0	1	2	369	1,102
Buchenavia tetraphylla (Aubl.) R.A.Howard	0	0	2	366	1,093
Casearia arborea (Rich.) Urb.	0	0	2	366	1,093
Couratari sp.	0	0	2	366	1,093
Bellucia grossularioides (L.) Triana	0	1	1	186	0,555
Anacardium excelsum (Bertero ex Kunth) Skeels	0	0	1	183	0,546
Cariniana sp.	0	0	1	183	0,546
Cassia fistula L.	0	0	1	183	0,546
Hymenaea courbaril L.	0	0	1	183	0,546
Schizolobium parahyba (Vell.) S.F.Blake	0	0	1	183	0,546
Xylopia aromatica (Lam.) Mart.	0	0	1	183	0,546
Vitex cymosa Bertero ex Spreng	0	1	0	3	0,009

Figura 55. Distribución de la posición sociológica de las especies del bosque abierto bajo inundable

5.5.2.4.1.3. Analisis del sotobosque

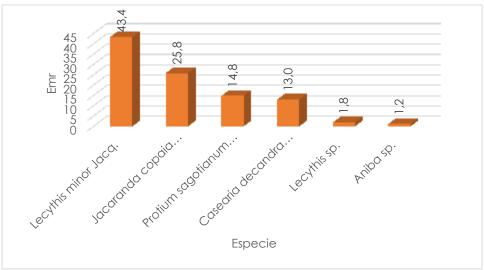

El análisis de regeneración natural muestra que la especie que presenta mayor representación es *Lecythis minor* Jacq. con una categoría de tamaño de 53,190 %, seguido de *Jacaranda copaia* (Aubl.) D.Don con una categoría de tamaño de 26,298 % (Figura 56) (Tabla 118).

Tabla 118. Cálculo de la estructura de sotobosque en el bosque abierto bajo inundable

Especies	AB%	FA%	CTaEM%	Emr
Lecythis minor Jacq.	52,645	24,242	53,190	43,359
Jacaranda copaia (Aubl.) D.Don	26,952	24,242	26,298	25,831
Protium sagotianum Marchand	11,335	21,212	11,915	14,821
Casearia decandra Jacq.	7,557	24,242	7,097	12,965
Lecythis sp.	1,259	3,030	1,203	1,831
Aniba sp.	0,252	3,030	0,297	1,193
Totales	100	100	100	100

Fuente: Elaboración equipo técnico

Figura 56. Distribución del sotobosque del bosque abierto bajo inundable

Fuente: Elaboración equipo técnico

Índice de valor de importancia ampliado (IVIA)

La especie con el mayor valor de importancia en el bosque es *Jacaranda copaia* (Aubl.) D.Don, la cual obtuvo un valor de 134,16 de IVIA con la mayor significancia asociado al IVI y PS. La especie *Oreopanax incisus* (Willd. ex Schult.) Decne. & Planch presenta un valor de 62,70, asociado al peso de IVI y PS (Tabla 119) (Figura 57).

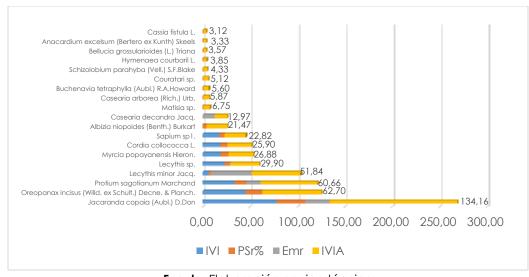


Tabla 119. Índice de valor de importancia ampliado para el bosque abierto bajo inundable

Especie	IVI	PSr%	Emr	IVIA
Jacaranda copaia (Aubl.) D.Don	77,74	30,59	25,83	134,16
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	45,22	17,48	0,00	62,70
Protium sagotianum Marchand	33,27	12,56	14,82	60,66
Lecythis minor Jacq.	6,30	2,19	43,36	51,84
Lecythis sp.	23,15	4,92	1,83	29,90
Myrcia popayanensis Hieron.	19,23	7,65	0,00	26,88
Cordia collococca L.	19,35	6,56	0,00	25,90
Sapium sp1.	17,36	5,46	0,00	22,82
Albizia niopoides (Benth.) Burkart	17,10	4,37	0,00	21,47
Casearia decandra Jacq.	0,00	0,00	12,97	12,97
Matisia sp.	5,65	1,10	0,00	6,75
Casearia arborea (Rich.) Urb.	4,78	1,09	0,00	5,87
Buchenavia tetraphylla (Aubl.) R.A.Howard	4,51	1,09	0,00	5,60
Couratari sp.	4,02	1,09	0,00	5,12
Schizolobium parahyba (Vell.) S.F.Blake	3,79	0,55	0,00	4,33
Hymenaea courbaril L.	3,31	0,55	0,00	3,85
Bellucia grossularioides (L.) Triana	3,02	0,56	0,00	3,57
Anacardium excelsum (Bertero ex Kunth) Skeels	2,79	0,55	0,00	3,33
Cassia fistula L.	2,58	0,55	0,00	3,12
Cariniana sp.	2,47	0,55	0,00	3,02
Xylopia aromatica (Lam.) Mart.	2,17	0,55	0,00	2,71
Vitex cymosa Bertero ex Spreng	2,22	0,01	0,00	2,23
Aniba sp.	0,00	0,00	1,19	1,19

Figura 57. Distribución del IVIA para el bosque abierto bajo inundable

5.5.2.4.2. Indicadores de diversidad alfa bosque abierto bajo inundable

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 120.

Tabla 120. Índices de biodiversidad alfa del bosque abierto bajo inundable

Parámetro	Valor
Dmn	1,539
Dsi	1/0,1538=6,50
d	1-0,301= 0,69
H′	2,27
dmg	3,82

Fuente: Elaboración equipo técnico

El índice de Menhinick muestra una tendencia baja a la diversidad, siendo poco heterogéneo en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra tendencia a la baja diversidad del bosque, teniendo en cuenta que posee una alta dominancia de especies.

Para la cobertura de bosque abierto bajo inundable, el índice de Shannon establece que es poco diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es mediamente biodiverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad media.

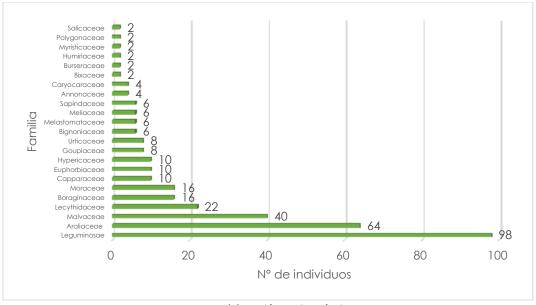
5.5.2.5. Cobertura de Bosque Denso Alto de Tierra Firme

El bosque denso alto de tierra firme se encunetra conformado por un total de 47 especies distribuidas en 23 familias. Las cuales fueron identificadas en el inventario forestal.

En la Tabla 121, se identifica que la familia Leguminosae y Araliaceae son las que presentan mayor representación, de igual manera, la familia Leguminosae se encuentra representada en 10 generos y 12 especies; en la que se resalta el genero *Inga sp* con 22 individuos. A su vez la familia Araliaceae presenta 1 genero *Schefflera* y 2 especies, en la que se resalta la especie *Schefflera morototoni* (Aubl.) Maguire, Steyerm. & Frodin con un total de 62 individuos. Cabe resaltar la familia Malvaceae con un total de 40 individuos, distribuidos en 8 géneros y 8 especies (Figura 58).

Tabla 121. Composición florística del bosque denso alto de tierra firme

Familia	N° de ind / Familia	Especie	N° de ind/ especie
Annonaceae	4	Xylopia sp.	4
Araliaaaaa	//	Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	62
Araliaceae	64	Schefflera trianae (Planch. & Linden ex Marchal) Harms	2


Familia	N° de ind / Familia	Especie	N° de ind/ especie
Bignoniaceae	6	Jacaranda copaia (Aubl.) D.Don	6
Bixaceae	2	Bixa sp.	2
	1./	Cordia alliodora (Ruiz & Pav.) Oken	2
Boraginaceae	16	Cordia collococca L.	14
Burseraceae	2	Protium sagotianum Marchand	2
Capparaceae	10	Crateva tapia L.	10
Caryocaracea e	4	Caryocar amygdaliferum Mutis ex Cav.	4
Euphorbiaceae	10	Mabea occidentalis Benth.	10
Goupiaceae	8	Goupia glabra Aubl.	8
Humiriaceae	2	Vantanea sp.	2
I bus series sus series	10	Vismia baccifera (L.) Planch. & Triana	2
Hypericaceae	10	Vismia macrophylla Kunth	8
		Couratari sp.	4
1	00	Gustavia superba (Kunth) O.Berg	4
Lecythidaceae	22	Lecythis minor Jacq.	4
		Lecythis sp.	10
		Platymiscium sp.	30
		Brownea ariza Benth.	4
		Caesalpinia sp.	2
		Inga edulis	4
		Inga macrophylla Willd.	2
	0.0	Inga sp.	22
Leguminosae	98	Myrospermum frutescens Jacq.	4
		Myroxylon balsamum (L.) Harms	6
		Pentaclethra macroloba (Willd.) Kuntze	4
		Pterocarpus sp.	10
		Schizolobium parahyba (Vell.) S.F.Blake	2
		Vatairea sp	8
		Apeiba glabra Aubl.	8
		Ceiba pentandra (L.) Gaertn.	6
		Heliocarpus americanus L.	6
		Luehea seemannii Triana & Planch	10
Malvaceae	40	Matisia sp.	2
		Pachira aquatica Aubl.	2
		Pseudobombax septenatum (Jacq.) Dugand	2
		Sterculia speciosa K. Schum.	4
Melastomatace ae	6	Miconia affinis DC.	6

Familia	N° de ind / Familia	Especie	N° de ind/ especie
Meliaceae	6	Trichilia sp.	6
Moraceae	16	Ficus involucrata Blume	16
Myristicaceae	2	Virola sebifera Aubl.	2
Polygonaceae	2	Triplaris sp.	2
Salicaceae	2	Casearia arborea (Rich.) Urb.	2
Sapindaceae	6	Talisia sp.	6
Urticaceae	8	Cecropia peltata L.	8

Figura 58. Distribución florística de las familias identificadas en el bosque denso alto de tierra firme

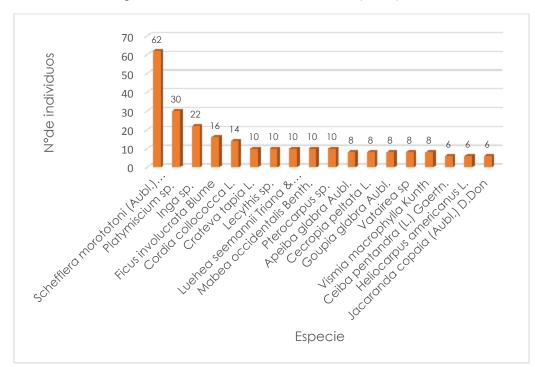
Fuente: Elaboración equipo técnico

5.5.2.5.1. Indicadores dasométricos del bosque denso alto de tierra firme

El bosque denso alto de tierra presenta un total de 346 individuos / ha en 47 especies; siendo la de mayor número la especie *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con 62 individuos por ha, seguido de la especie *Platymiscium sp* con 30 individuos por ha. En la Tabla 122, se presenta el N° de individuos de cada una de las especies por ha (Figura 59).

Tabla 122. N° de individuos/especie/ha del bosque denso alto de tierra firme

Especie	N° de Ind / sp/ ha
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	62
Platymiscium sp.	30


Especie	N° de Ind / sp/ ha
Inga sp.	22
Ficus involucrata Blume	16
Cordia collococca L.	14
Crateva tapia L.	10
Lecythis sp.	10
Luehea seemannii Triana & Planch	10
Mabea occidentalis Benth.	10
Pterocarpus sp.	10
Apeiba glabra Aubl.	8
Cecropia peltata L.	8
Goupia glabra Aubl.	8
Vatairea sp	8
Vismia macrophylla Kunth	8
Ceiba pentandra (L.) Gaertn.	6
Heliocarpus americanus L.	6
Jacaranda copaia (Aubl.) D.Don	6
Miconia affinis DC.	6
Myroxylon balsamum (L.) Harms	6
Talisia sp.	6
Trichilia sp.	6
Brownea ariza Benth.	4
Caryocar amygdaliferum Mutis ex Cav.	4
Couratari sp.	4
Gustavia superba (Kunth) O.Berg	4
Inga edulis	4
Lecythis minor Jacq.	4
Myrospermum frutescens Jacq.	4
Pentaclethra macroloba (Willd.) Kuntze	4
Sterculia speciosa K. Schum.	4
Xylopia sp.	4
Bixa sp.	2
Caesalpinia sp.	2
Casearia arborea (Rich.) Urb.	2
Cordia alliodora (Ruiz & Pav.) Oken	2

Especie	N° de Ind / sp/ ha
Inga macrophylla Willd.	2
Matisia sp.	2
Pachira aquatica Aubl.	2
Protium sagotianum Marchand	2
Pseudobombax septenatum (Jacq.) Dugand	2
Schefflera trianae (Planch. & Linden ex Marchal) Harms	2
Schizolobium parahyba (Vell.) S.F.Blake	2
Triplaris sp.	2
Vantanea sp.	2
Virola sebifera Aubl.	2
Vismia baccifera (L.) Planch. & Triana	2

Figura 59. Distribución de N° de individuos por especie

Fuente: Elaboración equipo técnico

La cobertura de bosque denso alto de tierra firme presenta un área basal por ha de $15,93024 \,\mathrm{m}^2$ en las 47 especies, obteniendo un área basal promedio/individuo/especie de $0,0505 \,\mathrm{m}^2$ y área basal promedio/especie /hectárea de $0,3389 \,\mathrm{m}^2$; en la Tabla $123 \,\mathrm{se}$ presenta los indicadores detallados por especie.

Tabla 123. Indicadores por especie de área basal

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Apeiba glabra Aubl.	0,4964	0,0620
Bixa sp.	0,0163	0,0081
Brownea ariza Benth.	0,3289	0,0822
Caesalpinia sp.	0,0337	0,0168
Caryocar amygdaliferum Mutis ex Cav.	0,1575	0,0394
Casearia arborea (Rich.) Urb.	0,0352	0,0176
Cecropia peltata L.	0,0992	0,0124
Ceiba pentandra (L.) Gaertn.	0,2563	0,0427
Cordia alliodora (Ruiz & Pav.) Oken	0,0464	0,0232
Cordia collococca L.	0,5833	0,0417
Couratari sp.	0,9366	0,2342
Crateva tapia L.	0,1849	0,0185
Ficus involucrata Blume	0,3653	0,0228
Goupia glabra Aubl.	0,3289	0,0411
Gustavia superba (Kunth) O.Berg	0,0690	0,0173
Heliocarpus americanus L.	0,2835	0,0473
Inga edulis	0,7096	0,1774
Inga macrophylla Willd.	0,2142	0,1071
Inga sp.	0,4220	0,0192
Jacaranda copaia (Aubl.) D.Don	0,5841	0,0974
Lecythis minor Jacq.	0,7598	0,1899
Lecythis sp.	0,3046	0,0305
Luehea seemannii Triana & Planch	0,7404	0,0740
Mabea occidentalis Benth.	0,4026	0,0403
Matisia sp.	0,1560	0,0780
Miconia affinis DC.	0,0694	0,0116
Myrospermum frutescens Jacq.	0,1326	0,0332
Myroxylon balsamum (L.) Harms	0,2306	0,0384
Pachira aquatica Aubl.	0,1822	0,0911
Platymiscium sp.	0,7963	0,0265
Pentaclethra macroloba (Willd.) Kuntze	0,2585	0,0646
Protium sagotianum Marchand	0,0184	0,0092
Pseudobombax septenatum (Jacq.) Dugand	0,0398	0,0199
Pterocarpus sp.	0,4091	0,0409
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	3,4232	0,0552

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,0268	0,0134
Schizolobium parahyba (Vell.) S.F.Blake	0,1856	0,0928
Sterculia speciosa K. Schum.	0,0529	0,0132
Talisia sp.	0,0710	0,0118
Trichilia sp.	0,2815	0,0469
Triplaris sp.	0,0195	0,0097
Vantanea sp.	0,0337	0,0168
Vatairea sp	0,5369	0,0671
Virola sebifera Aubl.	0,1232	0,0616
Vismia baccifera (L.) Planch. & Triana	0,0163	0,0081
Vismia macrophylla Kunth	0,2110	0,0264
Xylopia sp.	0,2972	0,0743

En cuanto a los indicadores de volumen se encuentra distribuido en 5 clases diamétricas, siendo la clase III la que presenta los mayores volúmenes. Para el caso del volumen total se obtiene 154,639 m³; en la Figura 60 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de bosque denso alto de tierra firme, encontrándose la clase III con un volumen de 59,8946 m³ seguido de la clase II con 36,1499 m³.

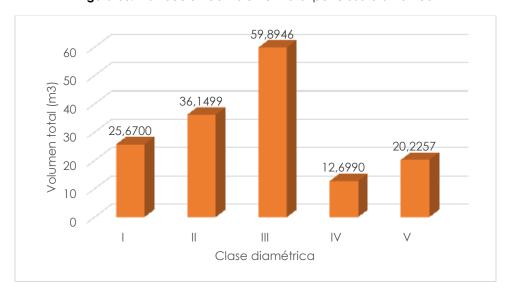


Figura 60. Distribución del volumen total por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen total por especie se calcula un promedio de 3,29 m³ y un volumen promedio por especie por individuo de 0,49 m³; en la Tabla 124 se evidencia el

volumen de cada una de las especies por hectárea y en la Tabla 125 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 124.Indicadores por especie de volumen total

Especie	VT/sp / ha	VT ind/sp/ha
Apeiba glabra Aubl.	4,3164	0,5396
Bixa sp.	0,1059	0,0530
Brownea ariza Benth.	2,7330	0,6832
Caesalpinia sp.	0,2846	0,1423
Caryocar amygdaliferum Mutis ex Cav.	1,7199	0,4300
Casearia arborea (Rich.) Urb.	0,2285	0,1143
Cecropia peltata L.	0,9296	0,1162
Ceiba pentandra (L.) Gaertn.	2,2198	0,3700
Cordia alliodora (Ruiz & Pav.) Oken	0,3017	0,1508
Cordia collococca L.	4,7892	0,3421
Couratari sp.	10,5422	2,6355
Crateva tapia L.	1,4957	0,1496
Ficus involucrata Blume	3,2139	0,2009
Goupia glabra Aubl.	3,5532	0,4442
Gustavia superba (Kunth) O.Berg	0,4086	0,1022
Heliocarpus americanus L.	2,1112	0,3519
Inga edulis	6,8233	1,7058
Inga macrophylla Willd.	1,3920	0,6960
Inga sp.	3,4859	0,1585
Jacaranda copaia (Aubl.) D.Don	6,4006	1,0668
Lecythis minor Jacq.	7,7696	1,9424
Lecythis sp.	2,7986	0,2799
Luehea seemannii Triana & Planch	7,7148	0,7715
Mabea occidentalis Benth.	3,5347	0,3535
Matisia sp.	1,5209	0,7604
Miconia affinis DC.	0,6077	0,1013
Myrospermum frutescens Jacq.	1,3395	0,3349
Myroxylon balsamum (L.) Harms	2,6833	0,4472
Pachira aquatica Aubl.	2,0135	1,0067
Platymiscium sp.	7,8469	0,2616
Pentaclethra macroloba (Willd.) Kuntze	2,4557	0,6139
Protium sagotianum Marchand	0,1555	0,0777

Especie	VT/sp / ha	VT ind/sp/ha
Pseudobombax septenatum (Jacq.) Dugand	0,2845	0,1422
Pterocarpus sp.	4,0978	0,4098
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	35,3437	0,5701
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,1391	0,0696
Schizolobium parahyba (Vell.) S.F.Blake	2,2926	1,1463
Sterculia speciosa K. Schum.	0,3930	0,0982
Talisia sp.	0,5551	0,0925
Trichilia sp.	2,6947	0,4491
Triplaris sp.	0,1267	0,0634
Vantanea sp.	0,2627	0,1313
Vatairea sp	4,9045	0,6131
Virola sebifera Aubl.	1,2818	0,6409
Vismia baccifera (L.) Planch. & Triana	0,1165	0,0583
Vismia macrophylla Kunth	1,4411	0,1801
Xylopia sp.	3,2094	0,8023

Tabla 125. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /ha/Ct diam.
I	25,6700
Apeiba glabra Aubl.	0,4231
Bixa sp.	0,1059
Caesalpinia sp.	0,2846
Casearia arborea (Rich.) Urb.	0,2285
Cecropia peltata L.	0,9296
Ceiba pentandra (L.) Gaertn.	0,9534
Cordia alliodora (Ruiz & Pav.) Oken	0,3017
Cordia collococca L.	0,9693
Crateva tapia L.	0,9449
Ficus involucrata Blume	1,6621
Goupia glabra Aubl.	1,4213
Gustavia superba (Kunth) O.Berg	0,4086
Inga sp.	2,9775
Lecythis sp.	0,7182
Mabea occidentalis Benth.	0,7639
Miconia affinis DC.	0,6077

Clase diamétrica / Especie	VTsp /ha/Ct diam.
Myrospermum frutescens Jacq.	0,5965
Myroxylon balsamum (L.) Harms	0,7765
Platymiscium sp.	3,2867
Protium sagotianum Marchand	0,1555
Pseudobombax septenatum (Jacq.) Dugand	0,2845
Pterocarpus sp.	0,5356
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	4,1515
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,1391
Sterculia speciosa K. Schum.	0,3930
Talisia sp.	0,5551
Trichilia sp.	0,2390
Triplaris sp.	0,1267
Vantanea sp.	0,2627
Vismia baccifera (L.) Planch. & Triana	0,1165
Vismia macrophylla Kunth	0,3509
II	36,1499
Apeiba glabra Aubl.	0,5910
Caryocar amygdaliferum Mutis ex Cav.	1,7199
Cordia collococca L.	1,0055
Crateva tapia L.	0,5509
Heliocarpus americanus L.	2,1112
Inga sp.	0,5085
Lecythis sp.	2,0804
Luehea seemannii Triana & Planch	2,2339
Mabea occidentalis Benth.	0,5363
Myrospermum frutescens Jacq.	0,7430
Pentaclethra macroloba (Willd.) Kuntze	0,9039
Platymiscium sp.	2,4912
Pterocarpus sp.	1,7325
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	12,5122
Trichilia sp.	0,9039
Vatairea sp	1,9577
Virola sebifera Aubl.	1,2818
Vismia macrophylla Kunth	1,0902
Xylopia sp.	1,1959
III	59,8946

Clase diamétrica / Especie	VTsp /ha/Ct diam.
Brownea ariza Benth.	2,7330
Ceiba pentandra (L.) Gaertn.	1,2664
Cordia collococca L.	2,8143
Ficus involucrata Blume	1,5518
Goupia glabra Aubl.	2,1319
Inga macrophylla Willd.	1,3920
Jacaranda copaia (Aubl.) D.Don	3,0788
Lecythis minor Jacq.	1,9814
Luehea seemannii Triana & Planch	5,4810
Mabea occidentalis Benth.	2,2345
Matisia sp.	1,5209
Myroxylon balsamum (L.) Harms	1,9068
Pachira aquatica Aubl.	2,0135
Pentaclethra macroloba (Willd.) Kuntze	1,5518
Platymiscium sp.	2,0690
Pterocarpus sp.	1,8297
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	15,5331
Schizolobium parahyba (Vell.) S.F.Blake	2,2926
Trichilia sp.	1,5518
Vatairea sp	2,9468
Xylopia sp.	2,0135
IV	12,6990
Apeiba glabra Aubl.	3,3023
Inga edulis	2,9279
Jacaranda copaia (Aubl.) D.Don	3,3218
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	3,1470
V	20,2257
Couratari sp.	10,5422
Inga edulis	3,8954
Lecythis minor Jacq.	5,7881

El bosque denso alto de tierra firme presenta un volumen de fuste por ha $124,71~m^3$, distribuido en 5 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de $12,47~m^3$ (Figura 61).

48,<u>7967</u> 50 45 40 Volumen fuste (m3) 35 28,7470 30 25 20,1126 16,4793 20 10,5764 15 10 5 0 |||||IV Clase Diamétrica

Figura 61. Distribución del volumen del fuste por clase diamétrica

De igual forma, el volumen de fuste por especie promedio es de 2,65 m³ y un volumen promedio por especie por individuo de 0,39 m³ de volumen de fuste por individuo por especie. En la Tabla 126 se evidencia el volumen de cada una de las especies y en la Tabla 127 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 126. Indicadores por especie de volumen de fuste

Especie	VF/sp / Ha	VF ind/sp/Ha
Apeiba glabra Aubl.	3,3485	0,4186
Bixa sp.	0,0742	0,0371
Brownea ariza Benth.	2,0916	0,5229
Caesalpinia sp.	0,2189	0,1095
Caryocar amygdaliferum Mutis ex Cav.	1,4128	0,3532
Casearia arborea (Rich.) Urb.	0,1600	0,0800
Cecropia peltata L.	0,7581	0,0948
Ceiba pentandra (L.) Gaertn.	1,7199	0,2867
Cordia alliodora (Ruiz & Pav.) Oken	0,2413	0,1207
Cordia collococca L.	3,6360	0,2597
Couratari sp.	8,7158	2,1789
Crateva tapia L.	1,1822	0,1182
Ficus involucrata Blume	2,5016	0,1563
Goupia glabra Aubl.	2,9118	0,3640

Especie	VF/sp / Ha	VF ind/sp/Ha
Gustavia superba (Kunth) O.Berg	0,2740	0,0685
Heliocarpus americanus L.	1,5583	0,2597
Inga edulis	5,6226	1,4056
Inga macrophylla Willd.	0,9744	0,4872
Inga sp.	2,7047	0,1229
Jacaranda copaia (Aubl.) D.Don	5,3650	0,8942
Lecythis minor Jacq.	6,2880	1,5720
Lecythis sp.	2,1568	0,2157
Luehea seemannii Triana & Planch	6,3373	0,6337
Mabea occidentalis Benth.	2,8986	0,2899
Matisia sp.	1,3181	0,6590
Miconia affinis DC.	0,4723	0,0787
Myrospermum frutescens Jacq.	1,1207	0,2802
Myroxylon balsamum (L.) Harms	2,2336	0,3723
Pachira aquatica Aubl.	1,6582	0,8291
Platymiscium sp.	2,0162	0,5040
Pentaclethra macroloba (Willd.) Kuntze	6,3438	0,2115
Protium sagotianum Marchand	0,1196	0,0598
Pseudobombax septenatum (Jacq.) Dugand	0,2069	0,1035
Pterocarpus sp.	3,3000	0,3300
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	28,8757	0,4657
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,0870	0,0435
Schizolobium parahyba (Vell.) S.F.Blake	1,9306	0,9653
Sterculia speciosa K. Schum.	0,2899	0,0725
Talisia sp.	0,4523	0,0754
Trichilia sp.	2,1458	0,3576
Triplaris sp.	0,0887	0,0444
Vantanea sp.	0,1970	0,0985
Vatairea sp	3,9359	0,4920
Virola sebifera Aubl.	1,0415	0,5207
Vismia baccifera (L.) Planch. & Triana	0,0847	0,0424
Vismia macrophylla Kunth	1,0112	0,1264
Xylopia sp.	2,6298	0,6575

Tabla 127. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /Ha/Ct diam.
I	20,1126
Apeiba glabra Aubl.	0,3106
Bixa sp.	0,0742
Caesalpinia sp.	0,2189
Casearia arborea (Rich.) Urb.	0,1600
Cecropia peltata L.	0,7581
Ceiba pentandra (L.) Gaertn.	0,7702
Cordia alliodora (Ruiz & Pav.) Oken	0,2413
Cordia collococca L.	0,7204
Crateva tapia L.	0,7585
Ficus involucrata Blume	1,2601
Goupia glabra Aubl.	1,1352
Gustavia superba (Kunth) O.Berg	0,2740
Inga sp.	2,3233
Lecythis sp.	0,5386
Mabea occidentalis Benth.	0,5866
Miconia affinis DC.	0,4723
Myrospermum frutescens Jacq.	0,5170
Myroxylon balsamum (L.) Harms	0,6128
Platymiscium sp.	2,5933
Protium sagotianum Marchand	0,1196
Pseudobombax septenatum (Jacq.) Dugand	0,2069
Pterocarpus sp.	0,4208
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	3,3828
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,0870
Sterculia speciosa K. Schum.	0,2899
Talisia sp.	0,4523
Trichilia sp.	0,1942
Triplaris sp.	0,0887
Vantanea sp.	0,1970
Vismia baccifera (L.) Planch. & Triana	0,0847
Vismia macrophylla Kunth	0,2632
II	28,7470
Apeiba glabra Aubl.	0,4433
Caryocar amygdaliferum Mutis ex Cav.	1,4128

Clase diamétrica / Especie	VFsp /Ha/Ct diam.
Cordia collococca L.	0,7542
Crateva tapia L.	0,4237
Heliocarpus americanus L.	1,5583
Inga sp.	0,3814
Lecythis sp.	1,6181
Luehea seemannii Triana & Planch	1,8665
Mabea occidentalis Benth.	0,3754
Myrospermum frutescens Jacq.	0,6037
Pentaclethra macroloba (Willd.) Kuntze	0,7748
Platymiscium sp.	1,9918
Pterocarpus sp.	1,3724
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	10,1018
Trichilia sp.	0,7102
Vatairea sp	1,5975
Virola sebifera Aubl.	1,0415
Vismia macrophylla Kunth	0,7480
Xylopia sp.	0,9717
III	48,7967
Brownea ariza Benth.	2,0916
Ceiba pentandra (L.) Gaertn.	0,9498
Cordia collococca L.	2,1614
Ficus involucrata Blume	1,2414
Goupia glabra Aubl.	1,7766
Inga macrophylla Willd.	0,9744
Jacaranda copaia (Aubl.) D.Don	2,5677
Lecythis minor Jacq.	1,5852
Luehea seemannii Triana & Planch	4,4708
Mabea occidentalis Benth.	1,9366
Matisia sp.	1,3181
Myroxylon balsamum (L.) Harms	1,6208
Pachira aquatica Aubl.	1,6582
Pentaclethra macroloba (Willd.) Kuntze	1,2414
Platymiscium sp.	1,7587
Pterocarpus sp.	1,5068
Cabafflara maratatani (Aubl.) Maguira Stavarm & Fradia	12,7685
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	12,7000

Clase diamétrica / Especie	VFsp /Ha/Ct diam.
Trichilia sp.	1,2414
Vatairea sp	2,3384
Xylopia sp.	1,6582
IV	10,5764
Apeiba glabra Aubl.	2,5947
Inga edulis	2,5619
Jacaranda copaia (Aubl.) D.Don	2,7973
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	2,6225
V	16,4793
Couratari sp.	8,7158
Inga edulis	3,0607
Lecythis minor Jacq.	4,7028

En el caso del volumen comercial se obtiene un volumen de 92,32 m³ por hectárea distribuido en las 5 clases diamétricas, con un volumen promedio por clase diamétrica de 9,23 m³. En la Figura 62 se presenta la distribución del volumen comercial por clase diamétrica.

40 35,0623 35 30 10 20 16,2723 10 5 0 I II III IV V Clase Diamétrica

Figura 62. Distribución del volumen comercial por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen comercial por especie un promedio de 1,96 m³ y un volumen promedio por especie por individuo de 0,28 m³; en la Tabla 128 se evidencia el volumen

comercial de cada una de las especies y en la Tabla 129 se observa la distribución del volumen comercial por especie y clase diamétrica.

Tabla 128. Indicadores por especie de volumen comercial

Especie	VC/sp / Ha	VC ind/sp/Ha
Apeiba glabra Aubl.	1,9721	0,2465
Bixa sp.	0,0530	0,0265
Brownea ariza Benth.	1,1180	0,2795
Caesalpinia sp.	0,1313	0,0657
Caryocar amygdaliferum Mutis ex Cav.	1,0240	0,2560
Casearia arborea (Rich.) Urb.	0,1371	0,0686
Cecropia peltata L.	0,8007	0,1001
Ceiba pentandra (L.) Gaertn.	1,6144	0,2691
Cordia alliodora (Ruiz & Pav.) Oken	0,2564	0,1282
Cordia collococca L.	2,3450	0,1675
Couratari sp.	4,8207	1,2052
Crateva tapia L.	0,8515	0,0852
Ficus involucrata Blume	1,9804	0,1238
Goupia glabra Aubl.	2,4612	0,3076
Gustavia superba (Kunth) O.Berg	0,1546	0,0387
Heliocarpus americanus L.	0,8762	0,1460
Inga edulis	4,0559	1,0140
Inga macrophylla Willd.	0,6960	0,3480
Inga sp.	2,0157	0,0916
Jacaranda copaia (Aubl.) D.Don	4,2198	0,7033
Lecythis minor Jacq.	5,3003	1,3251
Lecythis sp.	1,5732	0,1573
Luehea seemannii Triana & Planch	3,0584	0,3058
Mabea occidentalis Benth.	2,3139	0,2314
Matisia sp.	0,9125	0,4563
Miconia affinis DC.	0,4392	0,0732
Myrospermum frutescens Jacq.	0,6963	0,1741
Myroxylon balsamum (L.) Harms	1,7012	0,2835
Pachira aquatica Aubl.	1,1844	0,5922
Pentaclethra macroloba (Willd.) Kuntze	1,1115	0,2779
Platymiscium sp.	5,0742	0,1691
Protium sagotianum Marchand	0,0957	0,0478

Especie	VC/sp / Ha	VC ind/sp/Ha
Pseudobombax septenatum (Jacq.) Dugand	0,2328	0,1164
Pterocarpus sp.	2,3966	0,2397
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	23,4648	0,3785
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,0522	0,0261
Schizolobium parahyba (Vell.) S.F.Blake	1,4480	0,7240
Sterculia speciosa K. Schum.	0,1944	0,0486
Talisia sp.	0,3453	0,0575
Trichilia sp.	1,8247	0,3041
Triplaris sp.	0,0507	0,0253
Vantanea sp.	0,1751	0,0876
Vatairea sp	3,6195	0,4524
Virola sebifera Aubl.	1,0415	0,5207
Vismia baccifera (L.) Planch. & Triana	0,0847	0,0424
Vismia macrophylla Kunth	0,7936	0,0992
Xylopia sp.	1,5581	0,3895

Tabla 129. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /Ha/Ct diam.
I	16,2723
Apeiba glabra Aubl.	0,1732
Bixa sp.	0,0530
Caesalpinia sp.	0,1313
Casearia arborea (Rich.) Urb.	0,1371
Cecropia peltata L.	0,8007
Ceiba pentandra (L.) Gaertn.	0,7702
Cordia alliodora (Ruiz & Pav.) Oken	0,2564
Cordia collococca L.	0,5554
Crateva tapia L.	0,5126
Ficus involucrata Blume	1,1528
Goupia glabra Aubl.	1,0399
Gustavia superba (Kunth) O.Berg	0,1546
Inga sp.	1,7191
Lecythis sp.	0,3231
Mabea occidentalis Benth.	0,4489
Miconia affinis DC.	0,4392

Clase diamétrica / Especie	VCsp /Ha/Ct diam.
Myrospermum frutescens Jacq.	0,2784
Myroxylon balsamum (L.) Harms	0,4618
Platymiscium sp.	2,0504
Protium sagotianum Marchand	0,0957
Pseudobombax septenatum (Jacq.) Dugand	0,2328
Pterocarpus sp.	0,3634
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	2,7795
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,0522
Sterculia speciosa K. Schum.	0,1944
Talisia sp.	0,3453
Trichilia sp.	0,2091
Triplaris sp.	0,0507
Vantanea sp.	0,1751
Vismia baccifera (L.) Planch. & Triana	0,0847
Vismia macrophylla Kunth	0,2314
II	21,9397
Apeiba glabra Aubl.	0,1478
Caryocar amygdaliferum Mutis ex Cav.	1,0240
Cordia collococca L.	0,2514
Crateva tapia L.	0,3390
Heliocarpus americanus L.	0,8762
Inga sp.	0,2966
Lecythis sp.	1,2501
Luehea seemannii Triana & Planch	0,8009
Mabea occidentalis Benth.	0,3754
Myrospermum frutescens Jacq.	0,4180
Pentaclethra macroloba (Willd.) Kuntze	0,3874
Platymiscium sp.	1,6789
Pterocarpus sp.	1,0645
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	8,3830
Trichilia sp.	0,5811
Vatairea sp	2,0882
Virola sebifera Aubl.	1,0415
Vismia macrophylla Kunth	0,5622
Xylopia sp.	0,3737
III	35,0623

Clase diamétrica / Especie	VCsp /Ha/Ct diam.
Brownea ariza Benth.	1,1180
Ceiba pentandra (L.) Gaertn.	0,8442
Cordia collococca L.	1,5383
Ficus involucrata Blume	0,8276
Goupia glabra Aubl.	1,4213
Inga macrophylla Willd.	0,6960
Jacaranda copaia (Aubl.) D.Don	1,9470
Lecythis minor Jacq.	1,3210
Luehea seemannii Triana & Planch	2,2576
Mabea occidentalis Benth.	1,4897
Matisia sp.	0,9125
Myroxylon balsamum (L.) Harms	1,2394
Pachira aquatica Aubl.	1,1844
Pentaclethra macroloba (Willd.) Kuntze	0,7242
Platymiscium sp.	1,3449
Pterocarpus sp.	0,9687
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	10,0294
Schizolobium parahyba (Vell.) S.F.Blake	1,4480
Trichilia sp.	1,0345
Vatairea sp	1,5313
Xylopia sp.	1,1844
IV	8,0267
Apeiba glabra Aubl.	1,6511
Inga edulis	1,8299
Jacaranda copaia (Aubl.) D.Don	2,2728
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	2,2728
V	11,0260
Couratari sp.	4,8207
Inga edulis	2,2259
Lecythis minor Jacq.	3,9793

El volumen cosechable calculado para el bosque denso alto de tierra firme es de 78,12 m³ con un promedio por especie de 7,81 m³, en la Tabla 130 se evidencia el volumen cosechabe de cada una de las especies y en la Tabla 131 se observa la distribución del volumen cosechable por especie y clase diamétrica.

 Tabla 130.
 Indicadores por especie de volumen cosechable

Especie	VCs/sp /ha
Apeiba glabra Aubl.	1,6687
Bixa sp.	0,0448
Brownea ariza Benth.	0,9460
Caesalpinia sp.	0,1111
Caryocar amygdaliferum Mutis ex Cav.	0,8664
Casearia arborea (Rich.) Urb.	0,1160
Cecropia peltata L.	0,6775
Ceiba pentandra (L.) Gaertn.	1,3660
Cordia alliodora (Ruiz & Pav.) Oken	0,2170
Cordia collococca L.	1,9842
Couratari sp.	4,0791
Crateva tapia L.	0,7205
Ficus involucrata Blume	1,6757
Goupia glabra Aubl.	2,0825
Gustavia superba (Kunth) O.Berg	0,1308
Heliocarpus americanus L.	0,7414
Inga edulis	3,4319
Inga macrophylla Willd.	0,5889
Inga sp.	1,7056
Jacaranda copaia (Aubl.) D.Don	3,5706
Lecythis minor Jacq.	4,4849
Lecythis sp.	1,3311
Luehea seemannii Triana & Planch	2,5879
Mabea occidentalis Benth.	1,9580
Matisia sp.	0,7721
Miconia affinis DC.	0,3716
Myrospermum frutescens Jacq.	0,5892
Myroxylon balsamum (L.) Harms	1,4395
Pachira aquatica Aubl.	1,0022
Pentaclethra macroloba (Willd.) Kuntze	0,9405
Platymiscium sp.	4,2936
Protium sagotianum Marchand	0,0810
Pseudobombax septenatum (Jacq.) Dugand	0,1970
Pterocarpus sp.	2,0279
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	19,8548

Especie	VCs/sp /ha
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,0441
Schizolobium parahyba (Vell.) S.F.Blake	1,2252
Sterculia speciosa K. Schum.	0,1645
Talisia sp.	0,2921
Trichilia sp.	1,5440
Triplaris sp.	0,0429
Vantanea sp.	0,1482
Vatairea sp	3,0626
Virola sebifera Aubl.	0,8812
Vismia baccifera (L.) Planch. & Triana	0,0717
Vismia macrophylla Kunth	0,6715
Xylopia sp.	1,3184

 Tabla 131. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
1	13,7689
Apeiba glabra Aubl.	0,1466
Bixa sp.	0,0448
Caesalpinia sp.	0,1111
Casearia arborea (Rich.) Urb.	0,1160
Cecropia peltata L.	0,6775
Ceiba pentandra (L.) Gaertn.	0,6517
Cordia alliodora (Ruiz & Pav.) Oken	0,2170
Cordia collococca L.	0,4699
Crateva tapia L.	0,4337
Ficus involucrata Blume	0,9755
Goupia glabra Aubl.	0,8799
Gustavia superba (Kunth) O.Berg	0,1308
Inga sp.	1,4546
Lecythis sp.	0,2734
Mabea occidentalis Benth.	0,3798
Miconia affinis DC.	0,3716
Myrospermum frutescens Jacq.	0,2355
Myroxylon balsamum (L.) Harms	0,3908
Platymiscium sp.	1,7350

Clase diamétrica / Especie	VCsp /ha/Ct diam.			
Protium sagotianum Marchand	0,0810			
Pseudobombax septenatum (Jacq.) Dugand	0,1970			
Pterocarpus sp.	0,3075			
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	2,3519			
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,0441			
Sterculia speciosa K. Schum.	0,1645			
Talisia sp.	0,2921			
Trichilia sp.	0,1770			
Triplaris sp.	0,0429			
Vantanea sp.	0,1482			
Vismia baccifera (L.) Planch. & Triana	0,0717			
Vismia macrophylla Kunth	0,1958			
II	18,5644			
Apeiba glabra Aubl.	0,1250			
Caryocar amygdaliferum Mutis ex Cav.	0,8664			
Cordia collococca L.	0,2127			
Crateva tapia L.	0,2868			
Heliocarpus americanus L.	0,7414			
Inga sp.	0,2510			
Lecythis sp.	1,0578			
Luehea seemannii Triana & Planch	0,6776			
Mabea occidentalis Benth.	0,3176			
Myrospermum frutescens Jacq.	0,3537			
Pentaclethra macroloba (Willd.) Kuntze	0,3278			
Platymiscium sp.	1,4206			
Pterocarpus sp.	0,9007			
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	7,0933			
Trichilia sp.	0,4917			
Vatairea sp	1,7669			
Virola sebifera Aubl.	0,8812			
Vismia macrophylla Kunth	0,4757			
Xylopia sp.	0,3162			
III	29,6681			
Brownea ariza Benth.	0,9460			
Ceiba pentandra (L.) Gaertn.	0,7144			
Cordia collococca L.	1,3016			

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Ficus involucrata Blume	0,7003
Goupia glabra Aubl.	1,2026
Inga macrophylla Willd.	0,5889
Jacaranda copaia (Aubl.) D.Don	1,6475
Lecythis minor Jacq.	1,1177
Luehea seemannii Triana & Planch	1,9103
Mabea occidentalis Benth.	1,2605
Matisia sp.	0,7721
Myroxylon balsamum (L.) Harms	1,0487
Pachira aquatica Aubl.	1,0022
Pentaclethra macroloba (Willd.) Kuntze	0,6127
Platymiscium sp.	1,1380
Pterocarpus sp.	0,8196
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	8,4864
Schizolobium parahyba (Vell.) S.F.Blake	1,2252
Trichilia sp.	0,8754
Vatairea sp	1,2957
Xylopia sp.	1,0022
IV	6,7918
Apeiba glabra Aubl.	1,3971
Inga edulis	1,5484
Jacaranda copaia (Aubl.) D.Don	1,9231
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	1,9231
V	9,3297
Couratari sp.	4,0791
Inga edulis	1,8835
Lecythis minor Jacq.	3,3671

5.5.2.5.2. Indicadores estructurales del bosque denso alto de tierra firme

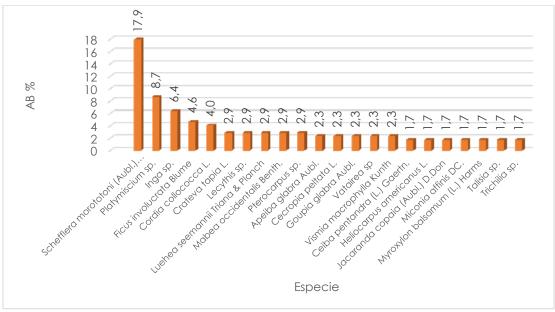
5.5.2.5.2.1. Estructura horizontal

En la Tabla 132 se observa los datos obtenidos del análisis de la estructura horizontal del bosque denso alto de tierra firme.

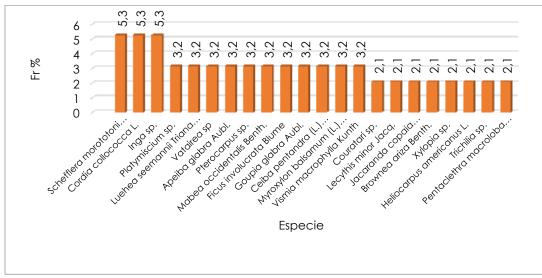
Tabla 132. Estructura horizontal para el bosque denso alto de tierra firme

-		N° Abundancia		Dominancia		Frecuencia		n
Especies	de ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	31	0,179	17,919	0,215	21,490	1,000	5,2632	44,672
Platymiscium sp.	15	0,087	8,671	0,050	4,999	0,600	3,1579	16,827
Inga sp.	11	0,064	6,358	0,026	2,649	1,000	5,2632	14,271
Cordia collococca L.	7	0,040	4,046	0,037	3,662	1,000	5,2632	12,971
Luehea seemannii Triana & Planch	5	0,029	2,890	0,046	4,648	0,600	3,1579	10,696
Ficus involucrata Blume	8	0,046	4,624	0,023	2,293	0,600	3,1579	10,075
Couratari sp.	2	0,012	1,156	0,059	5,880	0,400	2,1053	9,141
Vatairea sp	4	0,023	2,312	0,034	3,370	0,600	3,1579	8,841
Pterocarpus sp.	5	0,029	2,890	0,026	2,568	0,600	3,1579	8,616
Apeiba glabra Aubl.	4	0,023	2,312	0,031	3,116	0,600	3,1579	8,586
Mabea occidentalis Benth.	5	0,029	2,890	0,025	2,528	0,600	3,1579	8,576
Lecythis minor Jacq.	2	0,012	1,156	0,048	4,770	0,400	2,1053	8,031
Goupia glabra Aubl.	4	0,023	2,312	0,021	2,065	0,600	3,1579	7,535
Jacaranda copaia (Aubl.) D.Don	3	0,017	1,734	0,037	3,667	0,400	2,1053	7,506
Vismia macrophylla Kunth	4	0,023	2,312	0,013	1,318	0,600	3,1579	6,788
Inga edulis	2	0,012	1,156	0,045	4,455	0,200	1,0526	6,663
Ceiba pentandra (L.) Gaertn.	3	0,017	1,734	0,016	1,609	0,600	3,1579	6,501
Myroxylon balsamum (L.) Harms	3	0,017	1,734	0,014	1,448	0,600	3,1579	6,340
Crateva tapia L.	5	0,029	2,890	0,012	1,161	0,400	2,1053	6,156
Lecythis sp.	5	0,029	2,890	0,019	1,912	0,200	1,0526	5,855
Heliocarpus americanus L.	3	0,017	1,734	0,018	1,780	0,400	2,1053	5,619
Trichilia sp.	3	0,017	1,734	0,018	1,767	0,400	2,1053	5,606
Brownea ariza Benth.	2	0,012	1,156	0,021	2,065	0,400	2,1053	5,326
Xylopia sp.	2	0,012	1,156	0,019	1,866	0,400	2,1053	5,127
Pentaclethra macroloba (Willd.) Kuntze	2	0,012	1,156	0,016	1,623	0,400	2,1053	4,884
Talisia sp.	3	0,017	1,734	0,004	0,445	0,400	2,1053	4,285
Miconia affinis DC.	3	0,017	1,734	0,004	0,436	0,400	2,1053	4,275
Caryocar amygdaliferum Mutis ex Cav.	2	0,012	1,156	0,010	0,989	0,400	2,1053	4,250
Myrospermum frutescens Jacq.	2	0,012	1,156	0,008	0,833	0,400	2,1053	4,094
Cecropia peltata L.	4	0,023	2,312	0,006	0,623	0,200	1,0526	3,987
Gustavia superba (Kunth) O.Berg	2	0,012	1,156	0,004	0,433	0,400	2,1053	3,695
Inga macrophylla Willd.	1	0,006	0,578	0,013	1,344	0,200	1,0526	2,975
Schizolobium parahyba (Vell.) S.F.Blake	1	0,006	0,578	0,012	1,165	0,200	1,0526	2,796
Pachira aquatica Aubl.	1	0,006	0,578	0,011	1,144	0,200	1,0526	2,775
Matisia sp.	1	0,006	0,578	0,010	0,979	0,200	1,0526	2,610

Especies	N°	Abundancia		Dominancia		Frecuencia		
	de ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Sterculia speciosa K. Schum.	2	0,012	1,156	0,003	0,332	0,200	1,0526	2,541
Virola sebifera Aubl.	1	0,006	0,578	0,008	0,774	0,200	1,0526	2,404
Cordia alliodora (Ruiz & Pav.) Oken	1	0,006	0,578	0,003	0,291	0,200	1,0526	1,922
Pseudobombax septenatum (Jacq.) Dugand	1	0,006	0,578	0,002	0,250	0,200	1,0526	1,880
Casearia arborea (Rich.) Urb.	1	0,006	0,578	0,002	0,221	0,200	1,0526	1,851
Caesalpinia sp.	1	0,006	0,578	0,002	0,211	0,200	1,0526	1,842
Vantanea sp.	1	0,006	0,578	0,002	0,211	0,200	1,0526	1,842
Schefflera trianae (Planch. & Linden ex Marchal) Harms	1	0,006	0,578	0,002	0,168	0,200	1,0526	1,799
Triplaris sp.	1	0,006	0,578	0,001	0,122	0,200	1,0526	1,753
Protium sagotianum Marchand	1	0,006	0,578	0,001	0,116	0,200	1,0526	1,746
Bixa sp.	1	0,006	0,578	0,001	0,102	0,200	1,0526	1,733
Vismia baccifera (L.) Planch. & Triana	1	0,006	0,578	0,001	0,102	0,200	1,0526	1,733
Total		1	100	1	100	19	100	300


Abundancia

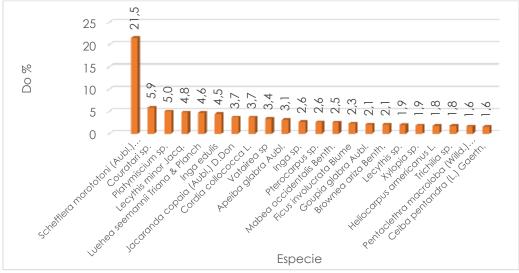
La abundancia absoluta y relativa presente en la cobertura de bosque denso alto de tierra firme muestra que la especie más abundante es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con 61 individuos en una hectárea y de abundancia relativa 17,9%. Igualmente, la especie *Platymiscium* sp presenta la segunda mayor abundancia con 30 individuos por hectárea y una abundancia realtiva de 8,6 % (Figura 63).


Figura 63. Distribución de la abundancia relativa para el bosque denso alto de tierra firme

Frecuencia

La especie Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin. Es la mas frecuente con una presencia en 5 parcelas de las 5 realizadas, con una abundancia de 5,3 %, seguida de especie Cordia collococca L con una presencia en 5 parcelas de las 5 con una frecuencia realtiva de 5,3 % (Figura 64).

Figura 64. Distribución de frecuencia relativa para el bosque denso alto de tierra firme

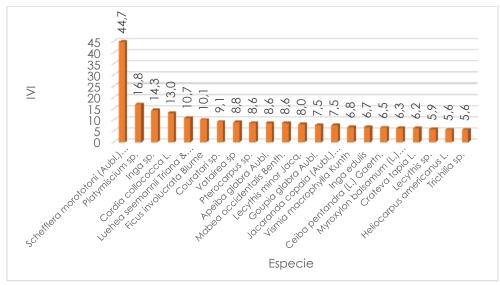


Dominancia

La especie de mayor dominancia es Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin con 21,5 % y área basal de 1,7115 m², seguida de la especie Couratari sp con 5,9% y un área basal de 0,4683 m² (Figura 65).

Figura 65. Distribución de la dominancia relativa para el bosque denso alto de tierra firme

Fuente: Elaboración equipo técnico


Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es Schefflera morototoni (Aubl.) Maguire. Steyerm. & Frodin con un IVI de 44,7, seguida de la especie *Platymiscium sp* con un peso ecológico de 16,8 evidenciando el comportamiento de J invertida de bosque natural (Figura 66).

Figura 66. Distribución del IVI para el bosque denso alto de tierra firme

Coefiente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1/\frac{47}{173}$$

$$CM = 1/0,271$$

$$CM = 3.69$$

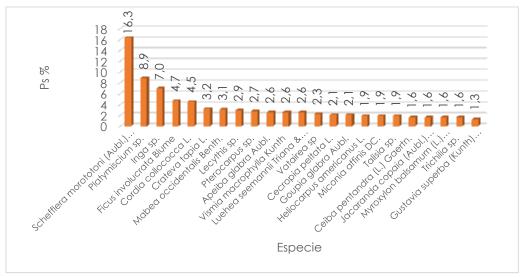
El coeficiente de mezcla obtenido implica que por cada 3,69 individuos estudiados hay una especie nueva para el bosque denso alto de tierra firme.

5.5.2.5.2.2. Estructura vertical

Posición sociólogica

La posición sociológica muestra que la especie con mayor peso es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con 16,32 % debido a la presencia de la totalidad de sus individuos en el estrato dominante, el detallado de cada una de las especies se muestra en la Tabla 133 y Figura 67.

Tabla 133. Posición sociológica de las especies del bosque denso alto de tierra firme


Nombre científico	Suprimido	Codominante	Dominante	Ps	Ps%
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	8	23	0	2494	16,325
Platymiscium sp.	10	5	0	1360	8,902
Inga sp.	10	1	0	1064	6,965
Ficus involucrata Blume	5	3	0	717	4,693
Cordia collococca L.	7	0	0	693	4,536
Crateva tapia L.	5	0	0	495	3,240
Mabea occidentalis Benth.	4	1	0	470	3,077
Lecythis sp.	3	2	0	445	2,913
Pterocarpus sp.	2	3	0	420	2,749
Apeiba glabra Aubl.	4	0	0	396	2,592
Vismia macrophylla Kunth	4	0	0	396	2,592
Luehea seemannii Triana & Planch	1	4	0	395	2,586
Vatairea sp	2	2	0	346	2,265
Cecropia peltata L.	1	3	0	321	2,101
Goupia glabra Aubl.	1	3	0	321	2,101
Heliocarpus americanus L.	3	0	0	297	1,944
Miconia affinis DC.	3	0	0	297	1,944
Talisia sp.	3	0	0	297	1,944
Ceiba pentandra (L.) Gaertn.	1	2	0	247	1,617
Jacaranda copaia (Aubl.) D.Don	1	2	0	247	1,617
Myroxylon balsamum (L.) Harms	1	2	0	247	1,617
Trichilia sp.	1	2	0	247	1,617
Gustavia superba (Kunth) O.Berg	2	0	0	198	1,296
Sterculia speciosa K. Schum.	2	0	0	198	1,296
Brownea ariza Benth.	1	1	0	173	1,132
Couratari sp.	1	1	0	173	1,132
Inga edulis	1	1	0	173	1,132
Pentaclethra macroloba (Willd.) Kuntze	1	1	0	173	1,132
Caryocar amygdaliferum Mutis ex Cav.	0	2	0	148	0,969
Lecythis minor Jacq.	0	2	0	148	0,969
Myrospermum frutescens Jacq.	0	2	0	148	0,969
Xylopia sp.	0	2	0	148	0,969
Bixa sp.	1	0	0	99	0,648
Caesalpinia sp.	1	0	0	99	0,648
Casearia arborea (Rich.) Urb.	1	0	0	99	0,648
Cordia alliodora (Ruiz & Pav.) Oken	1	0	0	99	0,648
Inga macrophylla Willd.	1	0	0	99	0,648
Protium sagotianum Marchand	1	0	0	99	0,648

Nombre científico	Suprimido	Codominante	Dominante	Ps	Ps%
Pseudobombax septenatum (Jacq.) Dugand	1	0	0	99	0,648
Schefflera trianae (Planch. & Linden ex Marchal) Harms	1	0	0	99	0,648
Triplaris sp.	1	0	0	99	0,648
Vantanea sp.	1	0	0	99	0,648
Vismia baccifera (L.) Planch. & Triana	1	0	0	99	0,648
Matisia sp.	0	1	0	74	0,484
Pachira aquatica Aubl.	0	1	0	74	0,484
Schizolobium parahyba (Vell.) S.F.Blake	0	1	0	74	0,484
Virola sebifera Aubl.	0	1	0	74	0,484

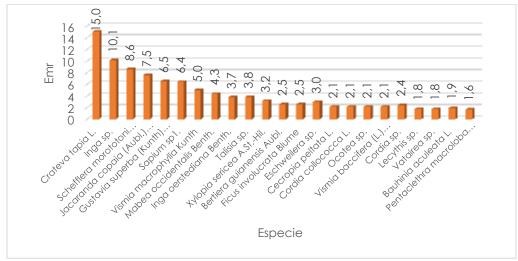
Figura 67. Distribución de la posición sociológica de las especies del bosque denso alto de tierra firme

Fuente: Elaboración equipo técnico

5.5.2.5.2.3. Analisis del sotobosque

El análisis de regeneración natural muestra que la especie que presenta mayor representación es *Crateva tapia L.* con una categoría de tamaño de 16,864 %, seguido de *Inga sp.* con una categoría de tamaño de 12,814 % (Figura 68) (Tabla 134).

Tabla 134. Cálculo de la estructura de sotobosque en el bosque denso alto de tierra firme


Especies	AB%	FA%	СТаЕМ%	Emr
Crateva tapia L.	19,811	8,333	16,864	15,003
Inga sp.	13,208	4,167	12,814	10,063
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	9,906	4,167	11,688	8,587

Especies	AB%	FA%	СтаЕМ%	Emr
Jacaranda copaia (Aubl.) D.Don	9,906	4,167	8,533	7,535
Gustavia superba (Kunth) O.Berg	7,547	4,167	7,717	6,477
Sapium sp1.	7,547	4,167	7,497	6,404
Vismia macrophylla Kunth	4,717	4,167	6,044	4,976
Mabea occidentalis Benth.	3,774	4,167	5,092	4,344
Inga oerstediana Benth.	3,302	4,167	3,667	3,712
Talisia sp.	3,774	4,167	3,487	3,809
Xylopia sericea A.StHil.	2,830	4,167	2,461	3,153
Bertiera guianensis Aubl.	1,415	4,167	1,909	2,497
Ficus involucrata Blume	1,415	4,167	1,909	2,497
Eschweilera sp.	2,830	4,167	1,893	2,963
Cecropia peltata L.	0,943	4,167	1,273	2,128
Cordia collococca L.	0,943	4,167	1,273	2,128
Ocotea sp.	0,943	4,167	1,273	2,128
Vismia baccifera (L.) Planch. & Triana	0,943	4,167	1,273	2,128
Cordia sp.	1,887	4,167	1,188	2,414
Lecythis sp.	0,472	4,167	0,636	1,758
Vatairea sp.	0,472	4,167	0,636	1,758
Bauhinia aculeata L.	0,943	4,167	0,631	1,914
Pentaclethra macroloba (Willd.) Kuntze	0,472	4,167	0,242	1,627
Totales	100	100	100	100

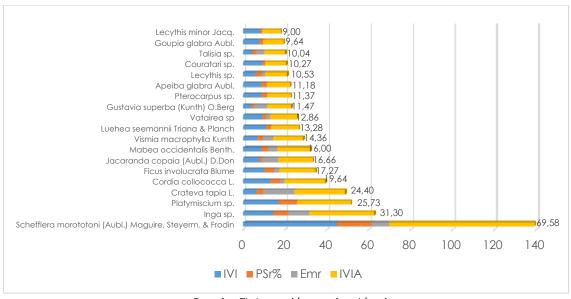
Figura 68. Distribución del sotobosque del bosque denso alto de tierra firme

Índice de valor de importancia ampliado (IVIA)

La especie con el mayor valor de importancia en el bosque es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin, la cual obtuvo un valor de 69,58 de IVIA con la mayor significancia asociado al IVI y PS. La especie *Inga* sp presenta un valor de 31,30, asociado al peso de IVI y Emr (Tabla 135) (Figura 69).

Tabla 135. Índice de valor de importancia ampliado para el bosque denso alto de tierra fime

Especie	IVI	PSr%	Emr	IVIA
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	44,67	16,33	8,59	69,58
Inga sp.	14,27	6,96	10,06	31,30
Platymiscium sp.	16,83	8,90	0,00	25,73
Crateva tapia L.	6,16	3,24	15,00	24,40
Cordia collococca L.	12,97	4,54	2,13	19,64
Ficus involucrata Blume	10,08	4,69	2,50	17,27
Jacaranda copaia (Aubl.) D.Don	7,51	1,62	7,54	16,66
Mabea occidentalis Benth.	8,58	3,08	4,34	16,00
Vismia macrophylla Kunth	6,79	2,59	4,98	14,36
Luehea seemannii Triana & Planch	10,70	2,59	0,00	13,28
Vatairea sp	8,84	2,26	1,76	12,86
Gustavia superba (Kunth) O.Berg	3,69	1,30	6,48	11,47
Pterocarpus sp.	8,62	2,75	0,00	11,37
Apeiba glabra Aubl.	8,59	2,59	0,00	11,18
Lecythis sp.	5,86	2,91	1,76	10,53
Couratari sp.	9,14	1,13	0,00	10,27
Talisia sp.	4,28	1,94	3,81	10,04
Goupia glabra Aubl.	7,53	2,10	0,00	9,64
Lecythis minor Jacq.	8,03	0,97	0,00	9,00
Cecropia peltata L.	3,99	2,10	2,13	8,22
Ceiba pentandra (L.) Gaertn.	6,50	1,62	0,00	8,12
Myroxylon balsamum (L.) Harms	6,34	1,62	0,00	7,96
Inga edulis	6,66	1,13	0,00	7,80
Pentaclethra macroloba (Willd.) Kuntze	4,88	1,13	1,63	7,64
Heliocarpus americanus L.	5,62	1,94	0,00	7,56
Trichilia sp.	5,61	1,62	0,00	7,22
Brownea ariza Benth.	5,33	1,13	0,00	6,46
Sapium sp.	0,00	0,00	6,40	6,40
Miconia affinis DC.	4,28	1,94	0,00	6,22
Xylopia sp.	5,13	0,97	0,00	6,10



Especie	IVI	PSr%	Emr	IVIA
Caryocar amygdaliferum Mutis ex Cav.	4,25	0,97	0,00	5,22
Myrospermum frutescens Jacq.	4,09	0,97	0,00	5,06
Vismia baccifera (L.) Planch. & Triana	1,73	0,65	2,13	4,51
Sterculia speciosa K. Schum.	2,54	1,30	0,00	3,84
Inga oerstediana Benth.	0,00	0,00	3,71	3,71
Inga macrophylla Willd.	2,98	0,65	0,00	3,62
Schizolobium parahyba (Vell.) S.F.Blake	2,80	0,48	0,00	3,28
Pachira aquatica Aubl.	2,77	0,48	0,00	3,26
Xylopia sericea A.StHil.	0,00	0,00	3,15	3,15
Matisia sp.	2,61	0,48	0,00	3,09
Eschweilera sp.	0,00	0,00	2,96	2,96
Virola sebifera Aubl.	2,40	0,48	0,00	2,89
Cordia alliodora (Ruiz & Pav.) Oken	1,92	0,65	0,00	2,57
Pseudobombax septenatum (Jacq.) Dugand	1,88	0,65	0,00	2,53
Casearia arborea (Rich.) Urb.	1,85	0,65	0,00	2,50
Bertiera guianensis Aubl.	0,00	0,00	2,50	2,50
Caesalpinia sp.	1,84	0,65	0,00	2,49
Vantanea sp.	1,84	0,65	0,00	2,49
Schefflera trianae (Planch. & Linden ex Marchal) Harms	1,80	0,65	0,00	2,45
Cordia sp.	0,00	0,00	2,41	2,41
Triplaris sp.	1,75	0,65	0,00	2,40
Protium sagotianum Marchand	1,75	0,65	0,00	2,39
Bixa sp.	1,73	0,65	0,00	2,38
Ocotea sp.	0,00	0,00	2,13	2,13
Bauhinia aculeata L.	0,00	0,00	1,91	1,91

Figura 69. Distribución del IVIA para el bosque denso alto de tierra firme

5.5.2.5.3. Indicadores de diversidad alfa bosque denso alto de tierra firme

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 136.

Tabla 136. Índices de biodiversidad denso alto de tierra firme

Parámetro	Valor
Dmn	3,573
Dsi	1/0,058= 17,17
d	1-0,179= 0,82
H´	3,36
dmg	8,92

Fuente: Elaboración equipo técnico

El índice de Menhinick muestra una tendencia a la alta diversidad, lo que indica hetegeneidad en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra tendencia a la alta diversidad del bosque, teniendo en cuenta que presenta baja dominancia de especies.

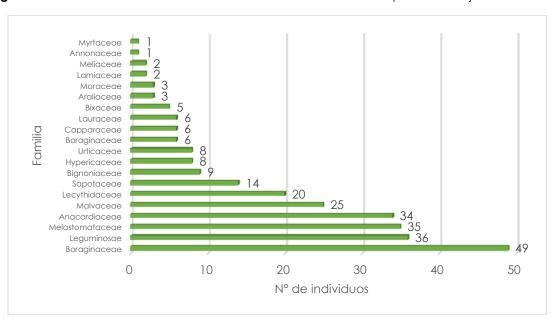
Para la cobertura de bosque denso alto de tierra firme, el índice de Shannon establece que es típicamente diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es altamente biodiverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad media.

5.5.2.6. Cobertura de Bosque Denso Bajo de Tierra Firme

El bosque denso bajo de tierra firme se encuentra constituido por un total de 40 especies distribuidas en 20 familias registradas en el inventario forestal.

En la Tabla 137, se identifica la familia Boraginaceae y Leguminosae las que presentan la mayor representación. A su vez se identifica que la familia Boraginaceae se encuentra representada en 3 generos y 3 especies, resaltando la especie *Cordia collococca* L. con 35 individuos (Figura 70).

Tabla 137. Composición florística del bosque denso bajo de tierra firme


Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
Araliaceae	3	Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	3
Boraginaceae	6	Cordia alba (Jacq.) Roem. & Schult.	6
		Anacardium excelsum (Bertero ex Kunth) Skeels	2
Anacardiacea e 34 Astronium graveolens Jacq. Spondias mombin L.		Astronium graveolens Jacq.	21
		Spondias mombin L.	11
Annonaceae	1	Xylopia sp.	1
		Crescentia cujete L.	1
Bignoniaceae	9	Handroanthus chrysanthus (Jacq.) S.O.Grose	6
		Handroanthus guayacan (Seem.) S.O.Grose	2
Bixaceae	5	Cochlospermum vitifolium (Willd.) Spreng.	5
		Cordia alliodora (Ruiz & Pav.) Oken	13
Boraginaceae	49	Cordia collococca L.	35
		Cordia sp.	1
Capparaceae	6	Cynophalla verrucosa (Jacq.) J.Presl	6
I ly up a via a a a a a	Vismia baccifera (L.) Planch. & Triana		2
Hypericaceae	8	Vismia macrophylla Kunth	6
Lamiaceae	2	Vitex cymosa Bertero ex Spreng	2
		Nectandra sp.	4
Lauraceae	6	Ocotea sp.	1
		Persea sp.	1
		Eschweilera caudiculata R.Knuth	11
Lecythidaceae	20	Lecythis minor Jacq.	4
		Lecythis sp.	5
		Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	10
Leguminosae	36	Cassia fistula L.	7
		Gliricidia sepium (Jacq.) Walp.	1
		Hymenaea courbaril L.	5

Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
		Inga sp.	13
		Ceiba pentandra (L.) Gaertn.	13
		Guazuma ulmifolia Lam.	1
Malvaceae	25	Pachira quinata (Jacq.) W.S.Alverson	1
F		Pseudobombax septenatum (Jacq.) Dugand	9
		Sterculia apetala (Jacq.) H.Karst.	1
Melastomatac	25	Bellucia grossularioides (L.) Triana	30
eae	35	Bellucia pentamera Naudin	5
Meliaceae	2	Cedrela odorata L.	2
Moraceae	3	Ficus citrifolia Mill.	3
Myrtaceae	1	Myrcia popayanensis Hieron.	1
Sapotaceae	14	Chrysophyllum cainito L.	14
Urticaceae	8	Cecropia peltata L.	8

Figura 70. Distribución florística de las familias identificadas en el bosque denso bajo de tierra firme

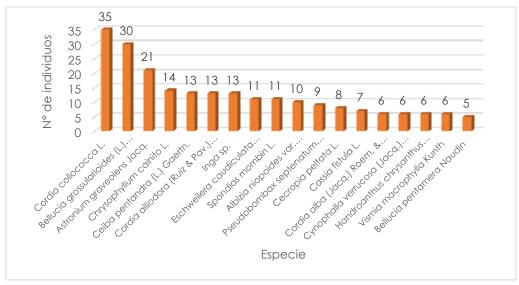
Fuente: Elaboración equipo técnico

5.5.2.6.1. Indicadores dasométricos del bosque denso bajo de tierra firme

El bosque denso bajo de tierra firme presenta un total de 273 individuos / ha en 40 especies; siendo la de mayor número de individuos la especie *Cordia collococca* L. con 35 individuos, seguido de la especie *Bellucia grossularioides* (L.) Triana con 30 individuos

por Ha. En la Tabla 138 , se presenta el N° de individuos de cada una de las especies por ha (Figura 71).

Tabla 138. N° de individuos/especie/Ha del bosque denso bajo de tierra firme


Especie	N° de Ind / sp/ ha
Cordia collococca L.	35
Bellucia grossularioides (L.) Triana	30
Astronium graveolens Jacq.	21
Chrysophyllum cainito L.	14
Ceiba pentandra (L.) Gaertn.	13
Cordia alliodora (Ruiz & Pav.) Oken	13
Inga sp.	13
Eschweilera caudiculata R.Knuth	11
Spondias mombin L.	11
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	10
Pseudobombax septenatum (Jacq.) Dugand	9
Cecropia peltata L.	8
Cassia fistula L.	7
Cordia alba (Jacq.) Roem. & Schult.	6
Cynophalla verrucosa (Jacq.) J.Presl	6
Handroanthus chrysanthus (Jacq.) S.O.Grose	6
Vismia macrophylla Kunth	6
Bellucia pentamera Naudin	5
Cochlospermum vitifolium (Willd.) Spreng.	5
Hymenaea courbaril L.	5
Lecythis sp.	5
Lecythis minor Jacq.	4
Nectandra sp.	4
Ficus citrifolia Mill.	3
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	3
Anacardium excelsum (Bertero ex Kunth) Skeels	2
Cedrela odorata L.	2
Handroanthus guayacan (Seem.) S.O.Grose	2
Vismia baccifera (L.) Planch. & Triana	2
Vitex cymosa Bertero ex Spreng	2
Cordia sp.	1
Crescentia cujete L.	1
Gliricidia sepium (Jacq.) Walp.	1
Guazuma ulmifolia Lam.	1
Myrcia popayanensis Hieron.	1
Ocotea sp.	1

Especie	N° de Ind / sp/ ha
Pachira quinata (Jacq.) W.S.Alverson	1
Persea sp.	1
Sterculia apetala (Jacq.) H.Karst.	1
Xylopia sp.	1

Figura 71. Distribución de Nº de individuos por especie

Fuente: Elaboración equipo técnico

La cobertura de bosque denso bajo de tierra firme presenta un área basal por ha de 17,1162 m² en las 20 especies, obteniendo un área basal promedio/individuo/especie de 0,0657 m² y área basal promedio/especie/hectárea de 0,4279 m²; en la Tabla 139 se presenta los indicadores detallados por especie.

Tabla 139. Indicadores por especie de área basal

Especie	AB/sp/ha	AB/ind/sp/ha
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2180	0,0218
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0195	0,0097
Astronium graveolens Jacq.	0,4801	0,0229
Bellucia grossularioides (L.) Triana	0,8917	0,0297
Bellucia pentamera Naudin	0,0614	0,0123
Cassia fistula L.	0,7634	0,1091
Cecropia peltata L.	0,1345	0,0168
Cedrela odorata L.	0,1047	0,0523
Ceiba pentandra (L.) Gaertn.	4,4767	0,3444
Chrysophyllum cainito L.	0,3968	0,0283

Especie	AB/sp/ha	AB/ind/sp/ha
Cochlospermum vitifolium (Willd.) Spreng.	0,0530	0,0106
Cordia alba (Jacq.) Roem. & Schult.	0,0886	0,0148
Cordia alliodora (Ruiz & Pav.) Oken	0,3063	0,0236
Cordia collococca L.	0,6273	0,0179
Cordia sp.	0,0092	0,0092
Crescentia cujete L.	0,0357	0,0357
Cynophalla verrucosa (Jacq.) J.Presl	0,9027	0,1504
Eschweilera caudiculata R.Knuth	0,3195	0,0290
Ficus citrifolia Mill.	0,8416	0,2805
Gliricidia sepium (Jacq.) Walp.	0,0413	0,0413
Guazuma ulmifolia Lam.	0,0224	0,0224
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,2826	0,0471
Handroanthus guayacan (Seem.) S.O.Grose	0,2012	0,1006
Hymenaea courbaril L.	0,7138	0,1428
Inga sp.	0,3250	0,0250
Lecythis minor Jacq.	0,1224	0,0306
Lecythis sp.	0,1015	0,0203
Myrcia popayanensis Hieron.	0,0183	0,0183
Nectandra sp.	0,1335	0,0334
Ocotea sp.	0,0250	0,0250
Pachira quinata (Jacq.) W.S.Alverson	0,1224	0,1224
Persea sp.	0,0176	0,0176
Pseudobombax septenatum (Jacq.) Dugand	2,2395	0,2488
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,0739	0,0246
Spondias mombin L.	0,9917	0,0902
Sterculia apetala (Jacq.) H.Karst.	0,0183	0,0183
Vismia baccifera (L.) Planch. & Triana	0,0243	0,0121
Vismia macrophylla Kunth	0,2761	0,0460
Vitex cymosa Bertero ex Spreng	0,6240	0,3120
Xylopia sp.	0,0109	0,0109

En cuanto a los indicadores de volumen se encuentra distribuido en 9 clases diamétricas, siendo la clase VI la que presenta los mayores volúmenes.

Para el caso del volumen total se obtiene 129,847 m³; en la Figura 72 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de bosque denso bajo de tierra firme, encontrándose la clase VI con un volumen de 25,6536 m³ seguido de la clase IX con 19,0631 m³.

30 25,6536 25 Volumen total (m3) 19,0631 20 15,6993 16,5127 12,9733 15 12,1799 10,7097 10 2,6814 5 0 ||Ш IV VII \bigvee ΙX Clase diamétrica

Figura 72. Distribución del volumen total por clase diamétrica

De igual manera, el volumen total por especie se calcula un promedio de 3,24 m³ y un volumen promedio por especie por individuo de 0,46 m³; en Tabla 140 se evidencia el volumen de cada una de las especies por hectárea y en la Tabla 141 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 140. Indicadores por especie de volumen total

Especie	VT/sp / Ha	VT ind/sp/Ha
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,5764	0,1576
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0824	0,0412
Astronium graveolens Jacq.	2,7659	0,1317
Bellucia grossularioides (L.) Triana	5,2986	0,1766
Bellucia pentamera Naudin	0,3270	0,0654
Cassia fistula L.	5,6750	0,8107
Cecropia peltata L.	0,9574	0,1197
Cedrela odorata L.	0,9899	0,4950
Ceiba pentandra (L.) Gaertn.	40,9888	3,1530
Chrysophyllum cainito L.	2,8715	0,2051
Cochlospermum vitifolium (Willd.) Spreng.	0,4035	0,0807
Cordia alba (Jacq.) Roem. & Schult.	0,5062	0,0844
Cordia alliodora (Ruiz & Pav.) Oken	2,0709	0,1593
Cordia collococca L.	3,6901	0,1054
Cordia sp.	0,0478	0,0478
Crescentia cujete L.	0,2322	0,2322
Cynophalla verrucosa (Jacq.) J.Presl	5,4335	0,9056

Especie	VT/sp / Ha	VT ind/sp/Ha
Eschweilera caudiculata R.Knuth	1,8127	0,1648
Ficus citrifolia Mill.	5,1722	1,7241
Gliricidia sepium (Jacq.) Walp.	0,2413	0,2413
Guazuma ulmifolia Lam.	0,1453	0,1453
Handroanthus chrysanthus (Jacq.) S.O.Grose	2,2423	0,3737
Handroanthus guayacan (Seem.) S.O.Grose	1,7325	0,8663
Hymenaea courbaril L.	7,3779	1,4756
Inga sp.	1,9346	0,1488
Lecythis minor Jacq.	0,4979	0,1245
Lecythis sp.	0,5669	0,1134
Myrcia popayanensis Hieron.	0,1430	0,1430
Nectandra sp.	1,0918	0,2730
Ocotea sp.	0,1622	0,1622
Pachira quinata (Jacq.) W.S.Alverson	0,7953	0,7953
Persea sp.	0,0457	0,0457
Pseudobombax septenatum (Jacq.) Dugand	18,7676	2,0853
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,5520	0,1840
Spondias mombin L.	7,3593	0,6690
Sterculia apetala (Jacq.) H.Karst.	0,0953	0,0953
Vismia baccifera (L.) Planch. & Triana	0,0963	0,0481
Vismia macrophylla Kunth	1,9832	0,3305
Vitex cymosa Bertero ex Spreng	3,0439	1,5219
Xylopia sp.	0,0708	0,0708

 Tabla 141. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /Ha /Ct diam.
I	15,6993
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,8159
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0824
Astronium graveolens Jacq.	1,4582
Bellucia grossularioides (L.) Triana	1,7054
Bellucia pentamera Naudin	0,3270
Cecropia peltata L.	0,9574
Ceiba pentandra (L.) Gaertn.	0,0910
Chrysophyllum cainito L.	1,2997
Cochlospermum vitifolium (Willd.) Spreng.	0,4035
Cordia alba (Jacq.) Roem. & Schult.	0,5062
Cordia alliodora (Ruiz & Pav.) Oken	1,0209
Cordia collococca L.	2,5756

Clase diamétrica / Especie	VTsp /Ha /Ct diam.
Cordia sp.	0,0478
Eschweilera caudiculata R.Knuth	0,6240
Guazuma ulmifolia Lam.	0,1453
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,4815
Inga sp.	0,8063
Lecythis minor Jacq.	0,2310
Lecythis sp.	0,3583
Myrcia popayanensis Hieron.	0,1430
Nectandra sp.	0,2687
Ocotea sp.	0,1622
Persea sp.	0,0457
Pseudobombax septenatum (Jacq.) Dugand	0,1732
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,1743
Spondias mombin L.	0,4053
Sterculia apetala (Jacq.) H.Karst.	0,0953
Vismia baccifera (L.) Planch. & Triana	0,0963
Vismia macrophylla Kunth	0,1270
Xylopia sp.	0,0708
II	14,3742
Astronium graveolens Jacq.	0,8428
Bellucia grossularioides (L.) Triana	0,7042
Cassia fistula L.	0,7756
Cedrela odorata L.	0,9899
Ceiba pentandra (L.) Gaertn.	0,2119
Chrysophyllum cainito L.	1,5718
Cordia alliodora (Ruiz & Pav.) Oken	1,0500
Cordia collococca L.	1,1145
Crescentia cujete L.	0,2322
Cynophalla verrucosa (Jacq.) J.Presl	0,3656
Eschweilera caudiculata R.Knuth	1,1888
Gliricidia sepium (Jacq.) Walp.	0,2413
Handroanthus guayacan (Seem.) S.O.Grose	0,4519
Hymenaea courbaril L.	0,3874
Inga sp.	1,1283
Lecythis minor Jacq.	0,2669
Lecythis sp.	0,2086
Pseudobombax septenatum (Jacq.) Dugand	0,5004
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,3776
Spondias mombin L.	1,0720
Vismia macrophylla Kunth	0,6924

Clase diamétrica / Especie	VTsp /Ha /Ct diam
III	12,1799
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,7604
Astronium graveolens Jacq.	0,4649
Bellucia grossularioides (L.) Triana	1,7895
Cassia fistula L.	1,3722
Handroanthus guayacan (Seem.) S.O.Grose	1,7608
Hymenaea courbaril L.	1,3348
Nectandra sp.	0,8231
Pachira quinata (Jacq.) W.S.Alverson	0,7953
Pseudobombax septenatum (Jacq.) Dugand	0,5633
Spondias mombin L.	1,3517
Vismia macrophylla Kunth	1,1638
IV	16,5127
Cassia fistula L.	3,5272
Cynophalla verrucosa (Jacq.) J.Presl	3,8310
Ficus citrifolia Mill.	0,9427
Handroanthus guayacan (Seem.) S.O.Grose	1,2806
Hymenaea courbaril L.	1,3519
Pseudobombax septenatum (Jacq.) Dugand	1,0490
Spondias mombin L.	4,5304
V	12,9733
Bellucia grossularioides (L.) Triana	1,0994
Ceiba pentandra (L.) Gaertn.	6,6306
Cynophalla verrucosa (Jacq.) J.Presl	1,2369
Ficus citrifolia Mill.	1,5481
Pseudobombax septenatum (Jacq.) Dugand	2,4583
VI	25,6536
Ceiba pentandra (L.) Gaertn.	14,8328
Hymenaea courbaril L.	4,3038
Pseudobombax septenatum (Jacq.) Dugand	3,4731
Vitex cymosa Bertero ex Spreng	3,0439
VII	2,6814
Ficus citrifolia Mill.	2,6814
VIII	10,7097
Ceiba pentandra (L.) Gaertn.	5,6981
Pseudobombax septenatum (Jacq.) Dugand	5,0116
IX	19,0631
Ceiba pentandra (L.) Gaertn.	13,5243
Pseudobombax septenatum (Jacq.) Dugand	5,5387

El bosque denso bajo de tierra firme presenta un volumen de fuste por ha de 107,59 m³, distribuido en 9 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 10,75m³ (Figura 73).

25 21,7245 20 Volumen fuste (m3) 16,3481 13,5799 15 12,2419 11,5536 10,7916 10,0920 9,1789 10 2,0856 \parallel V VI VII |||IV VIIIIX Clase diamétrica

Figura 73. Distribución del volumen del fuste por clase diamétrica

Fuente: Elaboración equipo técnico

De igual forma, el volumen de fuste por especie promedio es de 2,68 m³ y un volumen promedio por especie por individuo de 0,38 m³ de volumen de fuste por individuo por especie. En la Tabla 142 se evidencia el volumen de cada una de las especies y en la Tabla 143 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 142. Indicadores por especie de volumen de fuste

Especie	VF/sp /ha	VF ind/sp/ha
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,2929	0,1293
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0570	0,0285
Astronium graveolens Jacq.	2,1418	0,1020
Bellucia grossularioides (L.) Triana	4,1393	0,1380
Bellucia pentamera Naudin	0,2472	0,0494
Cassia fistula L.	4,6825	0,6689
Cecropia peltata L.	0,7825	0,0978
Cedrela odorata L.	0,8538	0,4269
Ceiba pentandra (L.) Gaertn.	35,1691	2,7053
Chrysophyllum cainito L.	2,3557	0,1683
Cochlospermum vitifolium (Willd.) Spreng.	0,3347	0,0669
Cordia alba (Jacq.) Roem. & Schult.	0,3911	0,0652
Cordia alliodora (Ruiz & Pav.) Oken	1,6728	0,1287

Especie	VF/sp /ha	VF ind/sp/ha
Cordia collococca L.	2,8747	0,0821
Cordia sp.	0,0359	0,0359
Crescentia cujete L.	0,1858	0,1858
Cynophalla verrucosa (Jacq.) J.Presl	4,2600	0,7100
Eschweilera caudiculata R.Knuth	1,3973	0,1270
Ficus citrifolia Mill.	4,0782	1,3594
Gliricidia sepium (Jacq.) Walp.	0,1877	0,1877
Guazuma ulmifolia Lam.	0,1162	0,1162
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,8748	0,3125
Handroanthus guayacan (Seem.) S.O.Grose	1,4709	0,7355
Hymenaea courbaril L.	6,4500	1,2900
Inga sp.	1,5121	0,1163
Lecythis minor Jacq.	0,3387	0,0847
Lecythis sp.	0,4349	0,0870
Myrcia popayanensis Hieron.	0,1192	0,1192
Nectandra sp.	0,9182	0,2296
Ocotea sp.	0,1298	0,1298
Pachira quinata (Jacq.) W.S.Alverson	0,6363	0,6363
Persea sp.	0,0229	0,0229
Pseudobombax septenatum (Jacq.) Dugand	15,8563	1,7618
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,4559	0,1520
Spondias mombin L.	6,0701	0,5518
Sterculia apetala (Jacq.) H.Karst.	0,0715	0,0715
Vismia baccifera (L.) Planch. & Triana	0,0647	0,0324
Vismia macrophylla Kunth	1,6243	0,2707
Vitex cymosa Bertero ex Spreng	2,2327	1,1164
Xylopia sp.	0,0566	0,0566

Tabla 143. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /ha /Ct diam.
I	12,2419
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,6338
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0570
Astronium graveolens Jacq.	1,1161
Bellucia grossularioides (L.) Triana	1,2644
Bellucia pentamera Naudin	0,2472
Cecropia peltata L.	0,7825
Ceiba pentandra (L.) Gaertn.	0,0745
Chrysophyllum cainito L.	1,0470

Clase diamétrica / Especie	VFsp /ha /Ct diam.
Cochlospermum vitifolium (Willd.) Spreng.	0,3347
Cordia alba (Jacq.) Roem. & Schult.	0,3911
Cordia alliodora (Ruiz & Pav.) Oken	0,8261
Cordia collococca L.	1,9961
Cordia sp.	0,0359
Eschweilera caudiculata R.Knuth	0,4875
Guazuma ulmifolia Lam.	0,1162
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,3853
Inga sp.	0,6338
Lecythis minor Jacq.	0,1540
Lecythis sp.	0,2785
Myrcia popayanensis Hieron.	0,1192
Nectandra sp.	0,2048
Ocotea sp.	0,1298
Persea sp.	0,0229
Pseudobombax septenatum (Jacq.) Dugand	0,1347
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,1412
Spondias mombin L.	0,3378
Sterculia apetala (Jacq.) H.Karst.	0,0715
Vismia baccifera (L.) Planch. & Triana	0,0647
Vismia macrophylla Kunth	0,0971
Xylopia sp.	0,0566
II	11,5536
Astronium graveolens Jacq.	0,6770
Bellucia grossularioides (L.) Triana	0,5542
Cassia fistula L.	0,6295
Cedrela odorata L.	0,8538
Ceiba pentandra (L.) Gaertn.	0,1695
Chrysophyllum cainito L.	1,3086
Cordia alliodora (Ruiz & Pav.) Oken	0,8467
Cordia collococca L.	0,8786
Crescentia cujete L.	0,1858
Cynophalla verrucosa (Jacq.) J.Presl	0,2742
Eschweilera caudiculata R.Knuth	0,9098
Gliricidia sepium (Jacq.) Walp.	0,1877
Handroanthus guayacan (Seem.) S.O.Grose	0,3874
Hymenaea courbaril L.	0,3228
Inga sp.	0,8782
Lecythis minor Jacq.	0,1848
Lecythis sp.	0,1564

Clase diamétrica / Especie	VFsp /ha /Ct diam.
Pseudobombax septenatum (Jacq.) Dugand	0,3747
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,3147
Spondias mombin L.	0,8925
Vismia macrophylla Kunth	0,5665
III	10,0920
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,6590
Astronium graveolens Jacq.	0,3487
Bellucia grossularioides (L.) Triana	1,4962
Cassia fistula L.	1,0841
Handroanthus guayacan (Seem.) S.O.Grose	1,4896
Hymenaea courbaril L.	1,1300
Nectandra sp.	0,7134
Pachira guinata (Jacq.) W.S.Alverson	0,6363
Pseudobombax septenatum (Jacq.) Dugand	0,4381
Spondias mombin L.	1,1361
Vismia macrophylla Kunth	0,9607
IV	13,5799
Cassia fistula L.	2,9689
Cynophalla verrucosa (Jacq.) J.Presl	3,0238
Ficus citrifolia Mill.	0,7542
Handroanthus guayacan (Seem.) S.O.Grose	1,0836
Hymenaea courbaril L.	1,1716
Pseudobombax septenatum (Jacq.) Dugand	0,8742
Spondias mombin L.	3,7037
V	10,7916
Bellucia grossularioides (L.) Triana	0,8246
Ceiba pentandra (L.) Gaertn.	5,6360
Cynophalla verrucosa (Jacq.) J.Presl	0,9620
Ficus citrifolia Mill.	1,2385
Pseudobombax septenatum (Jacq.) Dugand	2,1305
VI	21,7245
Ceiba pentandra (L.) Gaertn.	12,6892
Hymenaea courbaril L.	3,8256
Pseudobombax septenatum (Jacq.) Dugand	2,9770
Vitex cymosa Bertero ex Spreng	2,2327
VII	2,0856
Ficus citrifolia Mill.	2,0856
VIII	9,1789
Ceiba pentandra (L.) Gaertn.	4,9384
Pseudobombax septenatum (Jacq.) Dugand	4,2405

Clase diamétrica / Especie	VFsp /ha /Ct diam.
IX	16,3481
Ceiba pentandra (L.) Gaertn.	11,6615
Pseudobombax septenatum (Jacq.) Dugand	4,6866

En el caso del volumen comercial se obtiene un volumen de 67,74 m³ por hectárea distribuido en las 9 clases diamétricas, con un volumen promedio por clase diamétrica de 6,77 m³. En la Figura 74 se presenta la distribución del volumen comercial por clase diamétrica.

13,5832 14 12,6272 12 Volumen comercial (m3) 10 8,0620 7,2683 7,2378 6,9732 8 6,2990 4,5022 1.1918 2 0 V |||||IV \forall VIIVIIIIX Clase diamétrica

Figura 74. Distribución del volumen comercial por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen comercial por especie un promedio de 2,68 m³ y un volumen promedio por especie por individuo de 0,38 m³; en la Tabla 144 se evidencia el volumen de cada una de las especies y en la

Tabla 145 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 144. Indicadores por especie de volumen comercial

Especie	VC/sp/Ha	VC ind/sp/Ha		
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,2929	0,1293		
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0570	0,0285		
Astronium graveolens Jacq.	2,1418	0,1020		
Bellucia grossularioides (L.) Triana	4,1393	0,1380		
Bellucia pentamera Naudin	0,2472	0,0494		
Cassia fistula L.	4,6825	0,6689		
Cecropia peltata L.	0,7825	0,0978		
Cedrela odorata L.	0,8538	0,4269		
Ceiba pentandra (L.) Gaertn.	35,1691	2,7053		
Chrysophyllum cainito L.	2,3557	0,1683		
Cochlospermum vitifolium (Willd.) Spreng.	0,3347	0,0669		
Cordia alba (Jacq.) Roem. & Schult.	0,3911	0,0652		
Cordia alliodora (Ruiz & Pav.) Oken	1,6728	0,1287		
Cordia collococca L.	2,8747	0,0821		
Cordia sp.	0,0359	0,0359		
Crescentia cujete L.	0,1858	0,1858		
Cynophalla verrucosa (Jacq.) J.Presl	4,2600	0,7100		
Eschweilera caudiculata R.Knuth	1,3973	0,1270		
Ficus citrifolia Mill.	4,0782	1,3594		
Gliricidia sepium (Jacq.) Walp.	0,1877	0,1877		
Guazuma ulmifolia Lam.	0,1162	0,1162		
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,8748	0,3125		
Handroanthus guayacan (Seem.) S.O.Grose	1,4709	0,7355		
Hymenaea courbaril L.	6,4500	1,2900		
Inga sp.	1,5121	0,1163		
Lecythis minor Jacq.	0,3387	0,0847		
Lecythis sp.	0,4349	0,0870		
Myrcia popayanensis Hieron.	0,1192	0,1192		
Nectandra sp.	0,9182	0,2296		
Ocotea sp.	0,1298	0,1298		
Pachira guinata (Jaca.) W.S.Alverson	0,6363	0,6363		
Persea sp.	0,0229	0,0229		
Pseudobombax septenatum (Jacq.) Dugand	15,8563	1,7618		
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,4559	0,1520		
Spondias mombin L.	6,0701	0,5518		
Sterculia apetala (Jacq.) H.Karst.	0,0715	0,0715		
Vismia baccifera (L.) Planch. & Triana	0,0647	0,0324		

Especie	VC/sp/Ha	VC ind/sp/Ha
Vismia macrophylla Kunth	1,6243	0,2707
Vitex cymosa Bertero ex Spreng	2,2327	1,1164
Xylopia sp.	0,0566	0,0566

Tabla 145. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VC sp /ha /Ct diam
1	8,0620
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2890
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0329
Astronium graveolens Jacq.	0,8395
Bellucia grossularioides (L.) Triana	0,6643
Bellucia pentamera Naudin	0,1501
Cecropia peltata L.	0,6269
Ceiba pentandra (L.) Gaertn.	0,0579
Chrysophyllum cainito L.	0,5606
Cochlospermum vitifolium (Willd.) Spreng.	0,2276
Cordia alba (Jacq.) Roem. & Schult.	0,2271
Cordia alliodora (Ruiz & Pav.) Oken	0,6442
Cordia collococca L.	1,2883
Cordia sp.	0,0149
Eschweilera caudiculata R.Knuth	0,2850
Guazuma ulmifolia Lam.	0,0872
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,3086
Inga sp.	0,3393
Lecythis minor Jacq.	0,0962
Lecythis sp.	0,2447
Myrcia popayanensis Hieron.	0,1073
Nectandra sp.	0,1210
Ocotea sp.	0,0973
Persea sp.	0,0114
Pseudobombax septenatum (Jacq.) Dugand	0,1155
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,1491
Spondias mombin L.	0,2702
Sterculia apetala (Jacq.) H.Karst.	0,0596
Vismia baccifera (L.) Planch. & Triana	0,0446
Vismia macrophylla Kunth	0,0747
Xylopia sp.	0,0269
, , ,	6,9732
Astronium graveolens Jacq.	0,4657
Bellucia grossularioides (L.) Triana	0,2744
Cassia fistula L.	0,4034
Cedrela odorata L.	0,7178
Ceiba pentandra (L.) Gaertn.	0,1059
Chrysophyllum cainito L.	0,4867
Cordia alliodora (Ruiz & Pav.) Oken	0,6363
Cordia collococca L.	0,3992
Crescentia cujete L.	0,0580
Crossering Cojere L.	0,0000

Clase diamétrica / Especie	VC sp /ha /Ct diam.			
Eschweilera caudiculata R.Knuth	0,6489			
Gliricidia sepium (Jacq.) Walp.	0,1073			
Handroanthus guayacan (Seem.) S.O.Grose	0,2583			
Hymenaea courbaril L.	0,1614			
Inga sp.	0,5095			
Lecythis minor Jacq.	0,0821			
Lecythis sp.	0,1564			
Pseudobombax septenatum (Jacq.) Dugand	0,3118			
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,2832			
Spondias mombin L.	0,5636			
Vismia macrophylla Kunth	0,2518			
	4,5022			
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2028			
Astronium graveolens Jacq.	0,1162			
Bellucia grossularioides (L.) Triana	0,5866			
Cassia fistula L.	0,4322			
Handroanthus guayacan (Seem.) S.O.Grose	0,4411			
Hymenaea courbaril L.	0,5681			
Nectandra sp.	0,4390			
Pachira quinata (Jacq.) W.S.Alverson	0,3977			
Pseudobombax septenatum (Jacq.) Dugand	0,3777			
Spondias mombin L.	0,6383			
·				
Vismia macrophylla Kunth	0,3047			
	6,2990			
Cassia fistula L.	0,7853			
Cynophalla verrucosa (Jacq.) J.Presl	1,1526			
Ficus citrifolia Mill.	0,2828			
Handroanthus guayacan (Seem.) S.O.Grose	0,4925			
Hymenaea courbaril L.	0,7210			
Pseudobombax septenatum (Jacq.) Dugand	0,8742			
Spondias mombin L.	1,9906			
V	7,2378			
Bellucia grossularioides (L.) Triana	0,4123			
Ceiba pentandra (L.) Gaertn.	4,3099			
Cynophalla verrucosa (Jacq.) J.Presl	0,4123			
Ficus citrifolia Mill.	0,4644			
Pseudobombax septenatum (Jacq.) Dugand	1,6389			
VI	13,5832			
Ceiba pentandra (L.) Gaertn.	8,9089			
Hymenaea courbaril L.	1,6737			
Pseudobombax septenatum (Jacq.) Dugand	1,9846			
Vitex cymosa Bertero ex Spreng	1,0160			
VII	1,1918			

Clase diamétrica / Especie	VC sp /ha /Ct diam.
Ficus citrifolia Mill.	1,1918
VIII	7,2683
Ceiba pentandra (L.) Gaertn.	3,7988
Pseudobombax septenatum (Jacq.) Dugand	3,4695
IX	12,6272
Ceiba pentandra (L.) Gaertn.	8,7927
Pseudobombax septenatum (Jacq.) Dugand	3,8345

El volumen cosechable calculado para el bosque denso bajo de tierra firme es de 57,32 m³ con un promedio por especie de 1,433 m³; en la Tabla 146 se evidencia el volumen de cada una de las especies y en la Tabla 147 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 146. Indicadores por especie de volumen cosechable

Especie	VCs/sp/ha
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,4162
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0279
Astronium graveolens Jacq.	1,2027
Bellucia grossularioides (L.) Triana	1,6395
Bellucia pentamera Naudin	0,1270
Cassia fistula L.	1,3715
Cecropia peltata L.	0,5304
Cedrela odorata L.	0,6073
Ceiba pentandra (L.) Gaertn.	21,9781
Chrysophyllum cainito L.	0,8862
Cochlospermum vitifolium (Willd.) Spreng.	0,1926
Cordia alba (Jacq.) Roem. & Schult.	0,1922
Cordia alliodora (Ruiz & Pav.) Oken	1,0835
Cordia collococca L.	1,4279
Cordia sp.	0,0126
Crescentia cujete L.	0,0491
Cynophalla verrucosa (Jacq.) J.Presl	1,4015
Eschweilera caudiculata R.Knuth	0,7903
Ficus citrifolia Mill.	1,6407
Gliricidia sepium (Jacq.) Walp.	0,0908
Guazuma ulmifolia Lam.	0,0738
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,6344
Handroanthus guayacan (Seem.) S.O.Grose	0,6353
Hymenaea courbaril L.	2,6435
Inga sp.	0,7182

Especie	VCs/sp/ha
Lecythis minor Jacq.	0,1509
Lecythis sp.	0,3395
Myrcia popayanensis Hieron.	0,0908
Nectandra sp.	0,4739
Ocotea sp.	0,0824
Pachira quinata (Jacq.) W.S.Alverson	0,3365
Persea sp.	0,0097
Pseudobombax septenatum (Jacq.) Dugand	10,6653
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,3658
Spondias mombin L.	2,9300
Sterculia apetala (Jacq.) H.Karst.	0,0504
Vismia baccifera (L.) Planch. & Triana	0,0377
Vismia macrophylla Kunth	0,5341
Vitex cymosa Bertero ex Spreng	0,8597
Xylopia sp.	0,0228

Tabla 147. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie	VCs sp /ha /Ct diam.			
l	6,8217			
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2446			
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0279			
Astronium graveolens Jacq.	0,7103			
Bellucia grossularioides (L.) Triana	0,5621			
Bellucia pentamera Naudin	0,1270			
Cecropia peltata L.	0,5304			
Ceiba pentandra (L.) Gaertn.	0,0490			
Chrysophyllum cainito L.	0,4744			
Cochlospermum vitifolium (Willd.) Spreng.	0,1926			
Cordia alba (Jacq.) Roem. & Schult.	0,1922			
Cordia alliodora (Ruiz & Pav.) Oken	0,5451			
Cordia collococca L.	1,0901			
Cordia sp.	0,0126			
Eschweilera caudiculata R.Knuth	0,2412			
Guazuma ulmifolia Lam.	0,0738			
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,2612			
Inga sp.	0,2871			
Lecythis minor Jacq.	0,0814			
Lecythis sp.	0,2071			
Myrcia popayanensis Hieron.	0,0908			
Nectandra sp.	0,1024			
Ocotea sp.	0,0824			

Clase diamétrica / Especie	VCs sp /ha /Ct diam.			
Persea sp.	0,0097			
Pseudobombax septenatum (Jacq.) Dugand	0,0977			
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,1261			
Spondias mombin L.	0,2286			
Sterculia apetala (Jacq.) H.Karst.	0,0504			
Vismia baccifera (L.) Planch. & Triana	0,0377			
Vismia macrophylla Kunth	0,0632			
Xylopia sp.	0,0228			
ll i	5,9004			
Astronium graveolens Jacq.	0,3941			
Bellucia grossularioides (L.) Triana	0,2322			
Cassia fistula L.	0,3414			
Cedrela odorata L.	0,6073			
Ceiba pentandra (L.) Gaertn.	0,0896			
Chrysophyllum cainito L.	0,4118			
Cordia alliodora (Ruiz & Pav.) Oken	0,5384			
Cordia collococca L.	0,3378			
Crescentia cujete L.	0,0491			
Cynophalla verrucosa (Jacq.) J.Presl	0,0773			
Eschweilera caudiculata R.Knuth	0,5491			
Gliricidia sepium (Jacq.) Walp.	0,0908			
Handroanthus guayacan (Seem.) S.O.Grose	0,2185			
Hymenaea courbaril L.	0,1366			
Inga sp.	0,4311			
Lecythis minor Jacq.	0,0695			
Lecythis sp.	0,1324			
Pseudobombax septenatum (Jacq.) Dugand	0,2638			
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,2397			
Spondias mombin L.	0,4769			
Vismia macrophylla Kunth	0,2131			
III	3,8095			
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,1716			
Astronium graveolens Jacq.	0,0984			
Bellucia grossularioides (L.) Triana	0,4964			
Cassia fistula L.	0,3657			
Handroanthus guayacan (Seem.) S.O.Grose	0,3732			
Hymenaea courbaril L.	0,4807			
Nectandra sp.	0,3715			
Pachira quinata (Jacq.) W.S.Alverson	0,3365			
Pseudobombax septenatum (Jacq.) Dugand	0,3178			
Spondias mombin L.	0,5401			
Vismia macrophylla Kunth	0,2578			
IV	5,3300			

Clase diamétrica / Especie	VCs sp /ha /Ct diam.
Cassia fistula L.	0,6645
Cynophalla verrucosa (Jacq.) J.Presl	0,9753
Ficus citrifolia Mill.	0,2393
Handroanthus guayacan (Seem.) S.O.Grose	0,4168
Hymenaea courbaril L.	0,6101
Pseudobombax septenatum (Jacq.) Dugand	0,7397
Spondias mombin L.	1,6844
V	6,1243
Bellucia grossularioides (L.) Triana	0,3489
Ceiba pentandra (L.) Gaertn.	3,6468
Cynophalla verrucosa (Jacq.) J.Presl	0,3489
Ficus citrifolia Mill.	0,3930
Pseudobombax septenatum (Jacq.) Dugand	1,3867
VI	11,4935
Ceiba pentandra (L.) Gaertn.	7,5383
Hymenaea courbaril L.	1,4162
Pseudobombax septenatum (Jacq.) Dugand	1,6793
Vitex cymosa Bertero ex Spreng	0,8597
VII	1,0084
Ficus citrifolia Mill.	1,0084
VIII	6,1501
Ceiba pentandra (L.) Gaertn.	3,2143
Pseudobombax septenatum (Jacq.) Dugand	2,9358
IX	10,6846
Ceiba pentandra (L.) Gaertn.	7,4400
Pseudobombax septenatum (Jacq.) Dugand	3,2446

5.5.2.6.2. Indicadores estructurales del bosque denso bajo de tierra firme

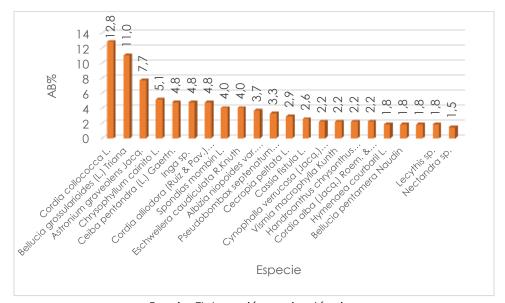
5.5.2.6.2.1. Estructura horizontal

En la Tabla 148 se observa los datos obtenidos del análisis de la estructura horizontal del bosque denso bajo de tierra firme:

Tabla 148. Estructura horizontal para el bosque denso bajo de tierra firme

N° de		Abundancia		Dominancia		Frecuencia			
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI	
Ceiba pentandra (L.) Gaertn.	13	0,048	4,762	0,262	26,169	0,400	3,636	34,567	
Cordia collococca L.	35	0,128	12,821	0,037	3,667	0,600	5,455	21,942	
Bellucia grossularioides (L.) Triana	30	0,110	10,989	0,052	5,173	0,600	5,455	21,617	

_	N° de Abundancia		Dominancia		Frecuencia		n	
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Pseudobombax septenatum (Jacq.) Dugand	9	0,033	3,297	0,131	13,091	0,300	2,727	19,115
Spondias mombin L.	11	0,040	4,029	0,058	5,797	0,600	5,455	15,281
Astronium graveolens Jacq.	21	0,077	7,692	0,028	2,792	0,400	3,636	14,120
Cassia fistula L.	7	0,026	2,564	0,045	4,463	0,600	5,455	12,481
Inga sp.	13	0,048	4,762	0,019	1,900	0,500	4,545	11,207
Chrysophyllum cainito L.	14	0,051	5,128	0,023	2,319	0,400	3,636	11,084
Cynophalla verrucosa (Jacq.) J.Presl	6	0,022	2,198	0,053	5,277	0,300	2,727	10,202
Cordia alliodora (Ruiz & Pav.) Oken	13	0,048	4,762	0,018	1,790	0,400	3,636	10,189
Ficus citrifolia Mill.	3	0,011	1,099	0,049	4,919	0,300	2,727	8,746
Vismia macrophylla Kunth	6	0,022	2,198	0,016	1,614	0,500	4,545	8,357
Hymenaea courbaril L.	5	0,018	1,832	0,042	4,172	0,200	1,818	7,822
Eschweilera caudiculata R.Knuth	11	0,040	4,029	0,019	1,868	0,200	1,818	7,715
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	10	0,037	3,663	0,013	1,275	0,300	2,727	7,665
Cecropia peltata L.	8	0,029	2,930	0,008	0,786	0,300	2,727	6,444
Vitex cymosa Bertero ex Spreng	2	0,007	0,733	0,036	3,647	0,200	1,818	6,198
Nectandra sp.	4	0,015	1,465	0,008	0,781	0,400	3,636	5,882
Handroanthus chrysanthus (Jacq.) S.O.Grose	6	0,022	2,198	0,017	1,652	0,200	1,818	5,668
Cordia alba (Jacq.) Roem. & Schult.	6	0,022	2,198	0,005	0,518	0,300	2,727	5,443
Bellucia pentamera Naudin	5	0,018	1,832	0,004	0,359	0,300	2,727	4,918
Cochlospermum vitifolium (Willd.) Spreng.	5	0,018	1,832	0,003	0,310	0,300	2,727	4,868
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	3	0,011	1,099	0,004	0,432	0,300	2,727	4,258
Lecythis sp.	5	0,018	1,832	0,006	0,594	0,200	1,818	4,243
Lecythis minor Jacq.	4	0,015	1,465	0,007	0,715	0,200	1,818	3,999
Handroanthus guayacan (Seem.) S.O.Grose	2	0,007	0,733	0,012	1,176	0,200	1,818	3,727
Cedrela odorata L.	2	0,007	0,733	0,006	0,612	0,200	1,818	3,163
Vismia baccifera (L.) Planch. & Triana	2	0,007	0,733	0,001	0,142	0,200	1,818	2,693
Pachira quinata (Jacq.) W.S.Alverson	1	0,004	0,366	0,007	0,715	0,100	0,909	1,991
Anacardium excelsum (Bertero ex Kunth) Skeels	2	0,007	0,733	0,001	0,114	0,100	0,909	1,756
Gliricidia sepium (Jacq.) Walp.	1	0,004	0,366	0,002	0,241	0,100	0,909	1,517
Crescentia cujete L.	1	0,004	0,366	0,002	0,209	0,100	0,909	1,484
Ocotea sp.	1	0,004	0,366	0,001	0,146	0,100	0,909	1,421
Guazuma ulmifolia Lam.	1	0,004	0,366	0,001	0,131	0,100	0,909	1,406
Myrcia popayanensis Hieron.	1	0,004	0,366	0,001	0,107	0,100	0,909	1,383
Sterculia apetala (Jacq.) H.Karst.	1	0,004	0,366	0,001	0,107	0,100	0,909	1,383
Persea sp.	1	0,004	0,366	0,001	0,103	0,100	0,909	1,378



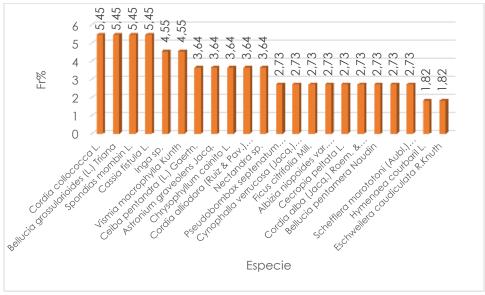
Especies	N° de ind	Abundancia		Dominancia		Frecuencia		
		Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Xylopia sp.	1	0,004	0,366	0,001	0,064	0,100	0,909	1,339
Cordia sp.	1	0,004	0,366	0,001	0,054	0,100	0,909	1,329
Totales		1	100	1	100	11	100	300

Abundancia

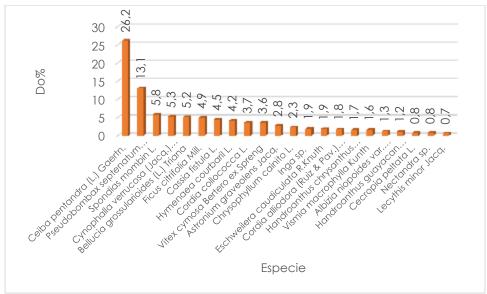
La abundancia absoluta y relativa presente en la cobertura de bosque denso bajo tierra firme muestra que la especie que mas abunda es *Xylopia sp.* con 35 individuos por ha y 12,82 % de abundancia relativa, seguido de la especie *Bellucia grossularioides* (L.) 30 individuos y 10,99 % de abundancia relativa (Figura 75).

Figura 75. Distribución de la abundancia relativa para el bosque denso bajo de tierra firme

Fuente: Elaboración equipo técnico


Frecuencia

La especie Cordia collococca L. es la mas frecuente con una presencia en 6 parcelas realizadas, seguida de *Bellucia grossularioides* (L.) Triana con una presencia en 6 parcelas de las 10 realizadas y *Spondias mombin* L. con una frecuencia realtiva de 5,455 % (Figura 76).


Figura 76. Distribución de frecuencia relativa para el bosque denso bajo de tierra firme

Dominancia

La especie de mayor dominancia es *Ceiba pentandra* (L.) Gaertn.con 12,17 % y área basal de 4,4767 m², seguida de la especie *Pseudobombax septenatum* (Jacq.) Dugand con 13,09% y un área basal de 2,2395 m² (Figura 77).

Figura 77. Distribución de la dominancia relativa para el bosque denso bajo de tierra firme

Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es *Ceiba pentandra* (L.) Gaertn con un IVI de 34,6, seguida de la especie *Cordia collococca* L. con un peso ecológico de 21,9, evidenciando el comportamiento de J invertida de bosque natural (Figura 78).

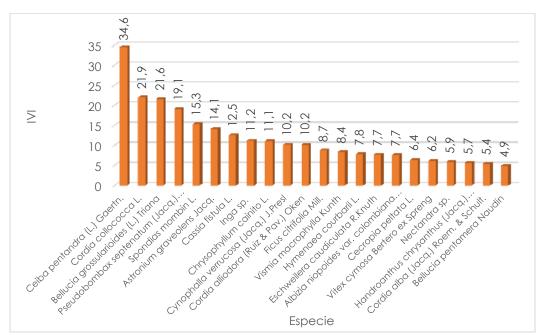


Figura 78. Distribución del IVI para el bosque denso bajo de tierra firme

Fuente: Elaboración equipo técnico

Coefiente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1 / \frac{40}{273}$$

$$CM = 1/0,146$$

$$CM = 6.84$$

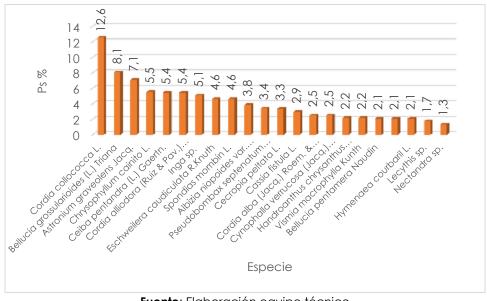
El coeficiente de mezcla obtenido implica que por cada 6,84 individuos estudiados hay una especie nueva para el bosque denso bajo de tierra firme.

5.5.2.6.2.2. Estructura vertical

Posición sociológica

La posición sociológica muestra que la especie con mayor peso es *Cordia collococca* L. con 12,56 % debido a la presencia de la totalidad de sus individuos en el estrato dominante, el detallado de cada una de las especies se muestra en la Tabla 149 y Figura 79. ¡Error! No se encuentra el origen de la referencia.

Tabla 149. Posición sociológica de las especies del bosque denso bajo de tierra firme


Nombre científico	Suprimido	Codominante	Dominante	Ps	Ps%
Cordia collococca L.	0	6	29	6974	12,5646
Bellucia grossularioides (L.) Triana	0	13	17	4477	8,0659
Astronium graveolens Jacq.	0	5	16	3917	7,0570
Chrysophyllum cainito L.	0	1	13	3057	5,5076
Ceiba pentandra (L.) Gaertn.	0	0	13	3016	5,4337
Cordia alliodora (Ruiz & Pav.) Oken	0	0	13	3016	5,4337
Inga sp.	0	1	12	2825	5,0896
Eschweilera caudiculata R.Knuth	0	0	11	2552	4,5978
Spondias mombin L.	0	0	11	2552	4,5978
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0	1	9	2129	3,8357
Pseudobombax septenatum (Jacq.) Dugand	0	1	8	1897	3,4177
Cecropia peltata L.	0	0	8	1856	3,3438
Cassia fistula L.	0	0	7	1624	2,9259
Cordia alba (Jacq.) Roem. & Schult.	0	0	6	1392	2,5079
Cynophalla verrucosa (Jacq.) J.Presl	0	0	6	1392	2,5079
Handroanthus chrysanthus (Jacq.) S.O.Grose	0	1	5	1201	2,1638
Vismia macrophylla Kunth	0	1	5	1201	2,1638
Bellucia pentamera Naudin	0	0	5	1160	2,0899
Cochlospermum vitifolium (Willd.) Spreng.	0	0	5	1160	2,0899
Hymenaea courbaril L.	0	0	5	1160	2,0899
Lecythis sp.	0	1	4	969	1,7458
Nectandra sp.	0	1	3	737	1,3278
Ficus citrifolia Mill.	0	0	3	696	1,2539
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0	0	3	696	1,2539
Cedrela odorata L.	0	0	2	464	0,8360

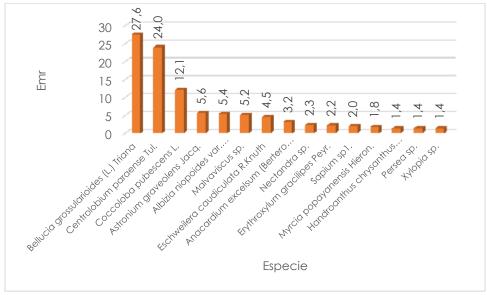
Nombre científico	Suprimido	Codominante	Dominante	Ps	Ps%
Handroanthus guayacan (Seem.) S.O.Grose	0	0	2	464	0,8360
Anacardium excelsum (Bertero ex Kunth) Skeels	0	1	1	273	0,4918
Vitex cymosa Bertero ex Spreng	0	1	1	273	0,4918
Myrcia popayanensis Hieron.	0	0	1	232	0,4180
Cordia sp.	0	0	1	232	0,4180
Crescentia cujete L.	0	0	1	232	0,4180
Gliricidia sepium (Jacq.) Walp.	0	0	1	232	0,4180
Guazuma ulmifolia Lam.	0	0	1	232	0,4180
Ocotea sp.	0	0	1	232	0,4180
Pachira quinata (Jacq.) W.S.Alverson	0	0	1	232	0,4180
Sterculia apetala (Jacq.) H.Karst.	0	0	1	232	0,4180
Xylopia sp.	0	0	1	232	0,4180
Lecythis minor Jacq.	0	4	0	164	0,2955
Vismia baccifera (L.) Planch. & Triana	0	2	0	82	0,1477
Persea sp.	0	1	0	41	0,0739

Figura 79. Distribución de la posición sociológica de las especies del bosque denso bajo de tierra firme

5.5.2.6.2.3. Analisis del sotobosque

Categoría de tamaño absoluta

El análisis de regeneración natural muestra que la especie que presenta mayor representación es *Bellucia grossularioides* (L.) Triana con una categoría de tamaño de 35,669 %, seguido de *Centrolobium paraense* Tul con una categoría de tamaño de 31,095 % (Figura 80) (Tabla 150).


Tabla 150. Cálculo de la estructura de sotobosque en el bosque denso bajo de tierra firme

<u>Especies</u>		<u>FA%</u>	CTaEM%	<u>Emr</u>
Bellucia grossularioides (L.) Triana		10,714	35,669	27,590
Centrolobium paraense Tul.	30,198	10,714	31,095	24,002
Coccoloba pubescens L.	12,624	10,714	12,969	12,102
Astronium graveolens Jacq.	4,950	7,143	4,795	5,630
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,723	10,714	2,747	5,395
Malvaviscus sp.	2,475	10,714	2,290	5,160
Eschweilera caudiculata R.Knuth	3,218	7,143	3,133	4,498
Anacardium excelsum (Bertero ex Kunth) Skeels		7,143	1,311	3,231
Nectandra sp.		3,571	1,678	2,327
Erythroxylum gracilipes Peyr.		3,571	1,554	2,204
Sapium sp 1.		3,571	1,095	1,968
Myrcia popayanensis Hieron.		3,571	0,836	1,799
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,248	3,571	0,275	1,365
Persea sp.		3,571	0,275	1,365
Xylopia sp.	0,248	3,571	0,275	1,365
Totales Generales		100	100	100

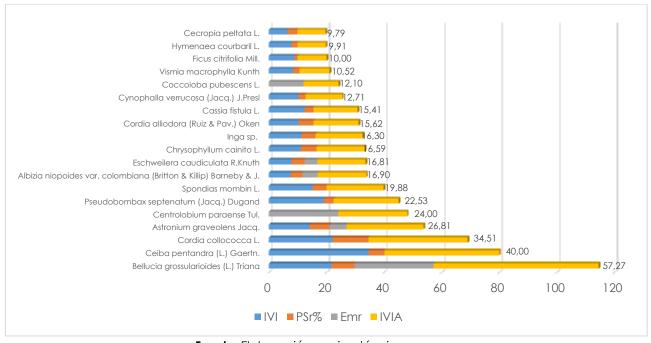
Figura 80. Distribución del sotobosque del bosque denso bajo de tierra firme

Índice de valor de importancia ampliado (IVIA)

La especie con el mayor valor de importancia en el bosque es *Bellucia grossularioides* (L.) Triana, la cual obtuvo un valor de 57,27 de IVIA con la mayor significancia asociado al IVI y. La especie *Ceiba pentandra* (L.) Gaertn presenta un valor de 40,00, asociado al peso de IVI y Ps (Tabla 151) (Figura 81 Figura 81).

Tabla 151. Índice de valor de importancia ampliado para el bosque denso bajo de tierra firme

<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	<u>IVIA</u>
Bellucia grossularioides (L.) Triana	21,62	8,07	27,59	57,27
Ceiba pentandra (L.) Gaertn.	34,57	5,43	0,00	40,00
Cordia collococca L.	21,94	12,56	0,00	34,51
Astronium graveolens Jacq.	14,12	7,06	5,63	26,81
Centrolobium paraense Tul.	0,00	0,00	24,00	24,00
Pseudobombax septenatum (Jacq.) Dugand	19,11	3,42	0,00	22,53
Spondias mombin L.	15,28	4,60	0,00	19,88
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	7,66	3,84	5,39	16,90
Eschweilera caudiculata R.Knuth	7,72	4,60	4,50	16,81
Chrysophyllum cainito L.	11,08	5,51	0,00	16,59
Inga sp.	11,21	5,09	0,00	16,30
Cordia alliodora (Ruiz & Pav.) Oken	10,19	5,43	0,00	15,62
Cassia fistula L.	12,48	2,93	0,00	15,41



<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	<u>IVIA</u>
Cynophalla verrucosa (Jacq.) J.Presl	10,20	2,51	0,00	12,71
Coccoloba pubescens L.		0,00	12,10	12,10
Vismia macrophylla Kunth	8,36	2,16	0,00	10,52
Ficus citrifolia Mill.	8,75	1,25	0,00	10,00
Hymenaea courbaril L.	7,82	2,09	0,00	9,91
Cecropia peltata L.	6,44	3,34	0,00	9,79
Nectandra sp.	5,88	1,33	2,33	9,54
Handroanthus chrysanthus (Jacq.) S.O.Grose	5,67	2,16	1,36	9,20
Cordia alba (Jacq.) Roem. & Schult.	5,44	2,51	0,00	7,95
Bellucia pentamera Naudin	4,92	2,09	0,00	7,01
Cochlospermum vitifolium (Willd.) Spreng.	4,87	2,09	0,00	6,96
Vitex cymosa Bertero ex Spreng	6,20	0,49	0,00	6,69
Lecythis sp.	4,24	1,75	0,00	5,99
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	4,26	1,25	0,00	5,51
Anacardium excelsum (Bertero ex Kunth) Skeels	1,76	0,49	3,23	5,48
Malvaviscus sp.	0,00	0,00	5,16	5,16
Handroanthus guayacan (Seem.) S.O.Grose	3,73	0,84	0,00	4,56
Lecythis minor Jacq.	4,00	0,30	0,00	4,29
Cedrela odorata L.	3,16	0,84	0,00	4,00
Xylopia sp.	1,34	0,42	1,36	3,12
Vismia baccifera (L.) Planch. & Triana	2,69	0,15	0,00	2,84
Persea sp.	1,38	0,07	1,36	2,82
Pachira quinata (Jacq.) W.S.Alverson	1,99	0,42	0,00	2,41
Erythroxylum gracilipes Peyr.	0,00	0,00	2,20	2,20
Sapium sp1.	0,00	0,00	1,97	1,97
Gliricidia sepium (Jacq.) Walp.	1,52	0,42	0,00	1,93
Crescentia cujete L.	1,48	0,42	0,00	1,90
Ocotea sp.	1,42	0,42	0,00	1,84
Guazuma ulmifolia Lam.	1,41	0,42	0,00	1,82
Myrcia popayanensis Hieron.	1,38	0,42	0,00	1,80
Sterculia apetala (Jacq.) H.Karst.	1,38	0,42	0,00	1,80
Myrcia popayanensis Hieron.	0,00	0,00	1,80	1,80
Cordia sp.	1,33	0,42	0,00	1,75

Figura 81. Distribución del IVIA para el bosque denso bajo de tierra firme

5.5.2.6.3. Indicadores de diversidad alfa del bosque denso bajo de tierra firme

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 152.

Tabla 152. Índices de biodiversidad alfa del bosque denso bajo de tierra firme

Parámetro	Valor	
Dmn	2,421	
Dsi	1/0,055= 18,05	
d	1-0,179= 0,87	
H′	3,21	
dmg	6,95	

Fuente: Elaboración equipo técnico

El índice de Menhinick muestra una tendencia media a la diversidad, siendo poco heterogéneo en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra tendencia a la alta diversidad del bosque, teniendo en cuenta que la probabilidad de sacar individuos iguales es muy baja.

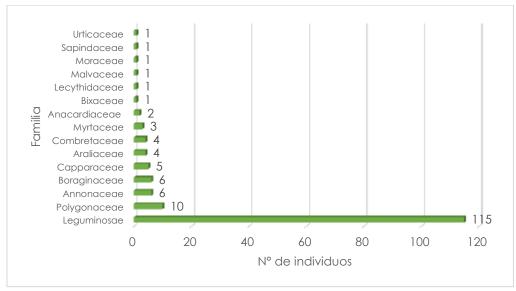
Para la cobertura de bosque denso bajo de tierra firme, el índice de Shannon establece que es típicamente diverso y heterogéneo. De igual manera, el índice de Mangalef

muestra que es altamente biodiverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad media.

5.5.2.7. Cobertura Bosque Denso Bajo Inundable

El bosque denso bajo inundable esta constituido por un total de 23 especies distribuidas en 16 familias resgistradas en el inventario forestal.

En la Tabla 153, se identifica la familia Leguminosae y Polygonaceae las que presentan la mayor representación. A su vez se identifica que la familia Leguminosae se encuentra representada en 5 generos y 6 especies, resaltando la *Inga* edulis Mart. con 50 individuos (Figura 82).


Tabla 153. Composición florística del bosque denso bajo inundable

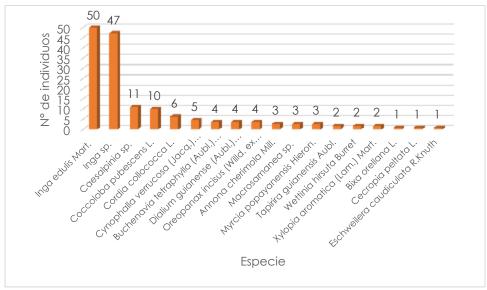
Familia	N° de ind / Familia	Especie	N° de Ind / sp/ Ha
Anacardiaceae	2	Tapirira guianensis Aubl.	2
		Annona cherimola Mill.	3
Annonaceae	6	Xylopia aromatica (Lam.) Mart.	2
		Xylopia sericea A.StHil.	1
Araliaceae	4	Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	4
Ardilacede	4	Wettinia hirsuta Burret	2
Bixaceae	1	Bixa orellana L.	1
Boraginaceae	6	Cordia collococca L.	6
Capparaceae	5	Cynophalla verrucosa (Jacq.) J.Presl	5
Combretaceae	4	Buchenavia tetraphylla (Aubl.) R.A.Howard	4
Lecythidaceae	1	Eschweilera caudiculata R.Knuth	1
		Caesalpinia sp.	11
		Dialium guianense (Aubl.) Sandwith	4
Loguminosgo	115	Inga edulis Mart.	50
Leguminosae	115	Inga sp.	47
		Macrosamanea sp.	3
		Zygia longifolia (Willd.) Britton & Rose	1
Malvaceae	1	Sterculia apetala (Jacq.) H.Karst.	1
Moraceae	1	Ficus maxima Mill.	1
Myrtaceae	3	Myrcia popayanensis Hieron.	3
Polygonaceae	10	Coccoloba pubescens L.	10
Sapindaceae	1	Matayba sp.	1
Urticaceae	1	Cecropia peltata L.	1

Figura 82. Distribución florística de las familias identificadas en el bosque denso bajo inundable

5.5.2.7.1. Indicadores dasométricos del bosque denso bajo inundable

El bosque abierto bajo de tierra firme presenta un total de 161 individuos / ha en 16 especies; siendo la de mayor número la especie Inga edulis Mart con 50 individuos, seguido de la especie Inga sp con 47 individuos por Ha. En la Tabla 154, se presenta el N° de individuos de cada una de las especies por ha (Figura 83).

Tabla 154. N° de individuos/especie/ha del bosque denso bajo inundable


Especie	N° de Ind / sp/ ha
Inga edulis Mart.	50
Inga sp.	47
Caesalpinia sp.	11
Coccoloba pubescens L.	10
Cordia collococca L.	6
Cynophalla verrucosa (Jacq.) J.Presl	5
Buchenavia tetraphylla (Aubl.) R.A.Howard	4
Dialium guianense (Aubl.) Sandwith	4
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	4
Annona cherimola Mill.	3
Macrosamanea sp.	3
Myrcia popayanensis Hieron.	3
Tapirira guianensis Aubl.	2
Wettinia hirsuta Burret	2

N° de Ind / sp/ ha
2
1
1
1
1
1
1
1
1

Fuente: Elaboración equipo técnico Figura 83. Distribución de N° de individuos por especie

La cobertura de bosque denso bajo inundable presenta un área basal por ha de 11,0081 m² en las 16 especies, obteniendo un área basal promedio/individuo/especie de 0,1018 m² y área basal promedio/especie /hectárea de 0,4786 m²; en la Tabla 155 se presenta los indicadores detallados por especie.

Tabla 155. Indicadores por especie de área basal

Especie	AB/sp /ha	AB/ ind/ sp/ha
Annona cherimola Mill.	0,0373	0,0137
Bixa orellana L.	0,0084	0,0092
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,1878	0,0516
Caesalpinia sp.	1,2024	0,1102
Cecropia peltata L.	0,0074	0,0081

Especie	AB/sp /ha	AB/ ind/ sp/ha
Coccoloba pubescens L.	1,2717	0,1272
Cordia collococca L.	0,4534	0,0712
Cynophalla verrucosa (Jacq.) J.Presl	1,6318	0,3590
Dialium guianense (Aubl.) Sandwith	0,0652	0,0179
Eschweilera caudiculata R.Knuth	0,0196	0,0215
Ficus maxima Mill.	0,6686	0,7354
Inga edulis Mart.	2,0184	0,0404
Inga sp.	2,4126	0,0510
Macrosamanea sp.	0,1780	0,0653
Matayba sp.	0,0079	0,0087
Myrcia popayanensis Hieron.	0,0411	0,0151
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,1354	0,0372
Sterculia apetala (Jacq.) H.Karst.	0,2779	0,3057
Tapirira guianensis Aubl.	0,1590	0,0875
Wettinia hirsuta Burret	0,0167	0,0092
Xylopia aromatica (Lam.) Mart.	0,0574	0,0316
Xylopia sericea A.StHil.	0,0278	0,0306
Zygia longifolia (Willd.) Britton & Rose	0,1223	0,1345

En cuanto a los indicadores de volumen se encuentra distribuido en 13 clases diametricas, siendo la clase II la que presenta los mayores volúmenes.

Para el caso del volumen total se obtiene 63,233 m³; en la Figura 84 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de bosque denso bajo inundabe, encontrándose la clase II con un volumen de 12,2130 m³ seguido de la clase IV con 9,1557 m³.

14 12,2130 12 Volumen total (m3) 9,1557 9,0585 10 8 6,5410 6,6359 5,3830 5,2883 4,1778 4,7803 6 2 0 || \forall I VII |||IV IX XIII Clase diamétrica

Figura 84. Distribución del volumen total por clase diamétrica

De igual manera, el volumen total por especie se calcula un promedio de 2,74 m³ y un volumen promedio por especie por individuo de 0,86 m³; en la Tabla 156 se evidencia el volumen de cada una de las especies por hectárea y en la Tabla 157 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 156. Indicadores por especie de volumen total

Especie	VT/sp /ha	VT ind/sp/ha
Annona cherimola Mill.	0,1959	0,0718
Bixa orellana L.	0,0435	0,0478
Buchenavia tetraphylla (Aubl.) R.A.Howard	2,7168	0,7471
Caesalpinia sp.	5,1608	0,4731
Cecropia peltata L.	0,1107	0,1218
Coccoloba pubescens L.	6,9689	0,6969
Cordia collococca L.	1,9436	0,3054
Cynophalla verrucosa (Jacq.) J.Presl	9,0813	1,9979
Dialium guianense (Aubl.) Sandwith	0,1946	0,0535
Eschweilera caudiculata R.Knuth	0,1272	0,1399
Ficus maxima Mill.	4,7803	5,2583
Inga edulis Mart.	8,2303	0,1646
Inga sp.	11,0811	0,2344
Macrosamanea sp.	1,4475	0,5308
Matayba sp.	0,0256	0,0282
Myrcia popayanensis Hieron.	0,2363	0,0867
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,2604	0,3466
Sterculia apetala (Jacq.) H.Karst.	3,9742	4,3716

Especie	VT/sp /ha	VT ind/sp/ha
Tapirira guianensis Aubl.	2,6879	1,4783
Wettinia hirsuta Burret	0,1139	0,0627
Xylopia aromatica (Lam.) Mart.	0,7648	0,4206
Xylopia sericea A.StHil.	0,1808	0,1988
Zygia longifolia (Willd.) Britton & Rose	1,9073	2,0980

Tabla 157. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /ha/Ct diam.
l	6,5410
Annona cherimola Mill.	0,1959
Bixa orellana L.	0,0435
Caesalpinia sp.	0,1026
Cecropia peltata L.	0,1107
Coccoloba pubescens L.	0,3471
Dialium guianense (Aubl.) Sandwith	0,1946
Eschweilera caudiculata R.Knuth	0,1272
Inga edulis Mart.	2,4276
Inga sp.	1,6738
Macrosamanea sp.	0,3415
Matayba sp.	0,0256
Myrcia popayanensis Hieron.	0,2363
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,0403
Wettinia hirsuta Burret	0,1139
Xylopia aromatica (Lam.) Mart.	0,3796
Xylopia sericea A.StHil.	0,1808
II	12,2130
Buchenavia tetraphylla (Aubl.) R.A.Howard	2,7168
Caesalpinia sp.	1,2215
Coccoloba pubescens L.	0,3851
Cordia collococca L.	0,9219
Cynophalla verrucosa (Jacq.) J.Presl	0,5763
Inga edulis Mart.	1,3555
Inga sp.	3,4307
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,2201
Xylopia aromatica (Lam.) Mart.	0,3852
III	5,2883
Coccoloba pubescens L.	0,8235
Cordia collococca L.	0,4203
Inga edulis Mart.	1,0099

Clase diamétrica / Especie	VTsp /ha/Ct diam.	
Inga sp.	0,3467	
Tapirira guianensis Aubl.	2,6879	
IV	9,1557	
Coccoloba pubescens L.	2,0930	
Cordia collococca L.	0,6014	
Inga edulis Mart.	0,4768	
Inga sp.	2,9712	
Macrosamanea sp.	1,1060	
Zygia longifolia (Willd.) Britton & Rose	1,9073	
V	5,3830	
Caesalpinia sp.	0,9761	
Coccoloba pubescens L.	0,9630	
Cynophalla verrucosa (Jacq.) J.Presl	1,8691	
Inga sp.	1,5748	
VI	9,0585	
Caesalpinia sp.	2,8606	
Inga edulis Mart.	1,1399	
Inga sp.	1,0839	
Sterculia apetala (Jacq.) H.Karst.	3,9742	
VII	4,1778	
Coccoloba pubescens L.	2,3571	
Inga edulis Mart.	1,8207	
IX	4,7803	
Ficus maxima Mill.	4,7803	
XIII	6,6359	
Cynophalla verrucosa (Jacq.) J.Presl	6,6359	

El bosque denso bajo inundable presenta un volumen de fuste por ha de 51,32 m³, distribuido en 13 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 5,13 m³ (Figura 85).

9,7949 10 9 7,5237 8 7,1766 Volumen fuste (m3) 7 5,3917 6 4,9776 4,1284 4,4885 4,3917 5 3,4436 4 3 2 V VII Ш Ш IV VI IX XIII Clase diamétrica

Figura 85. Distribución del volumen del fuste por clase diamétrica

De igual forma, el volumen de fuste por especie promedio es de 2,23 m³ y un volumen promedio por especie por individuo de 0,73 m³ de volumen de fuste por individuo por especie. En la Tabla 158 se evidencia el volumen de cada una de las especies y en la Tabla 159 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 158. Indicadores por especie de volumen de fuste

Especie	VF/sp / ha	VF ind/sp/ha
Annona cherimola Mill.	0,12321	0,04518
Bixa orellana L.	0,02718	0,02990
Buchenavia tetraphylla (Aubl.) R.A.Howard	2,37779	0,65389
Caesalpinia sp.	3,98843	0,36561
Cecropia peltata L.	0,09630	0,10593
Coccoloba pubescens L.	5,72895	0,57290
Cordia collococca L.	1,50158	0,23596
Cynophalla verrucosa (Jacq.) J.Presl	7,49027	1,64786
Dialium guianense (Aubl.) Sandwith	0,13094	0,03601
Eschweilera caudiculata R.Knuth	0,10172	0,11189
Ficus maxima Mill.	4,12840	4,54124
Inga edulis Mart.	6,26236	0,12525
Inga sp.	8,72877	0,18465

Especie	VF/sp / ha	VF ind/sp/ha
Macrosamanea sp.	1,23870	0,45419
Matayba sp.	0,01792	0,01972
Myrcia popayanensis Hieron.	0,16802	0,06161
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,00214	0,27559
Sterculia apetala (Jacq.) H.Karst.	3,25159	3,57675
Tapirira guianensis Aubl.	2,37774	1,30776
Wettinia hirsuta Burret	0,08129	0,04471
Xylopia aromatica (Lam.) Mart.	0,67087	0,36898
Xylopia sericea A.StHil.	0,15364	0,16901
Zygia longifolia (Willd.) Britton & Rose	1,66885	1,83573

Tabla 159. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /ha/Ct diam.
l	4,9776
Annona cherimola Mill.	0,1232
Bixa orellana L.	0,0272
Caesalpinia sp.	0,0718
Cecropia peltata L.	0,0963
Coccoloba pubescens L.	0,2861
Dialium guianense (Aubl.) Sandwith	0,1309
Eschweilera caudiculata R.Knuth	0,1017
Inga edulis Mart.	1,8119
Inga sp.	1,2643
Macrosamanea sp.	0,2710
Matayba sp.	0,0179
Myrcia popayanensis Hieron.	0,1680
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,0288
Wettinia hirsuta Burret	0,0813
Xylopia aromatica (Lam.) Mart.	0,3434
Xylopia sericea A.StHil.	0,1536
II	9,7949
Buchenavia tetraphylla (Aubl.) R.A.Howard	2,3778
Caesalpinia sp.	0,9273
Coccoloba pubescens L.	0,2888

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Cordia collococca L.	0,7203
Cynophalla verrucosa (Jacq.) J.Presl	0,4631
Inga edulis Mart.	1,0012
Inga sp.	2,7156
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,9733
Xylopia aromatica (Lam.) Mart.	0,3274
III	4,3917
Coccoloba pubescens L.	0,6446
Cordia collococca L.	0,3302
Inga edulis Mart.	0,7574
Inga sp.	0,2817
Tapirira guianensis Aubl.	2,3777
IV	7,5237
Coccoloba pubescens L.	1,7627
Cordia collococca L.	0,4511
Inga edulis Mart.	0,3576
Inga sp.	2,3157
Macrosamanea sp.	0,9677
Zygia longifolia (Willd.) Britton & Rose	1,6688
V	4,1284
Caesalpinia sp.	4,1284
Coccoloba pubescens L.	4,4885
Cynophalla verrucosa (Jacq.) J.Presl	0,7321
Inga sp.	0,7825
VI	1,6355
Caesalpinia sp.	1,3385
Inga edulis Mart.	7,1766
Inga sp.	2,2572
Sterculia apetala (Jacq.) H.Karst.	0,8549
VII	0,8129
Coccoloba pubescens L.	3,2516
Inga edulis Mart.	3,4436
IX	1,9642
Ficus maxima Mill.	1,4793
XIII	5,3917
Cynophalla verrucosa (Jacq.) J.Presl	5,3917

En el caso del volumen comercial se obtiene un volumen de 21,19 m³ por hectárea distribuido en las 13 clases diamétricas, con un volumen promedio por clase diamétrica de 2,11 m³. En la Figura 86 se presenta la distribución del volumen comercial por clase diamétrica.

3,8165 4 3,3179 3,1788 Volumen comercial (m3) 3 2,6483 2,2308 2,1728 3 1,7510 1,2752 0,8009 1 0 Ш Ш IV ٧ VI VII IX XIII Clase diamétrica

Figura 86. Distribución del volumen comercial por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen comercial por especie un promedio de 0,92 m³ y un volumen promedio por especie por individuo de 0,39 m³; en la Tabla 160 se evidencia el volumen de cada una de las especies y en la Tabla 161 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 160.	Indicadores por	especie de volumer	comercial

Especie	VC/sp / ha	VC ind/sp/ha
Annona cherimola Mill.	0,0580	0,0213
Bixa orellana L.	0,0098	0,0108
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,2757	0,0758
Caesalpinia sp.	1,3164	0,1207
Cecropia peltata L.	0,0963	0,1059
Coccoloba pubescens L.	2,3011	0,2301
Cordia collococca L.	0,6653	0,1046
Cynophalla verrucosa (Jacq.) J.Presl	3,7743	0,8303
Dialium guianense (Aubl.) Sandwith	0,0546	0,0150
Eschweilera caudiculata R.Knuth	0,0636	0,0699
Ficus maxima Mill.	2,1728	2,3901

Especie	VC/sp / ha	VC ind/sp/ha
Inga edulis Mart.	1,7140	0,0343
Inga sp.	2,8389	0,0601
Macrosamanea sp.	0,2314	0,0848
Matayba sp.	0,0082	0,0090
Myrcia popayanensis Hieron.	0,0534	0,0196
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,4522	0,1243
Sterculia apetala (Jacq.) H.Karst.	1,4452	1,5897
Tapirira guianensis Aubl.	1,0938	0,6016
Wettinia hirsuta Burret	0,0602	0,0331
Xylopia aromatica (Lam.) Mart.	0,4480	0,2464
Xylopia sericea A.StHil.	0,0723	0,0795
Zygia longifolia (Willd.) Britton & Rose	1,9867	2,1854

Tabla 161. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
l	2,2308
Annona cherimola Mill.	0,0580
Bixa orellana L.	0,0098
Caesalpinia sp.	0,0205
Cecropia peltata L.	0,0963
Coccoloba pubescens L.	0,1776
Dialium guianense (Aubl.) Sandwith	0,0546
Eschweilera caudiculata R.Knuth	0,0636
Inga edulis Mart.	0,5412
Inga sp.	0,7397
Macrosamanea sp.	0,0470
Matayba sp.	0,0082
Myrcia popayanensis Hieron.	0,0534
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,0115
Wettinia hirsuta Burret	0,0602
Xylopia aromatica (Lam.) Mart.	0,2169
Xylopia sericea A.StHil.	0,0723
II	3,1788
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,2757
Caesalpinia sp.	0,3469
Coccoloba pubescens L.	0,0642
Cordia collococca L.	0,2868
Cynophalla verrucosa (Jacq.) J.Presl	0,1448
Inga edulis Mart.	0,3145

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Inga sp.	1,0742
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,4406
Xylopia aromatica (Lam.) Mart.	0,2311
II	1,7510
Coccoloba pubescens L.	0,1193
Cordia collococca L.	0,2282
Inga edulis Mart.	0,2664
Inga sp.	0,0433
Tapirira guianensis Aubl.	1,0938
IV	3,8165
Coccoloba pubescens L.	0,7720
Cordia collococca L.	0,1504
Inga edulis Mart.	0,0795
Inga sp.	0,6436
Macrosamanea sp.	0,1843
Zygia longifolia (Willd.) Britton & Rose	1,9867
V	0,8009
Caesalpinia sp.	0,2115
Coccoloba pubescens L.	0,1204
Cynophalla verrucosa (Jacq.) J.Presl	0,3115
Inga sp.	0,1575
VI	2,6483
Caesalpinia sp.	0,7375
Inga edulis Mart.	0,2850
Inga sp.	0,1806
Sterculia apetala (Jacq.) H.Karst.	1,4452
VII	1,2752
Coccoloba pubescens L.	1,0476
Inga edulis Mart.	0,2276
IX	2,1728
Ficus maxima Mill.	2,1728
XIII	3,3179
Cynophalla verrucosa (Jacq.) J.Presl	3,3179

El volumen cosechable calculado para el bosque denso bajo inundable es de 17,93 m³ con un promedio por especie de 1,79 m³, en la Tabla 162 se evidencia el volumen de cada una de las especies y en la Tabla 163 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 162. Indicadores por especie de volumen cosechable

Especie	VCs/sp / ha
Annona cherimola Mill.	0,0490
Bixa orellana L.	0,0083
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,2333
Caesalpinia sp.	1,1139
Cecropia peltata L.	0,0815
Coccoloba pubescens L.	1,9471
Cordia collococca L.	0,5630
Cynophalla verrucosa (Jacq.) J.Presl	3,1936
Dialium guianense (Aubl.) Sandwith	0,0462
Eschweilera caudiculata R.Knuth	0,0538
Ficus maxima Mill.	1,8386
Inga edulis Mart.	1,4503
Inga sp.	2,4022
Macrosamanea sp.	0,1958
Matayba sp.	0,0069
Myrcia popayanensis Hieron.	0,0452
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,3826
Sterculia apetala (Jacq.) H.Karst.	1,2228
Tapirira guianensis Aubl.	0,9256
Wettinia hirsuta Burret	0,0509
Xylopia aromatica (Lam.) Mart.	0,3791
Xylopia sericea A.StHil.	0,0612
Zygia longifolia (Willd.) Britton & Rose	1,6811

Tabla 163. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
1	1,8876
Annona cherimola Mill.	0,0490
Bixa orellana L.	0,0083
Caesalpinia sp.	0,0174
Cecropia peltata L.	0,0815
Coccoloba pubescens L.	0,1503
Dialium guianense (Aubl.) Sandwith	0,0462
Eschweilera caudiculata R.Knuth	0,0538
Inga edulis Mart.	0,4579
Inga sp.	0,6259

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Macrosamanea sp.	0,0398
Matayba sp.	0,0069
Myrcia popayanensis Hieron.	0,0452
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,0097
Wettinia hirsuta Burret	0,0509
Xylopia aromatica (Lam.) Mart.	0,1835
Xylopia sericea A.StHil.	0,0612
II	2,6898
Buchenavia tetraphylla (Aubl.) R.A.Howard	0,2333
Caesalpinia sp.	0,2935
Coccoloba pubescens L.	0,0543
Cordia collococca L.	0,2427
Cynophalla verrucosa (Jacq.) J.Presl	0,1225
Inga edulis Mart.	0,2661
Inga sp.	0,9089
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,3728
Xylopia aromatica (Lam.) Mart.	0,1956
III	1,4816
Coccoloba pubescens L.	0,1010
Cordia collococca L.	0,1931
Inga edulis Mart.	0,2254
Inga sp.	0,0367
Tapirira guianensis Aubl.	0,9256
IV	3,2293
Coccoloba pubescens L.	0,6532
Cordia collococca L.	0,1272
Inga edulis Mart.	0,0672
Inga sp.	0,5446
Macrosamanea sp.	0,1560
Zygia longifolia (Willd.) Britton & Rose	1,6811
V	0,6776
Caesalpinia sp.	0,1789
Coccoloba pubescens L.	0,1019
Cynophalla verrucosa (Jacq.) J.Presl	0,2636
Inga sp.	0,1332
VI	2,2409
Caesalpinia sp.	0,6241
Inga edulis Mart.	0,2411

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Inga sp.	0,1529
Sterculia apetala (Jacq.) H.Karst.	1,2228
VII	1,0790
Coccoloba pubescens L.	0,8864
Inga edulis Mart.	0,1926
IX	1,8386
Ficus maxima Mill.	1,8386
XIII	2,8075
Cynophalla verrucosa (Jacq.) J.Presl	2,8075

5.5.2.7.2. Indicadores estructurales del bosque denso bajo inundable

5.5.2.7.2.1. Estructura horizontal

En la Tabla 164 se observa los datos obtenidos del análisis de la estructura horizontal del bosque denso bajo inundable.

Tabla 164. Estructura horizontal para el bosque denso bajo inundable

	N°	Abundo	ancia	Domir	nancia	Frecu	encia	
Especies	de ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Inga sp.	52	0,294	29,379	0,219	21,893	0,727	14,035	65,307
Inga edulis	55	0,311	31,073	0,183	18,342	0,636	12,281	61,696
Coccoloba pubescens L.	11	0,062	6,215	0,116	11,556	0,545	10,526	28,297
Cynophalla verrucosa (Jacq.) J.Presl	5	0,028	2,825	0,148	14,828	0,273	5,263	22,916
Caesalpinia sp.	12	0,068	6,780	0,109	10,926	0,182	3,509	21,215
Cordia collococca L.	7	0,040	3,955	0,041	4,120	0,455	8,772	16,846
Macrosamanea sp.	3	0,017	1,695	0,016	1,617	0,273	5,263	8,575
Ficus maxima Mill.	1	0,006	0,565	0,061	6,075	0,091	1,754	8,395
Buchenavia tetraphylla (Aubl.) R.A.Howard	4	0,023	2,260	0,017	1,706	0,182	3,509	7,475
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	4	0,023	2,260	0,012	1,230	0,182	3,509	6,999
Dialium guianense (Aubl.) Sandwith	4	0,023	2,260	0,006	0,593	0,182	3,509	6,362
Tapirira guianensis Aubl.	2	0,011	1,130	0,014	1,445	0,182	3,509	6,084
Myrcia popayanensis Hieron.	3	0,017	1,695	0,004	0,374	0,182	3,509	5,577
Xylopia aromatica (Lam.) Mart.	2	0,011	1,130	0,005	0,522	0,182	3,509	5,161
Sterculia apetala (Jacq.) H.Karst.	1	0,006	0,565	0,025	2,525	0,091	1,754	4,845
Wettinia hirsuta Burret	2	0,011	1,130	0,002	0,152	0,182	3,509	4,791
Annona cherimola Mill.	3	0,017	1,695	0,003	0,339	0,091	1,754	3,788

	N°	Abundancia		Dominancia		Frecuencia		
Especies	de ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Zygia longifolia (Willd.) Britton & Rose	1	0,006	0,565	0,011	1,111	0,091	1,754	3,430
Xylopia sericea A.StHil.	1	0,006	0,565	0,003	0,253	0,091	1,754	2,572
Eschweilera caudiculata R.Knuth	1	0,006	0,565	0,002	0,178	0,091	1,754	2,497
Bixa orellana L.	1	0,006	0,565	0,001	0,076	0,091	1,754	2,395
Matayba sp.	1	0,006	0,565	0,001	0,072	0,091	1,754	2,391
Cecropia peltata L.	1	0,006	0,565	0,001	0,067	0,091	1,754	2,387
Totales		1	100	1	100	5,182	100	300

Abundancia

La abundancia absoluta y relativa presente en la cobertura de bosque denso bajo inundable muestra que la especie más abundante es *Inga edulis* con 50 individuos en una hectárea y de abundancia relativa 31,1 %. Igualmente, la especie *Inga* sp. presenta la segunda mayor abundancia con 47 individuos por hectárea y una abundancia realtiva de 29,4 % (Figura 87**¡Error! No se encuentra el origen de la referencia.**).

Figura 87. Distribución de la abundancia relativa para el bosque denso bajo inundable

Fuente: Elaboración equipo técnico

Especie

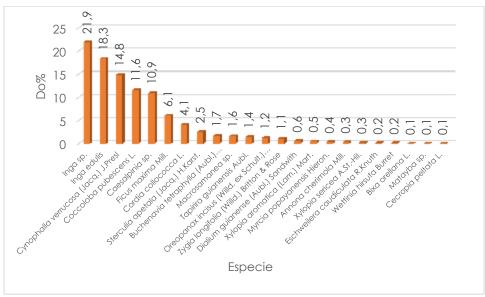
<u>Frecuencia</u>

La especie *Inga sp* es la mas frecuente con una presencia en 8 parcelas de las 11 realizadas, seguida de *Inga edulis* con una presencia en 7 parcelas de las 11 realizadas con una frecuencia realtiva de 12,28 % (Figura 88).

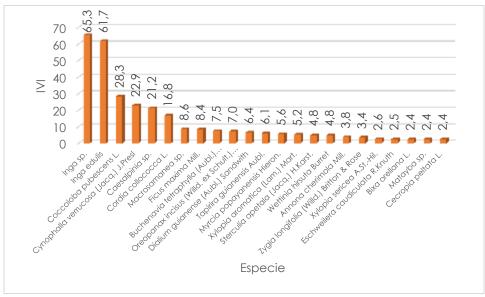
14,0 16 14 0 12 80, 10 8 n, n, n n n n n n n n 6 ന് ന് ന് ന് ന് ന് ന് ∞ ∞ ∞ ∞ 4 2 0 Especie

Figura 88. Distribución de frecuencia relativa para el bosque denso bajo inundable

Fuente: Elaboración equipo técnico


Dominancia

La especie de mayor dominancia es *Inga* sp con 21,89 % y área basal de 2,6501 m², seguida de la especie *Inga* edulis con 18,34 % y un área basal de 2,2202 m² (Figura 89).


Figura 89. Distribución de la dominancia relativa para el bosque denso bajo inundable

Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es *Inga sp* con un IVI de 65,3, seguida de la especie *Inga edulis* con un peso ecológico de 61,7, evidenciando el comportamiento de J invertida de bosque natural (Figura 90).

Figura 90. Distribución del IVI para el bosque denso bajo inundable

Coefiente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1/\frac{23}{171}$$

$$CM = 1/0.134$$

$$CM = 7,46$$

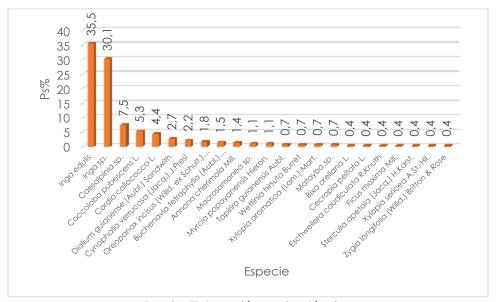
El coeficiente de mezcla obtenido implica que por cada 7,46 individuos estudiados hay una especie nueva para el bosque denso bajo inundable.

5.5.2.7.2.2. Estructura vertical

Posición sociológica

La posición sociológica muestra que la especie con mayor peso es *Inga* edulis con 35,45 % debido a la presencia de la totalidad de sus individuos en el estrato dominante, el detallado de cada una de las especies se muestra en la Tabla 165 y Figura 91.

Tabla 165. Posición sociológica de las especies del bosque denso bajo inundable


Especies	Suprimido	Codominante	Dominante	Ps	Ps%
Inga edulis	0	50	5	6015	35,455
Inga sp.	0	36	16	5112	30,133
Caesalpinia sp.	0	10	2	1266	7,462
Coccoloba pubescens L.	0	4	7	897	5,287
Cordia collococca L.	0	6	1	747	4,403
Dialium guianense (Aubl.) Sandwith	0	4	0	456	2,688
Cynophalla verrucosa (Jacq.) J.Presl	0	1	4	366	2,157
Oreopanax incisus (Willd. ex Schult.) Decne. °& Planch.	0	1	3	303	1,786
Buchenavia tetraphylla (Aubl.) R.A.Howard	0	0	4	252	1,485
Annona cherimola Mill.	0	1	2	240	1,415
Macrosamanea sp.	0	0	3	189	1,114
Myrcia popayanensis Hieron.	0	0	3	189	1,114
Tapirira guianensis Aubl.	0	0	2	126	0,743
Wettinia hirsuta Burret	0	0	2	126	0,743

Especies	Suprimido	Codominante	Dominante	Ps	Ps%
Xylopia aromatica (Lam.) Mart.	0	0	2	126	0,743
Matayba sp.	0	1	0	114	0,672
Bixa orellana L.	0	0	1	63	0,371
Cecropia peltata L.	0	0	1	63	0,371
Eschweilera caudiculata R.Knuth	0	0	1	63	0,371
Ficus maxima Mill.	0	0	1	63	0,371
Sterculia apetala (Jacq.) H.Karst.	0	0	1	63	0,371
Xylopia sericea A.StHil.	0	0	1	63	0,371
Zygia longifolia (Willd.) Britton & Rose	0	0	1	63	0,371

Figura 91. Distribución de la posición sociológica de las especies del bosque denso bajo inundable

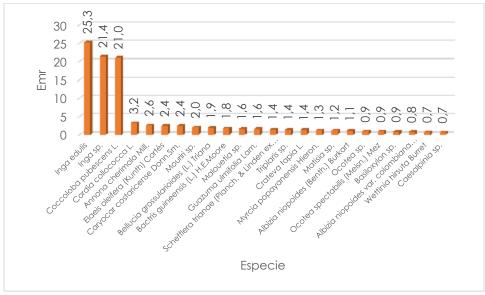
5.5.2.7.2.3. Analisis del sotobosque

Categria de tamaño absoluta

El análisis de regeneración natural muestra que la especie que presenta mayor representación es *Inga* edulis con una categoría de tamaño de 34,866 %, seguido de *Inga* sp. con una categoría de tamaño de 24,016 % (Figura 92**¡Error! No se encuentra el origen de la referencia.**) (Tabla 166).

Tabla 166. Cálculo de la estructura de sotobosque en el bosque denso bajo inundable

<u>Especies</u>	<u>AB%</u>	<u>FA%</u>	СтаЕМ%	<u>Emr</u>
Inga edulis	33,752	7,143	34,866	25,254



<u>Especies</u>	<u>AB%</u>	<u>FA%</u>	СТаЕМ%	<u>Emr</u>
Inga sp.	24,081	16,071	24,016	21,390
Coccoloba pubescens L.	23,888	16,071	23,115	21,025
Cordia collococca L.	1,161	7,143	1,259	3,187
Annona cherimola Mill.	2,031	3,571	2,215	2,606
Elaeis oleifera (Kunth) Cortés	1,741	3,571	1,979	2,430
Caryocar costaricense Donn.Sm.	2,031	3,571	1,675	2,426
Mouriri sp.	1,257	3,571	1,281	2,037
Bellucia grossularioides (L.) Triana	1,064	3,571	1,102	1,912
Bactris guineensis (L.) H.E.Moore	0,870	3,571	0,989	1,810
Malouetia sp.	0,677	3,571	0,581	1,610
Guazuma ulmifolia Lam.	1,644	1,786	1,357	1,595
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,387	3,571	0,373	1,444
Triplaris sp.	0,290	3,571	0,330	1,397
Crateva tapia L.	0,290	3,571	0,269	1,377
Myrcia popayanensis Hieron.	1,064	1,786	0,933	1,261
Matisia sp.	0,967	1,786	0,843	1,199
Albizia niopoides (Benth.) Burkart	0,774	1,786	0,840	1,133
Ocotea sp.	0,580	1,786	0,471	0,946
Ocotea spectabilis (Meisn.) Mez	0,484	1,786	0,516	0,929
Basiloxylon sp.	0,387	1,786	0,440	0,871
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,290	1,786	0,235	0,770
Wettinia hirsuta Burret	0,193	1,786	0,213	0,731
Caesalpinia sp.	0,097	1,786	0,103	0,662
Totales	100	100	100	100

Figura 92. Distribución del sotobosque del bosque denso bajo inundable

Índice de valor de importancia ampliado (IVIA)

La especie con el mayor valor de importancia en el bosque es *Inga edulis*, la cual obtuvo un valor de 122,40 de IVIA con la mayor significancia asociado al IVI y Ps. La especie *Inga sp* presenta un valor de 116,83, también asociado al peso de IVI y Ps (Tabla 167) (Figura 93).

Tabla 167. Índice de valor de importancia ampliado para el bosque denso bajo inundable

Especie	IVI	PSr%	Emr	IVIA
Inga edulis	61,70	35,46	25,25	122,40
Inga sp.	65,31	30,13	21,39	116,83
Coccoloba pubescens L.	28,30	5,29	21,02	54,61
Caesalpinia sp.	21,21	7,46	0,66	29,34
Cynophalla verrucosa (Jacq.) J.Presl	22,92	2,16	0,00	25,07
Cordia collococca L.	16,85	4,40	3,19	24,44
Macrosamanea sp.	8,58	1,11	0,00	9,69
Dialium guianense (Aubl.) Sandwith	6,36	2,69	0,00	9,05
Buchenavia tetraphylla (Aubl.) R.A.Howard	7,47	1,49	0,00	8,96
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	7,00	1,79	0,00	8,79
Ficus maxima Mill.	8,39	0,37	0,00	8,77
Myrcia popayanensis Hieron.	5,58	1,11	1,26	7,95
Annona cherimola Mill.	3,79	1,41	2,61	7,81

Especie	IVI	PSr%	Emr	IVIA
Tapirira guianensis Aubl.	6,08	0,74	0,00	6,83
Wettinia hirsuta Burret	4,79	0,74	0,73	6,26
Xylopia aromatica (Lam.) Mart.	5,16	0,74	0,00	5,90
Sterculia apetala (Jacq.) H.Karst.	4,84	0,37	0,00	5,22
Zygia longifolia (Willd.) Britton & Rose	3,43	0,37	0,00	3,80
Matayba sp.	2,39	0,67	0,00	3,06
Xylopia sericea A.StHil.	2,57	0,37	0,00	2,94
Eschweilera caudiculata R.Knuth	2,50	0,37	0,00	2,87
Bixa orellana L.	2,40	0,37	0,00	2,77
Cecropia peltata L.	2,39	0,37	0,00	2,76
Elaeis oleifera (Kunth) Cortés	0,00	0,00	2,43	2,43
Caryocar costaricense Donn.Sm.	0,00	0,00	2,43	2,43
Mouriri sp.	0,00	0,00	2,04	2,04
Bellucia grossularioides (L.) Triana	0,00	0,00	1,91	1,91
Bactris guineensis (L.) H.E.Moore	0,00	0,00	1,81	1,81
Malouetia sp.	0,00	0,00	1,61	1,61
Guazuma ulmifolia Lam.	0,00	0,00	1,60	1,60
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,00	0,00	1,44	1,44
Triplaris sp.	0,00	0,00	1,40	1,40
Crateva tapia L.	0,00	0,00	1,38	1,38
Matisia sp.	0,00	0,00	1,20	1,20
Albizia niopoides (Benth.) Burkart		0,00	1,13	1,13
Ocotea sp.		0,00	0,95	0,95
Ocotea spectabilis (Meisn.) Mez		0,00	0,93	0,93
Basiloxylon sp.	0,00	0,00	0,87	0,87
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,00	0,00	0,77	0,77

Matayba sp. 9,06 Zygia longifolia (Willd.) Britton & Rose 3,80 Sterculia apetala (Jacq.) H.Karst. = 5,22 Xylopia aromatica (Lam.) Mart. 5,90 Wettinia hirsuta Burret 6,26 Tapirira guianensis Aubl. ——6,83 Annona cherimola Mill. 7,81 Myrcia popayanensis Hieron. 7,95 Ficus maxima Mill. = 8,77 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. Buchenavia tetraphylla (Aubl.) R.A.Howard Dialium guianense (Aubl.) Sandwith 9,05 Macrosamanea sp. Cordia collococca L. 25,07 Cynophalla verrucosa (Jacq.) J.Presl Caesalpinia sp. 54.61 Coccoloba pubescens L. 116.83 Inga sp. Inga edulis 122,40 100,00 150,00 200,00 250,00 0,00 50,00

Figura 93. Distribución del IVIA para el bosque denso bajo inundable

■IVI ■PSr% ■Emr ■IVIA

5.5.2.7.3. Indicadores de diversidad alfa del bosque denso bajo inundable

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 168.

Tabla 168. Índices de biodiversidad alfa del bosque denso bajo inundable

Parámetro	Valor
Dmn	1,729
Dsi	1/0,1967= 5,08
d	1-0,310= 0,68
H′	2,15
dmg	4,25

Fuente: Elaboración equipo técnico

El índice de Menhinick muestra una tendencia hacia poca diversidad, siendo poco heterogéneo en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra tendencia a la baja diversidad del bosque, teniendo en cuenta que posee una alta dominancia de especies.

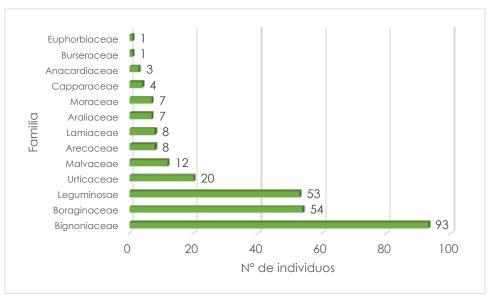
Para la cobertura de bosque denso bajo inundable, el índice de Shannon establece que es poco diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es poco diverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad media.

5.5.2.8. Cobertura de Bosque Fragmentado

El bosque fragmentado se encuentra constituido por un total de 27 especies distribuidas en 13 familias registradas en el inventario forestal.

En la Tabla 169, se identifica la familia Bignoniaceae y Boraginaceae las que presentan la mayor representación. A su vez se identifica que la familia Boraginaceae se encuentra representada en 1 generos y 1 especies, resaltando la especie *Cordia alliodora* (Ruiz & Pav.) Okencon 54 individuos (Figura 94).

Tabla 169. Composición florística del bosque fragmentado


Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
Anacardiaceae	3	Spondias mombin L.	3
Araliaceae	7	Aralia excelsa (Griseb.) J.Wen	7
Arecaceae	8	Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	8
		Crescentia cujete L.	1
Bignoniaceae	93	Handroanthus chrysanthus (Jacq.) S.O.Grose	44
Bignorliaceae	73	Handroanthus guayacan (Seem.) S.O.Grose	1
		Tabebuia rosea (Bertol.) Bertero ex A.DC.	47
Boraginaceae	54	Cordia alliodora (Ruiz & Pav.) Oken	54
Burseraceae	1	Bursera simaruba (L.) Sarg.	1
Capparaceae	4	Cynophalla verrucosa (Jacq.) J.Presl	4
Euphorbiaceae	1	Sapium glandulosum (L.) Morong	1
Lamiaceae	8	Vitex cymosa Bertero ex Spreng	8
		Abarema jupunba (Willd.) Britton & Killip	3
		Albizia guachapele (Kunth) Dugand	2
		Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	18
Leguminosae	53	Albizia saman (Jacq.) Merr.	9
		Calliandra haematocephala Hassk.	4
		Gliricidia sepium (Jacq.) Walp.	8
		Macrosamanea sp.	9
		Ceiba pentandra (L.) Gaertn.	2
		Guazuma ulmifolia Lam.	2
Malvaceae 12		Pseudobombax septenatum (Jacq.) Dugand	3
		Sterculia apetala (Jacq.) H.Karst.	4
		Trichospermum galeottii (Turcz.) Kosterm.	1

Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
Maraaaaa	7	Ficus citrifolia Mill.	5
Moraceae	/	Maclura tinctoria (L.) D.Don ex Steud.	2
Urticaceae	20	Cecropia peltata L.	20

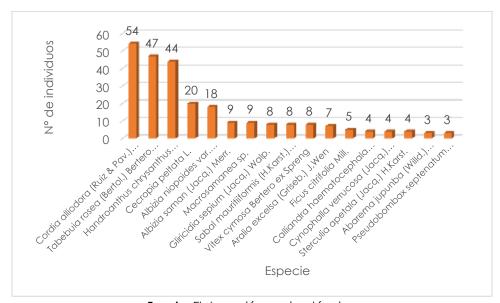
Figura 94. Distribución florística de las familias identificadas en el bosque fragmentado

Fuente: Elaboración equipo técnico

5.5.2.8.1. Indicadores dasométricos del bosque fragmentado

El bosque fragmentado presenta un total de 271 individuos / ha en 27 especies; siendo la de mayor número la especie *Cordia alliodora* (Ruiz & Pav.) Oken con 54 individuos, seguido de la especie Tabebuia rosea (Bertol.) Bertero ex A.DC con 47 individuos por Ha. En la Tabla 170, se presenta el N° de individuos de cada una de las especies por Ha (Figura 95).

Tabla 170. N° de individuos/especie/ha del bosque fragmentado


Especie	N° de Ind / sp/ ha
Cordia alliodora (Ruiz & Pav.) Oken	54
Tabebuia rosea (Bertol.) Bertero ex A.DC.	47
Handroanthus chrysanthus (Jacq.) S.O.Grose	44
Cecropia peltata L.	20
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	18
Albizia saman (Jacq.) Merr.	9
Macrosamanea sp.	9
Gliricidia sepium (Jacq.) Walp.	8

Especie	N° de Ind / sp/ ha
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	8
Vitex cymosa Bertero ex Spreng	8
Aralia excelsa (Griseb.) J.Wen	7
Ficus citrifolia Mill.	5
Calliandra haematocephala Hassk.	4
Cynophalla verrucosa (Jacq.) J.Presl	4
Sterculia apetala (Jacq.) H.Karst.	4
Abarema jupunba (Willd.) Britton & Killip	3
Pseudobombax septenatum (Jacq.) Dugand	3
Spondias mombin L.	3
Albizia guachapele (Kunth) Dugand	2
Ceiba pentandra (L.) Gaertn.	2
Guazuma ulmifolia Lam.	2
Maclura tinctoria (L.) D.Don ex Steud.	2
Bursera simaruba (L.) Sarg.	1
Crescentia cujete L.	1
Handroanthus guayacan (Seem.) S.O.Grose	1
Sapium glandulosum (L.) Morong	1
Trichospermum galeottii (Turcz.) Kosterm.	1

Figura 95. Distribución de N° de individuos por especie

Fuente: Elaboración equipo técnico

La cobertura de bosque fragmentado presenta un área basal por ha de $21,7616 \text{ m}^2$ en las 27 especies, obteniendo un área basal promedio/individuo/especie de $0,1510 \text{ m}^2$ y área

basal promedio/especie /hectárea de 0,8060 m²; en la Tabla 171 se presenta los indicadores detallados por especie.

Tabla 171. Indicadores por especie de área basal

Especie	AB/sp/ha	AB/ind/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,0311	0,0104
Albizia guachapele (Kunth) Dugand	0,0784	0,0392
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,8909	0,0495
Albizia saman (Jacq.) Merr.	2,6524	0,2947
Aralia excelsa (Griseb.) J.Wen	0,3571	0,0510
Bursera simaruba (L.) Sarg.	0,1224	0,1224
Calliandra haematocephala Hassk.	0,6884	0,1721
Cecropia peltata L.	0,5625	0,0281
Ceiba pentandra (L.) Gaertn.	1,7038	0,8519
Cordia alliodora (Ruiz & Pav.) Oken	1,8811	0,0348
Crescentia cujete L.	0,0109	0,0109
Cynophalla verrucosa (Jacq.) J.Presl	0,2306	0,0577
Ficus citrifolia Mill.	1,0087	0,2017
Gliricidia sepium (Jacq.) Walp.	0,8957	0,1120
Guazuma ulmifolia Lam.	0,1177	0,0589
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,9839	0,0451
Handroanthus guayacan (Seem.) S.O.Grose	0,0894	0,0894
Maclura tinctoria (L.) D.Don ex Steud.	0,1200	0,0600
Macrosamanea sp.	0,8231	0,0915
Pseudobombax septenatum (Jacq.) Dugand	0,4034	0,1345
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,4001	0,0500
Sapium glandulosum (L.) Morong	0,4974	0,4974
Spondias mombin L.	1,2568	0,4189
Sterculia apetala (Jacq.) H.Karst.	1,4657	0,3664
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,8073	0,0597
Trichospermum galeottii (Turcz.) Kosterm.	0,0963	0,0963
Vitex cymosa Bertero ex Spreng	0,5863	0,0733

Fuente: Elaboración equipo técnico

En cuanto a los indicadores de volumen se encuentra distribuido en 12 clases diamétricas, siendo la clase II que presenta los mayores volúmenes. Para el caso del volumen total se obtiene 275,173 m³; en la Figura 96 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de bosque fragmentado, encontrándose la clase II con un volumen de 46,5314 m³ seguido de la clase III con 35,5039 m³.

46,5314 50 45 40 35,5039 Volumen total (m3) 31,5267 35 29,3988 26,9943 30 22,9086 25 16,353\, 7,8783 17,6475 15,6864 20 14,7434 15 10 5 0 \parallel |||IV VIIIΧ XΙ XII Clase diamétrica

Figura 96. Distribución del volumen total por clase diamétrica

De igual manera, el volumen total por especie se calcula un promedio de 10,1916 m³ y un volumen promedio por especie por individuo de 1,92 m³; en la Tabla 172 se evidencia el volumen de cada una de las especies por hectárea y en la Tabla 173 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 172. Indicadores por especie de volumen total

Especie	VT/sp /ha	VT ind/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,2573	0,0858
Albizia guachapele (Kunth) Dugand	0,7382	0,3691
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	10,5217	0,5845
Albizia saman (Jacq.) Merr.	38,3556	4,2617
Aralia excelsa (Griseb.) J.Wen	4,1149	0,5878
Bursera simaruba (L.) Sarg.	0,9789	0,9789
Calliandra haematocephala Hassk.	7,2033	1,8008
Cecropia peltata L.	8,2801	0,4140
Ceiba pentandra (L.) Gaertn.	25,6254	12,8127
Cordia alliodora (Ruiz & Pav.) Oken	22,2249	0,4116
Crescentia cujete L.	0,0545	0,0545
Cynophalla verrucosa (Jacq.) J.Presl	3,0261	0,7565
Ficus citrifolia Mill.	15,0140	3,0028
Gliricidia sepium (Jacq.) Walp.	6,4635	0,8079
Guazuma ulmifolia Lam.	0,5650	0,2825
Handroanthus chrysanthus (Jacq.) S.O.Grose	17,9797	0,4086

Especie	VT/sp /ha	VT ind/sp/ha
Handroanthus guayacan (Seem.) S.O.Grose	1,0730	1,0730
Maclura tinctoria (L.) D.Don ex Steud.	1,3512	0,6756
Macrosamanea sp.	9,3762	1,0418
Pseudobombax septenatum (Jacq.) Dugand	5,9183	1,9728
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	5,2626	0,6578
Sapium glandulosum (L.) Morong	5,4710	5,4710
Spondias mombin L.	18,1449	6,0483
Sterculia apetala (Jacq.) H.Karst.	20,3667	5,0917
Tabebuia rosea (Bertol.) Bertero ex A.DC.	40,2838	0,8571
Trichospermum galeottii (Turcz.) Kosterm.	0,7703	0,7703
Vitex cymosa Bertero ex Spreng	5,7523	0,7190

Tabla 173. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /ha /Ct diam.
I	22,9086
Abarema jupunba (Willd.) Britton & Killip	0,2573
Albizia guachapele (Kunth) Dugand	0,1078
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,9801
Albizia saman (Jacq.) Merr.	0,1393
Aralia excelsa (Griseb.) J.Wen	0,1788
Calliandra haematocephala Hassk.	0,0407
Cecropia peltata L.	3,3146
Cordia alliodora (Ruiz & Pav.) Oken	6,0775
Crescentia cujete L.	0,0545
Cynophalla verrucosa (Jacq.) J.Presl	0,3151
Ficus citrifolia Mill.	0,0968
Gliricidia sepium (Jacq.) Walp.	0,4502
Handroanthus chrysanthus (Jacq.) S.O.Grose	3,5728
Maclura tinctoria (L.) D.Don ex Steud.	0,0883
Macrosamanea sp.	0,2844
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,8565
Tabebuia rosea (Bertol.) Bertero ex A.DC.	4,0747
Vitex cymosa Bertero ex Spreng	1,0191
II	46,5314
Albizia guachapele (Kunth) Dugand	0,6303
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,5411
Albizia saman (Jacq.) Merr.	0,7946
Aralia excelsa (Griseb.) J.Wen	2,7897

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Calliandra haematocephala Hassk.	0,3873
Cecropia peltata L.	3,7675
Cordia alliodora (Ruiz & Pav.) Oken	12,0582
Cynophalla verrucosa (Jacq.) J.Presl	1,1067
Ficus citrifolia Mill.	1,0581
Guazuma ulmifolia Lam.	0,5650
Handroanthus chrysanthus (Jacq.) S.O.Grose	8,5473
Macrosamanea sp.	2,4879
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,8548
Tabebuia rosea (Bertol.) Bertero ex A.DC.	6,8978
Vitex cymosa Bertero ex Spreng	1,0450
III	35,5039
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,2988
Albizia saman (Jacq.) Merr.	2,0801
Aralia excelsa (Griseb.) J.Wen	1,1464
Bursera simaruba (L.) Sarg.	0,9789
Cecropia peltata L.	1,1980
Cordia alliodora (Ruiz & Pav.) Oken	2,1184
Cynophalla verrucosa (Jacq.) J.Presl	1,6043
Ficus citrifolia Mill.	0,9835
Gliricidia sepium (Jacq.) Walp.	1,4037
Handroanthus chrysanthus (Jacq.) S.O.Grose	2,1448
Handroanthus guayacan (Seem.) S.O.Grose	1,0730
Maclura tinctoria (L.) D.Don ex Steud.	1,2629
Macrosamanea sp.	0,8047
Pseudobombax septenatum (Jacq.) Dugand	2,3247
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	2,5513
Spondias mombin L.	0,9321
Sterculia apetala (Jacq.) H.Karst.	1,7766
Tabebuia rosea (Bertol.) Bertero ex A.DC.	8,3890
Trichospermum galeottii (Turcz.) Kosterm.	0,7703
Vitex cymosa Bertero ex Spreng	0,6623
IV	29,3988
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,3748
Albizia saman (Jacq.) Merr.	3,2229
Calliandra haematocephala Hassk.	0,8069
Cordia alliodora (Ruiz & Pav.) Oken	1,9707
Gliricidia sepium (Jacq.) Walp.	4,6096
Handroanthus chrysanthus (Jacq.) S.O.Grose	2,0850
Macrosamanea sp.	3,3899

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Tabebuia rosea (Bertol.) Bertero ex A.DC.	10,9391
ν	16,3539
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,3269
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,6297
Macrosamanea sp.	2,4093
Pseudobombax septenatum (Jacq.) Dugand	3,5936
Spondias mombin L.	3,0940
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,3004
VI	17,8783
Albizia saman (Jacq.) Merr.	3,6072
Sterculia apetala (Jacq.) H.Karst.	4,5622
Tabebuia rosea (Bertol.) Bertero ex A.DC.	6,6830
Vitex cymosa Bertero ex Spreng	3,0259
VII	31,5267
Albizia saman (Jacq.) Merr.	6,1508
Calliandra haematocephala Hassk.	5,9683
Ceiba pentandra (L.) Gaertn.	7,9779
Sapium glandulosum (L.) Morong	5,4710
Sterculia apetala (Jacq.) H.Karst.	5,9588
VIII	14,7434
Albizia saman (Jacq.) Merr.	6,6742
Sterculia apetala (Jacq.) H.Karst.	8,0692
X	26,9943
Ficus citrifolia Mill.	12,8755
Spondias mombin L.	14,1188
XI	15,6864
Albizia saman (Jacq.) Merr.	15,6864
XII	17,6475
Ceiba pentandra (L.) Gaertn.	17,6475

El bosque fragmentado presenta un volumen de fuste por ha de 240,63 m³, distribuido en 12 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 24,06 m³ (Figura 97**¡Error! No se encuentra el origen de la referencia.**).

39,8785 40 35 30,5436 Volumen fuste (m3) 30 26,3168 25,3474 25,3072 25 20 14,74695,5188 14,70605,1265 13,6920 15 10 5 0 || $\bigvee |||$ XII||||V| \forall VIIΧ ΧI Clase diamétrica

Figura 97. Distribución del volumen del fuste por clase diamétrica

De igual forma, el volumen de fuste por especie promedio es de 8,91 m³ y un volumen promedio por especie por individuo de 1,69 m³ de volumen de fuste por individuo por especie. En la Tabla 174 se evidencia el volumen de cada una de las especies y en la Tabla 175 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 174. Indicadores por especie de volumen de fuste

Especie	VF/sp /ha	VF ind/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,2262	0,0754
Albizia guachapele (Kunth) Dugand	0,5813	0,2906
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	9,4269	0,5237
Albizia saman (Jacq.) Merr.	30,9576	3,4397
Aralia excelsa (Griseb.) J.Wen	3,4007	0,4858
Bursera simaruba (L.) Sarg.	0,8565	0,8565
Calliandra haematocephala Hassk.	6,5067	1,6267
Cecropia peltata L.	5,5876	0,2794
Ceiba pentandra (L.) Gaertn.	22,2179	11,1090
Cordia alliodora (Ruiz & Pav.) Oken	19,6147	0,3632
Crescentia cujete L.	0,0436	0,0436
Cynophalla verrucosa (Jacq.) J.Presl	2,7668	0,6917
Ficus citrifolia Mill.	14,0053	2,8011
Gliricidia sepium (Jacq.) Walp.	5,3595	0,6699
Guazuma ulmifolia Lam.	0,3884	0,1942
Handroanthus chrysanthus (Jacq.) S.O.Grose	15,3159	0,3481
Handroanthus guayacan (Seem.) S.O.Grose	0,8941	0,8941

Especie	VF/sp /ha	VF ind/sp/ha
Maclura tinctoria (L.) D.Don ex Steud.	1,2312	0,6156
Macrosamanea sp.	8,0304	0,8923
Pseudobombax septenatum (Jacq.) Dugand	5,4255	1,8085
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	4,7972	0,5996
Sapium glandulosum (L.) Morong	4,9736	4,9736
Spondias mombin L.	16,8881	5,6294
Sterculia apetala (Jacq.) H.Karst.	17,8395	4,4599
Tabebuia rosea (Bertol.) Bertero ex A.DC.	37,4619	0,7971
Trichospermum galeottii (Turcz.) Kosterm.	0,6740	0,6740
Vitex cymosa Bertero ex Spreng	5,1661	0,6458

Tabla 175. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /ha /Ct diam.
1	19,4534
Abarema jupunba (Willd.) Britton & Killip	0,2262
Albizia guachapele (Kunth) Dugand	0,0770
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,6945
Albizia saman (Jacq.) Merr.	0,1194
Aralia excelsa (Griseb.) J.Wen	0,1341
Calliandra haematocephala Hassk.	0,0244
Cecropia peltata L.	2,2889
Cordia alliodora (Ruiz & Pav.) Oken	5,3590
Crescentia cujete L.	0,0436
Cynophalla verrucosa (Jacq.) J.Presl	0,2578
Ficus citrifolia Mill.	0,0847
Gliricidia sepium (Jacq.) Walp.	0,3805
Handroanthus chrysanthus (Jacq.) S.O.Grose	3,0254
Maclura tinctoria (L.) D.Don ex Steud.	0,0736
Macrosamanea sp.	0,2585
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,7647
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,7245
Vitex cymosa Bertero ex Spreng	0,9165
II	39,8785
Albizia guachapele (Kunth) Dugand	0,5043
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,2154
Albizia saman (Jacq.) Merr.	0,6953
Aralia excelsa (Griseb.) J.Wen	2,2730
Calliandra haematocephala Hassk.	0,3389
Cecropia peltata L.	2,4002

Clase diamétrica / Especie	VFsp /ha /Ct diam.
Cordia alliodora (Ruiz & Pav.) Oken	10,6406
Cynophalla verrucosa (Jacq.) J.Presl	1,0193
Ficus citrifolia Mill.	0,9557
Guazuma ulmifolia Lam.	0,3884
Handroanthus chrysanthus (Jacq.) S.O.Grose	7,3423
Macrosamanea sp.	2,1304
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,6634
Tabebuia rosea (Bertol.) Bertero ex A.DC.	6,3646
Vitex cymosa Bertero ex Spreng	0,9467
III	30,5436
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,2177
Albizia saman (Jacq.) Merr.	1,2236
Aralia excelsa (Griseb.) J.Wen	0,9935
Bursera simaruba (L.) Sarg.	0,8565
Cecropia peltata L.	0,8985
Cordia alliodora (Ruiz & Pav.) Oken	1,9259
Cynophalla verrucosa (Jacq.) J.Presl	1,4897
Ficus citrifolia Mill.	0,8941
Gliricidia sepium (Jacq.) Walp.	1,2283
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,9216
Handroanthus guayacan (Seem.) S.O.Grose	0,8941
Maclura tinctoria (L.) D.Don ex Steud.	1,1577
Macrosamanea sp.	0,7153
Pseudobombax septenatum (Jacq.) Dugand	2,0565
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	2,3690
Spondias mombin L.	0,8156
Sterculia apetala (Jacq.) H.Karst.	0,9475
Tabebuia rosea (Bertol.) Bertero ex A.DC.	7,6850
Trichospermum galeottii (Turcz.) Kosterm.	0,6740
Vitex cymosa Bertero ex Spreng	0,5795
IV	25,3474
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,2052
Albizia saman (Jacq.) Merr.	2,1486
Calliandra haematocephala Hassk.	0,6724
Cordia alliodora (Ruiz & Pav.) Oken	1,6892
Gliricidia sepium (Jacq.) Walp.	3,7507
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,6006
Macrosamanea sp.	2,9987
Tabebuia rosea (Bertol.) Bertero ex A.DC.	10,2820
V	14,7469

Clase diamétrica / Especie	VFsp /ha /Ct diam.
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,0942
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,4260
Macrosamanea sp.	1,9274
Pseudobombax septenatum (Jacq.) Dugand	3,3690
Spondias mombin L.	2,8361
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,0941
VI	15,5188
Albizia saman (Jacq.) Merr.	2,6234
Sterculia apetala (Jacq.) H.Karst.	3,8603
Tabebuia rosea (Bertol.) Bertero ex A.DC.	6,3117
Vitex cymosa Bertero ex Spreng	2,7233
VII	26,3168
Albizia saman (Jacq.) Merr.	3,2804
Calliandra haematocephala Hassk.	5,4710
Ceiba pentandra (L.) Gaertn.	7,0914
Sapium glandulosum (L.) Morong	4,9736
Sterculia apetala (Jacq.) H.Karst.	5,5004
VIII	13,6920
Albizia saman (Jacq.) Merr.	6,1608
Sterculia apetala (Jacq.) H.Karst.	7,5312
Х	25,3072
Ficus citrifolia Mill.	12,0708
Spondias mombin L.	13,2364
ΧI	14,7060
Albizia saman (Jacq.) Merr.	14,7060
XII	15,1265
Ceiba pentandra (L.) Gaertn.	15,1265

En el caso del volumen comercial se obtiene un volumen de 103,89 m³ por hectárea distribuido en las 12 clases diamétricas, con un volumen promedio por clase diamétrica de 10,38 m³. En la Figura 98 se presenta la distribución del volumen comercial por clase diamétrica.

19,9929 20 18 Volumen comercial (m3) 16 13,3189 14 11,7669 10,7776 12 10,2783 9,8726 10 7,4085 6,4625 8 5,2532 5,0422 6 3,7255 4 2 0 \parallel |||IV VIIIΧ ΧI XII Clase diamétrica

Figura 98. Distribución del volumen comercial por clase diamétrica

De igual manera, el volumen comercial por especie un promedio de 3,84 m³ y un volumen promedio por especie por individuo de 0,66 m³; En la Tabla 176 se evidencia el volumen de cada una de las especies y en la Tabla 177 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 176. Indicadores por especie de volumen comercial

Especie	VC/sp/ha	VC ind/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,1055	0,0352
Albizia guachapele (Kunth) Dugand	0,2691	0,1345
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	3,2512	0,1806
Albizia saman (Jacq.) Merr.	10,8400	1,2044
Aralia excelsa (Griseb.) J.Wen	1,8684	0,2669
Bursera simaruba (L.) Sarg.	0,4650	0,4650
Calliandra haematocephala Hassk.	1,4764	0,3691
Cecropia peltata L.	5,5876	0,2794
Ceiba pentandra (L.) Gaertn.	8,5879	4,2939
Cordia alliodora (Ruiz & Pav.) Oken	11,7407	0,2174
Crescentia cujete L.	0,0261	0,0261
Cynophalla verrucosa (Jacq.) J.Presl	0,8756	0,2189
Ficus citrifolia Mill.	3,7850	0,7570
Gliricidia sepium (Jacq.) Walp.	3,0928	0,3866
Guazuma ulmifolia Lam.	0,4473	0,2237

Especie	VC/sp/ha	VC ind/sp/ha
Handroanthus chrysanthus (Jacq.) S.O.Grose	6,6308	0,1507
Handroanthus guayacan (Seem.) S.O.Grose	0,5365	0,5365
Maclura tinctoria (L.) D.Don ex Steud.	0,3525	0,1763
Macrosamanea sp.	2,0558	0,2284
Pseudobombax septenatum (Jacq.) Dugand	2,5121	0,8374
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	3,8586	0,4823
Sapium glandulosum (L.) Morong	0,9947	0,9947
Spondias mombin L.	8,0659	2,6886
Sterculia apetala (Jacq.) H.Karst.	8,3200	2,0800
Tabebuia rosea (Bertol.) Bertero ex A.DC.	16,4457	0,3499
Trichospermum galeottii (Turcz.) Kosterm.	0,2407	0,2407
Vitex cymosa Bertero ex Spreng	1,4671	0,1834

Tabla 177. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VC sp /ha /Ct diam.
I	11,7669
Abarema jupunba (Willd.) Britton & Killip	0,1055
Albizia guachapele (Kunth) Dugand	0,0169
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,7395
Albizia saman (Jacq.) Merr.	0,0895
Aralia excelsa (Griseb.) J.Wen	0,0380
Calliandra haematocephala Hassk.	0,0114
Cecropia peltata L.	2,2889
Cordia alliodora (Ruiz & Pav.) Oken	3,7941
Crescentia cujete L.	0,0261
Cynophalla verrucosa (Jacq.) J.Presl	0,1432
Ficus citrifolia Mill.	0,0242
Gliricidia sepium (Jacq.) Walp.	0,1393
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,3062
Maclura tinctoria (L.) D.Don ex Steud.	0,0368
Macrosamanea sp.	0,0517
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,7341
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,9545
Vitex cymosa Bertero ex Spreng	0,2668
II	19,9929
Albizia guachapele (Kunth) Dugand	0,2521
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,7737

Clase diamétrica / Especie	VC sp /ha /Ct diam.
Albizia saman (Jacq.) Merr.	0,2881
Aralia excelsa (Griseb.) J.Wen	1,2190
Calliandra haematocephala Hassk.	0,0871
Cecropia peltata L.	2,4002
Cordia alliodora (Ruiz & Pav.) Oken	6,3012
Cynophalla verrucosa (Jacq.) J.Presl	0,3886
Ficus citrifolia Mill.	0,2737
Guazuma ulmifolia Lam.	0,4473
Handroanthus chrysanthus (Jacq.) S.O.Grose	2,7398
Macrosamanea sp.	0,6811
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,3022
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,5440
Vitex cymosa Bertero ex Spreng	0,2948
III	13,3189
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,3247
Albizia saman (Jacq.) Merr.	0,2447
Aralia excelsa (Griseb.) J.Wen	0,6114
Bursera simaruba (L.) Sarg.	0,4650
Cecropia peltata L.	0,8985
Cordia alliodora (Ruiz & Pav.) Oken	1,0823
Cynophalla verrucosa (Jacq.) J.Presl	0,3438
Ficus citrifolia Mill.	0,2682
Gliricidia sepium (Jacq.) Walp.	0,3509
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,7017
Handroanthus guayacan (Seem.) S.O.Grose	0,5365
Maclura tinctoria (L.) D.Don ex Steud.	0,3157
Macrosamanea sp.	0,2414
Pseudobombax septenatum (Jacq.) Dugand	0,7153
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,8223
Spondias mombin L.	0,2330
Sterculia apetala (Jacq.) H.Karst.	0,5922
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,1815
Trichospermum galeottii (Turcz.) Kosterm.	0,2407
Vitex cymosa Bertero ex Spreng	0,1490
IV	10,7776
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,0178
Albizia saman (Jacq.) Merr.	0,3581
Calliandra haematocephala Hassk.	0,1345

Clase diamétrica / Especie	VC sp /ha /Ct diam.
Cordia alliodora (Ruiz & Pav.) Oken	0,5631
Gliricidia sepium (Jacq.) Walp.	2,6026
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,1089
Macrosamanea sp.	0,5997
Tabebuia rosea (Bertol.) Bertero ex A.DC.	4,3929
V	5,2532
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,3956
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,7741
Macrosamanea sp.	0,4819
Pseudobombax septenatum (Jacq.) Dugand	1,7968
Spondias mombin L.	0,7735
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,0314
VI	6,4625
Albizia saman (Jacq.) Merr.	1,3117
Sterculia apetala (Jacq.) H.Karst.	1,0528
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,3415
Vitex cymosa Bertero ex Spreng	0,7565
VII	9,8726
Albizia saman (Jacq.) Merr.	2,2553
Calliandra haematocephala Hassk.	1,2434
Ceiba pentandra (L.) Gaertn.	3,5457
Sapium glandulosum (L.) Morong	0,9947
Sterculia apetala (Jacq.) H.Karst.	1,8335
VIII	7,4085
Albizia saman (Jacq.) Merr.	2,5670
Sterculia apetala (Jacq.) H.Karst.	4,8415
х	10,2783
Ficus citrifolia Mill.	3,2189
Spondias mombin L.	7,0594
XI	3,7255
Albizia saman (Jacq.) Merr.	3,7255
XII	5,0422
Ceiba pentandra (L.) Gaertn.	5,0422

El volumen cosechable calculado para el bosque fragmentado es de 74,62 m³ con un promedio por especie de 2,76 m³. En la Tabla 178 se evidencia el volumen de cada una de las especies y en la Tabla 179 se observa la distribución del volumen por especie y clase diamétrica.

 Tabla 178.
 Indicadores por especie de volumen cosechable

Especie	VCs/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,0758
Albizia guachapele (Kunth) Dugand	0,1933
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,3351
Albizia saman (Jacq.) Merr.	7,7856
Aralia excelsa (Griseb.) J.Wen	1,3420
Bursera simaruba (L.) Sarg.	0,3340
Calliandra haematocephala Hassk.	1,0604
Cecropia peltata L.	4,0132
Ceiba pentandra (L.) Gaertn.	6,1681
Cordia alliodora (Ruiz & Pav.) Oken	8,4326
Crescentia cujete L.	0,0188
Cynophalla verrucosa (Jacq.) J.Presl	0,6289
Ficus citrifolia Mill.	2,7186
Gliricidia sepium (Jacq.) Walp.	2,2214
Guazuma ulmifolia Lam.	0,3213
Handroanthus chrysanthus (Jacq.) S.O.Grose	4,7625
Handroanthus guayacan (Seem.) S.O.Grose	0,3853
Maclura tinctoria (L.) D.Don ex Steud.	0,2532
Macrosamanea sp.	1,4765
Pseudobombax septenatum (Jacq.) Dugand	1,8043
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	2,7714
Sapium glandulosum (L.) Morong	0,7144
Spondias mombin L.	5,7932
Sterculia apetala (Jacq.) H.Karst.	5,9757
Tabebuia rosea (Bertol.) Bertero ex A.DC.	11,8118
Trichospermum galeottii (Turcz.) Kosterm.	0,1729
Vitex cymosa Bertero ex Spreng	1,0537

Tabla 179. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie	VCs sp /ha /Ct diam.
I	8,4514
Abarema jupunba (Willd.) Britton & Killip	0,0758
Albizia guachapele (Kunth) Dugand	0,0122
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,5311
Albizia saman (Jacq.) Merr.	0,0643

Clase diamétrica / Especie	VCs sp /ha /Ct diam.
Aralia excelsa (Griseb.) J.Wen	0,0273
Calliandra haematocephala Hassk.	0,0082
Cecropia peltata L.	1,6439
Cordia alliodora (Ruiz & Pav.) Oken	2,7251
Crescentia cujete L.	0,0188
Cynophalla verrucosa (Jacq.) J.Presl	0,1029
Ficus citrifolia Mill.	0,0174
Gliricidia sepium (Jacq.) Walp.	0,1001
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,9382
Maclura tinctoria (L.) D.Don ex Steud.	0,0264
Macrosamanea sp.	0,0371
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,5273
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,4038
Vitex cymosa Bertero ex Spreng	0,1916
ll l	14,3596
Albizia guachapele (Kunth) Dugand	0,1811
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,5557
Albizia saman (Jacq.) Merr.	0,2069
Aralia excelsa (Griseb.) J.Wen	0,8755
Calliandra haematocephala Hassk.	0,0626
Cecropia peltata L.	1,7239
Cordia alliodora (Ruiz & Pav.) Oken	4,5257
Cynophalla verrucosa (Jacq.) J.Presl	0,2791
Ficus citrifolia Mill.	0,1966
Guazuma ulmifolia Lam.	0,3213
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,9678
Macrosamanea sp.	0,4892
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,9353
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,8272
Vitex cymosa Bertero ex Spreng	0,2117
III	9,5661
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2332
Albizia saman (Jacq.) Merr.	0,1758
Aralia excelsa (Griseb.) J.Wen	0,4391
Bursera simaruba (L.) Sarg.	0,3340
Cecropia peltata L.	0,6453
Cordia alliodora (Ruiz & Pav.) Oken	0,7774
Cynophalla verrucosa (Jacq.) J.Presl	0,2469

Clase diamétrica / Especie	VCs sp /ha /Ct diam
Ficus citrifolia Mill.	0,1927
Gliricidia sepium (Jacq.) Walp.	0,2521
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,5040
Handroanthus guayacan (Seem.) S.O.Grose	0,3853
Maclura tinctoria (L.) D.Don ex Steud.	0,2268
Macrosamanea sp.	0,1734
Pseudobombax septenatum (Jacq.) Dugand	0,5138
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,3089
Spondias mombin L.	0,1674
Sterculia apetala (Jacq.) H.Karst.	0,4253
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,2850
Trichospermum galeottii (Turcz.) Kosterm.	0,1729
Vitex cymosa Bertero ex Spreng	0,1070
IV	7,7408
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,7310
Albizia saman (Jacq.) Merr.	0,2572
Calliandra haematocephala Hassk.	0,0966
Cordia alliodora (Ruiz & Pav.) Oken	0,4044
Gliricidia sepium (Jacq.) Walp.	1,8693
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,7965
Macrosamanea sp.	0,4308
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,1551
V	3,7730
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2841
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,5560
Macrosamanea sp.	0,3461
Pseudobombax septenatum (Jacq.) Dugand	1,2905
Spondias mombin L.	0,555
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,7408
VI	4,6416
Albizia saman (Jacq.) Merr.	0,9421
Sterculia apetala (Jacq.) H.Karst.	0,7562
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,4000
Vitex cymosa Bertero ex Spreng	0,5433
VII	7,0908
Albizia saman (Jacq.) Merr.	1,6198
Calliandra haematocephala Hassk.	0,8931
Ceiba pentandra (L.) Gaertn.	2,5467

Clase diamétrica / Especie	VCs sp /ha /Ct diam.
Sapium glandulosum (L.) Morong	0,7144
Sterculia apetala (Jacq.) H.Karst.	1,3169
VIII	5,3210
Albizia saman (Jacq.) Merr.	1,8437
Sterculia apetala (Jacq.) H.Karst.	3,4773
Х	7,3822
Ficus citrifolia Mill.	2,3119
Spondias mombin L.	5,0703
XI	2,6758
Albizia saman (Jacq.) Merr.	2,6758
XII	3,6214
Ceiba pentandra (L.) Gaertn.	3,6214

5.5.2.8.2. Indicadores estructurales del bosque fragmentado

5.5.2.8.2.1. Estructura horizontal

En la Tabla 180 se observa los datos obtenidos del análisis de la estructura horizontal del bosque fragmentado.

Tabla 180. Estructura horizontal para el bosque fragmentado

	N° de	Abundo	ancia	Domina	ncia	Frecue	ncia	
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Cordia alliodora (Ruiz & Pav.) Oken	54	0,199	19,926	0,086	8,644	0,900	10,465	39,036
Tabebuia rosea (Bertol.) Bertero ex A.DC.	47	0,173	17,343	0,129	12,900	0,600	6,977	37,220
Handroanthus chrysanthus (Jacq.) S.O.Grose	44	0,162	16,236	0,091	9,116	0,800	9,302	34,655
Albizia saman (Jacq.) Merr.	9	0,033	3,321	0,122	12,189	0,400	4,651	20,161
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	18	0,066	6,642	0,041	4,094	0,600	6,977	17,713
Cecropia peltata L.	20	0,074	7,380	0,026	2,585	0,400	4,651	14,616
Macrosamanea sp.	9	0,033	3,321	0,038	3,783	0,500	5,814	12,918
Sterculia apetala (Jacq.) H.Karst.	4	0,015	1,476	0,067	6,735	0,300	3,488	11,700
Ceiba pentandra (L.) Gaertn.	2	0,007	0,738	0,078	7,829	0,200	2,326	10,893
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	8	0,030	2,952	0,018	1,839	0,500	5,814	10,605
Gliricidia sepium (Jacq.) Walp.	8	0,030	2,952	0,041	4,116	0,300	3,488	10,557
Vitex cymosa Bertero ex Spreng	8	0,030	2,952	0,027	2,694	0,400	4,651	10,297
Ficus citrifolia Mill.	5	0,018	1,845	0,046	4,635	0,300	3,488	9,969
Spondias mombin L.	3	0,011	1,107	0,058	5,775	0,200	2,326	9,208
Calliandra haematocephala Hassk.	4	0,015	1,476	0,032	3,163	0,200	2,326	6,965

	N° de	Abundo	ancia	Domina	ncia	Frecue	ncia	
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Aralia excelsa (Griseb.) J.Wen	7	0,026	2,583	0,016	1,641	0,200	2,326	6,550
Pseudobombax septenatum (Jacq.) Dugand	3	0,011	1,107	0,019	1,854	0,300	3,488	6,449
Cynophalla verrucosa (Jacq.) J.Presl	4	0,015	1,476	0,011	1,060	0,300	3,488	6,024
Sapium glandulosum (L.) Morong	1	0,004	0,369	0,023	2,285	0,100	1,163	3,817
Maclura tinctoria (L.) D.Don ex Steud.	2	0,007	0,738	0,006	0,551	0,200	2,326	3,615
Guazuma ulmifolia Lam.	2	0,007	0,738	0,005	0,541	0,200	2,326	3,605
Abarema jupunba (Willd.) Britton & Killip	3	0,011	1,107	0,001	0,143	0,200	2,326	3,576
Albizia guachapele (Kunth) Dugand	2	0,007	0,738	0,004	0,360	0,100	1,163	2,261
Bursera simaruba (L.) Sarg.	1	0,004	0,369	0,006	0,562	0,100	1,163	2,094
Trichospermum galeottii (Turcz.) Kosterm.	1	0,004	0,369	0,004	0,442	0,100	1,163	1,974
Handroanthus guayacan (Seem.) S.O.Grose	1	0,004	0,369	0,004	0,411	0,100	1,163	1,943
Crescentia cujete L.	1	0,004	0,369	0,001	0,050	0,100	1,163	1,582
TOTALES		1	100	1	100	8,6	100	300

Abundancia

La abundancia absoluta y relativa presente en la cobertura de bosque fragmentado muestra que la especie más abundante es Cordia alliodora (Ruiz & Pav.) Oken con 54 individuos en una hectárea y de abundancia relativa 19,9 %. Igualmente, la especie Tabebuia rosea (Bertol.) Bertero ex A.DC presenta la segunda mayor abundancia con 47 individuos por hectárea y una abundancia realtiva de 17,3 % (Figura 99).

Especie

Especie

Figura 99. Distribución de la abundancia relativa para el bosque fragmentado

<u>Frecuencia</u>

La especie Cordia alliodora (Ruiz & Pav.) Oken es la mas frecuente con una presencia en 9 parcelas de las 10 realizadas, seguida de Handroanthus chrysanthus (Jacq.) S.O. Grose con una presencia en 8 parcelas de las 10 realizadas con una frecuencia realtiva de 9,30 % (Figura 100).

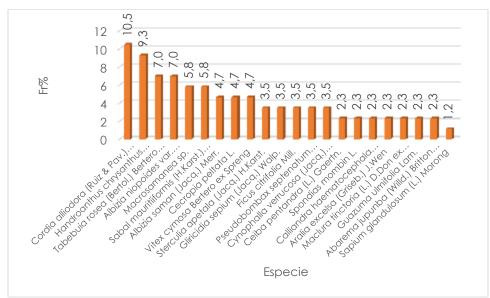
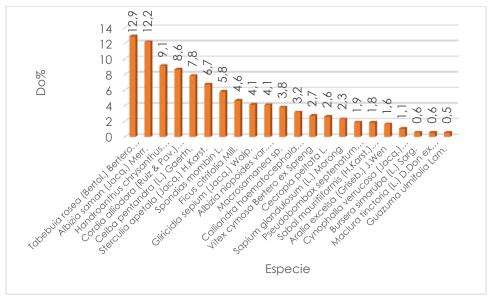


Figura 100. Distribución de frecuencia relativa para el bosque fragmentado

Fuente: Elaboración equipo técnico


Dominancia

La especie de mayor dominancia es Tabebuia rosea (Bertol.) Bertero ex A.DC. con 12,90 % y área basal de 2,8073 m², seguida de la especie Albizia saman (Jacq.) Merr. con 12,2 % y un área basal de 2,6524 m² (Figura 101; Error! No se encuentra el origen de la referencia.).

Figura 101. Distribución de la dominancia relativa para el bosque fragmentado

Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es *Cordia alliodora* (Ruiz & Pav.) Oken con un IVI de 39,0, seguida de la especie *Tabebuia rosea* (Bertol.) Bertero ex A.DC. con un peso ecológico de 37,2, evidenciando el comportamiento de J invertida de bosque natural (Figura 102).

Especie

Especie

Figura 102. Distribución del IVI para el bosque fragmentado

Coefiente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1 / \frac{27}{271}$$

$$CM = 1 / 0,099$$

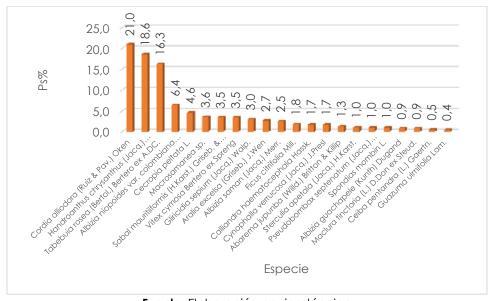
$$CM = 10,10$$

El coeficiente de mezcla obtenido implica que por cada 10,10 individuos estudiados hay una especie nueva para el bosque fragmentado.

5.5.2.8.2.2. <u>Estructura vertical</u>

Posición sociológica

La posición sociológica muestra que la especie con mayor peso es *Cordia alliodora* (Ruiz & Pav.) Oken con 21,0 % debido a la presencia de la totalidad de sus individuos en el estrato dominante, el detallado de cada una de las especies se muestra en la Tabla 181 y Figura 103.


Tabla 181. Posición sociológica de las especies del bosque fragmentado

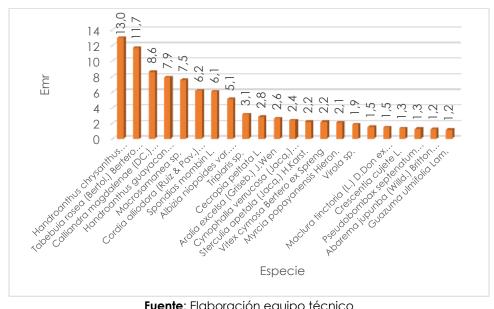
Especie	Suprimido	Codominante	Dominante	Ps	Ps%
Cordia alliodora (Ruiz & Pav.) Oken	0	47	7	10716	20,987
Handroanthus chrysanthus (Jacq.) S.O.Grose	1	43	0	9506	18,618
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0	35	12	8299	16,254
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0	14	4	3282	6,428
Cecropia peltata L.	0	8	12	2332	4,567
Macrosamanea sp.	0	8	1	1815	3,555
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0	8	0	1768	3,463
Vitex cymosa Bertero ex Spreng	0	8	0	1768	3,463
Gliricidia sepium (Jacq.) Walp.	1	7	0	1550	3,036
Aralia excelsa (Griseb.) J.Wen	0	6	1	1373	2,689
Albizia saman (Jacq.) Merr.	0	5	4	1293	2,532
Ficus citrifolia Mill.	0	4	1	931	1,823
Calliandra haematocephala Hassk.	0	4	0	884	1,731
Cynophalla verrucosa (Jacq.) J.Presl	0	4	0	884	1,731
Abarema jupunba (Willd.) Britton & Killip	0	3	0	663	1,298
Sterculia apetala (Jacq.) H.Karst.	0	2	2	536	1,050
Pseudobombax septenatum (Jacq.) Dugand	0	2	1	489	0,958
Spondias mombin L.	0	2	1	489	0,958
Albizia guachapele (Kunth) Dugand	0	2	0	442	0,866
Maclura tinctoria (L.) D.Don ex Steud.	0	2	0	442	0,866
Ceiba pentandra (L.) Gaertn.	0	1	1	268	0,525
Guazuma ulmifolia Lam.	1	1	0	224	0,439
Bursera simaruba (L.) Sarg.	0	1	0	221	0,433
Crescentia cujete L.	0	1	0	221	0,433
Handroanthus guayacan (Seem.) S.O.Grose	0	1	0	221	0,433
Sapium glandulosum (L.) Morong	0	1	0	221	0,433
Trichospermum galeottii (Turcz.) Kosterm.	0 gborgoión og	1	0	221	0,433

Figura 103. Distribución de la posición sociológica de las especies del bosque fragmentado

5.5.2.8.2.3. Analisis del sotobosque

El análisis de regeneración natural muestra que la especie que presenta mayor representación es *Handroanthus chrysanthus* (Jacq.) S.O.Grose con una categoría de tamaño de 16,189 %, seguido de *Tabebuia rosea* (Bertol.) Bertero ex A.DC. con una categoría de tamaño de 17,630 % (Figura 104) (Tabla 182).

Tabla 182. Cálculo de la estructura de sotobosque en el bosque fragmentado


Especie	AB%	FA%	CTaEM%	Emr
Handroanthus chrysanthus (Jacq.) S.O.Grose	14,573	8,108	16,189	12,957
Tabebuia rosea (Bertol.) Bertero ex A.DC.	13,317	4,054	17,630	11,667
Calliandra magdalenae (DC.) Benth.	10,804	1,351	13,601	8,586
Handroanthus guayacan (Seem.) S.O.Grose	9,045	5,405	9,180	7,877
Macrosamanea sp.	8,543	5,405	8,572	7,507
Cordia alliodora (Ruiz & Pav.) Oken	6,784	5,405	6,374	6,188
Spondias mombin L.	5,779	8,108	4,276	6,054
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	4,774	6,757	3,682	5,071
Triplaris sp.	2,513	5,405	1,491	3,136
Cecropia peltata L.	3,015	4,054	1,323	2,797
Aralia excelsa (Griseb.) J.Wen	2,513	2,703	2,607	2,607
Cynophalla verrucosa (Jacq.) J.Presl	2,010	2,703	2,347	2,353
Sterculia apetala (Jacq.) H.Karst.	1,256	4,054	1,245	2,185
Vitex cymosa Bertero ex Spreng	1,508	4,054	0,971	2,178

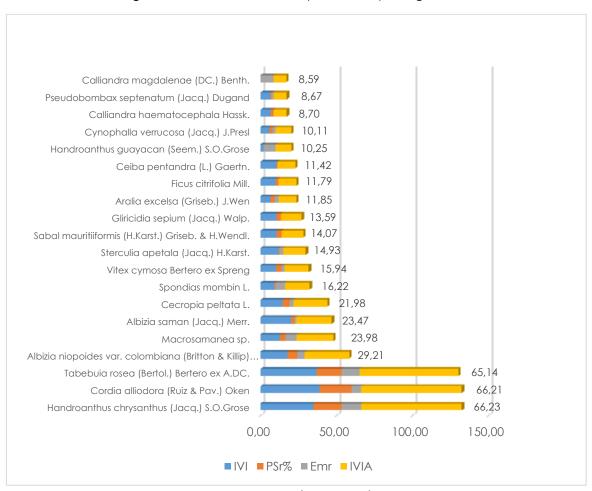
Especie	AB%	FA%	СТаЕМ%	Emr
Myrcia popayanensis Hieron.	2,513	1,351	2,376	2,080
Virola sp.	1,005	4,054	0,520	1,860
Cochlospermum vitifolium (Willd.) Spreng.	0,754	2,703	1,024	1,494
Maclura tinctoria (L.) D.Don ex Steud.	1,005	2,703	0,711	1,473
Crescentia cujete L.	1,759	1,351	0,929	1,346
Pseudobombax septenatum (Jacq.) Dugand	0,754	2,703	0,331	1,262
Abarema jupunba (Willd.) Britton & Killip	0,503	2,703	0,491	1,232
Guazuma ulmifolia Lam.	0,503	2,703	0,260	1,155
Ochoterenaea colombiana F.A.Barkley	1,005	1,351	0,943	1,100
Eschweilera caudiculata R.Knuth	1,005	1,351	0,441	0,932
Cordia collococca L.	0,503	1,351	0,683	0,846
Inga sp.	0,754	1,351	0,331	0,812
Albizia saman (Jacq.) Merr.	0,503	1,351	0,491	0,782
Anacardium excelsum (Bertero ex Kunth) Skeels	0,251	1,351	0,341	0,648
Melicoccus bijugatus Jacq.	0,251	1,351	0,341	0,648
Protium apiculatum Swart	0,251	1,351	0,150	0,584
Trophis caucana (Pittier) C.C. Berg	0,251	1,351	0,150	0,584
TOTALES	100	100	100	100

Figura 104. Distribución del sotobosque del bosque fragmentado

Indice de valor de importancia ampliado (IVIA)

La especie con el mayor valor de importancia en el bosque es *Handroanthus chrysanthus* (Jacq.) S.O. Grose, la cual obtuvo un valor de 66,23 de IVIA con la mayor significancia asociado al IVI y PS. La especie *Cordia alliodora* (Ruiz & Pav.) Oken presenta un valor de 66,21, también asociado al peso de IVI y Ps (Tabla 183) (Figura 105).

Tabla 183. Índice de valor de importancia ampliado para el bosque fragmentado


Especie	IVI	PSr%	Emr	IVIA
Handroanthus chrysanthus (Jacq.) S.O.Grose	34,65	18,62	12,96	66,23
Cordia alliodora (Ruiz & Pav.) Oken	39,04	20,99	6,19	66,21
Tabebuia rosea (Bertol.) Bertero ex A.DC.	37,22	16,25	11,67	65,14
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	17,71	6,43	5,07	29,21
Macrosamanea sp.	12,92	3,55	7,51	23,98
Albizia saman (Jacq.) Merr.	20,16	2,53	0,78	23,47
Cecropia peltata L.	14,62	4,57	2,80	21,98
Spondias mombin L.	9,21	0,96	6,05	16,22
Vitex cymosa Bertero ex Spreng	10,30	3,46	2,18	15,94
Sterculia apetala (Jacq.) H.Karst.	11,70	1,05	2,18	14,93
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	10,60	3,46	0,00	14,07
Gliricidia sepium (Jacq.) Walp.	10,56	3,04	0,00	13,59
Aralia excelsa (Griseb.) J.Wen	6,55	2,69	2,61	11,85
Ficus citrifolia Mill.	9,97	1,82	0,00	11,79
Ceiba pentandra (L.) Gaertn.	10,89	0,52	0,00	11,42
Handroanthus guayacan (Seem.) S.O.Grose	1,94	0,43	7,88	10,25
Cynophalla verrucosa (Jacq.) J.Presl	6,02	1,73	2,35	10,11
Calliandra haematocephala Hassk.	6,97	1,73	0,00	8,70
Pseudobombax septenatum (Jacq.) Dugand	6,45	0,96	1,26	8,67
Calliandra magdalenae (DC.) Benth.	0,00	0,00	8,59	8,59
Abarema jupunba (Willd.) Britton & Killip	3,58	1,30	1,23	6,11
Maclura tinctoria (L.) D.Don ex Steud.	3,61	0,87	1,47	5,95
Guazuma ulmifolia Lam.	3,60	0,44	1,16	5,20
Sapium glandulosum (L.) Morong	3,82	0,43	0,00	4,25
Crescentia cujete L.	1,58	0,43	1,35	3,36
Triplaris sp.	0,00	0,00	3,14	3,14
Albizia guachapele (Kunth) Dugand	2,26	0,87	0,00	3,13
Bursera simaruba (L.) Sarg.	2,09	0,43	0,00	2,53
Trichospermum galeottii (Turcz.) Kosterm.	1,97	0,43	0,00	2,41
Myrcia popayanensis Hieron.	0,00	0,00	2,08	2,08
Virola sp.	0,00	0,00	1,86	1,86

Especie	IVI	PSr%	Emr	IVIA
Cochlospermum vitifolium (Willd.) Spreng.	0,00	0,00	1,49	1,49
Ochoterenaea colombiana F.A.Barkley	0,00	0,00	1,10	1,10
Eschweilera caudiculata R.Knuth	0,00	0,00	0,93	0,93
Cordia collococca L.	0,00	0,00	0,85	0,85
Inga sp.	0,00	0,00	0,81	0,81
Melicoccus bijugatus Jacq.	0,00	0,00	0,65	0,65
Anacardium excelsum (Bertero ex Kunth) Skeels	0,00	0,00	0,65	0,65
Trophis caucana (Pittier) C.C. Berg	0,00	0,00	0,58	0,58
Protium apiculatum Swart	0,00	0,00	0,58	0,58

Figura 105. Distribución del IVIA para el bosque fragmentado

5.5.2.8.2.4. Indicadores de diversidad alfa del bosque fragmentado

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 184.

Tabla 184. Índices de biodiversidad alfa del bosque fragmentado

Parámetro	Valor
Dmn	1,640
Dsi	1/0,1131= 8,83
d	1-0,199= 0,80
H′	2,58
dmg	4,64

Fuente: Elaboración equipo técnico

El índice de Menhinick muestra una tendencia baja a la diversidad, siendo poco heterogéneo en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra tendencia a la baja diversidad del bosque, por lo tanto la probabilidad de sacar individuos iguales es muy alta.

Para la cobertura de bosque fragmentado, el índice de Shannon establece que es poco diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es medio biodiverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad media.

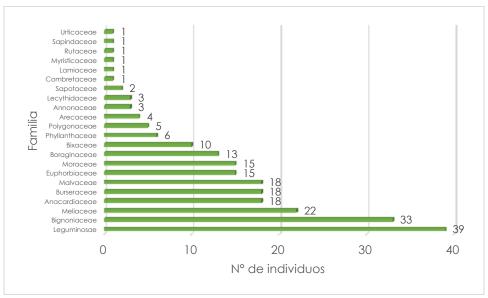
5.5.2.9. Cobertura de Bosque Fragmentado con Pastos y Cultivos

El bosque fragmentado con pastos y cultivos esta constituido por un total de 48 especies distribuidas en 22 familias registradas en el inventario forestal.

En la Tabla 185, se identifica la familia Leguminosae y Bignoniaceae las que presentan la mayor representación. A su vez se identifica que la familia Burseraceae se encuentra representada en 1 generos y 1 especies, resaltando la especie Bursera simaruba (L.) Sarg con 18 individuos (Figura 106).

Tabla 185. Composición florística del bosque fragmentado con pastos y cultivos

Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
Anacardiaceae	18	Ochoterenaea colombiana F.A.Barkley	6
Anacaraiaceae	10	Spondias mombin L.	12
Annonaceae 3		Annona cherimola Mill.	1
		Annona purpurea Moc. & Sessé ex Dunal	2
Arecaceae 4		Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	4
Bignoniaceae	33	Crescentia cujete L.	2


Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
		Handroanthus chrysanthus (Jacq.) S.O.Grose	1
		Handroanthus guayacan (Seem.) S.O.Grose	3
		Tabebuia rosea (Bertol.) Bertero ex A.DC.	27
Bixaceae	10	Cochlospermum sp.	10
		Cordia alba (Jacq.) Roem. & Schult.	1
Boraginaceae	13	Cordia alliodora (Ruiz & Pav.) Oken	1
		Cordia collococca L.	11
Burseraceae	18	Bursera simaruba (L.) Sarg.	18
Combretaceae	1	Conocarpus erectus L.	1
Cura la arla i ara a ara	1.5	Hura crepitans L.	1
Euphorbiaceae	15	Sapium glandulosum (L.) Morong	14
Lamiaceae	1	Vitex cymosa Bertero ex Spreng	1
	2	Eschweilera caudiculata R.Knuth	2
Lecythidaceae	3	Gustavia superba (Kunth) O.Berg	1
		Abarema jupunba (Willd.) Britton & Killip	3
		Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1
		Albizia saman (Jacq.) Merr.	9
		Caesalpinia coriaria (Jacq.) Willd.	6
		Cassia fistula L.	8
Leguminosae	39	Enterolobium cyclocarpum (Jacq.) Griseb.	1
		Gliricidia sepium (Jacq.) Walp.	7
		Inga sp.	1
		Piptadenia sp.	1
		Platymiscium pinnatum (Jacq.) Dugand	1
		Senna spectabilis (DC.) H.S.Irwin & Barneby	1
		Ceiba pentandra (L.) Gaertn.	6
Malvaceae	18	Guazuma ulmifolia Lam.	9
Malvaceae	10	Pachira quinata (Jacq.) W.S.Alverson	1
		Sterculia apetala (Jacq.) H.Karst.	2
		Cedrela angustifolia DC.	4
Moligoogo	22	Cedrela odorata L.	9
Meliaceae	22	Swietenia macrophylla King	5
		Trichilia hirta L.	4
Morgana	1.5	Ficus dugandii Standl.	1
Moraceae	15	Maclura tinctoria (L.) D.Don ex Steud.	14
Myristicaceae	1	Virola sp.	1
Phyllanthaceae	6	Hieronyma alchorneoides Allemão	6
Polygonaceae	5	Coccoloba pubescens L.	5
Rutaceae	1	Swinglea glutinosa (Blanco) Merr.	1

Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
Sapindaceae	1	Melicoccus bijugatus Jacq.	1
Sapotaceae	2	Chrysophyllum cainito L.	2
Urticaceae	1	Cecropia peltata L.	1

Figura 106. Distribución florística de las familias identificadas en el bosque fragmentado con pastos y cultivos

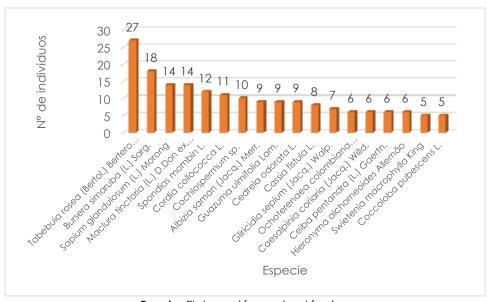
Fuente: Elaboración equipo técnico

5.5.2.9.1. Indicadores dasométricos del bosque fragmentado con pastos y cultivos

El bosque fragmentado con pastos y cultivos presenta un total de 230 individuos / ha en 48 especies; siendo la de mayor número la especie *Tabebuia rosea* (Bertol.) Bertero ex A.DC. con 27 individuos, seguido de la especie *Bursera simaruba* (L.) Sarg con 18 individuos por Ha. En la Tabla 186, se presenta el N° de individuos de cada una de las especies por Ha (Figura 107).

Tabla 186. N° de individuos/especie/Ha del bosque fragmentado con pastos y cultivos

Especie	N° de Ind / sp/ha
Tabebuia rosea (Bertol.) Bertero ex A.DC.	27
Bursera simaruba (L.) Sarg.	18
Sapium glandulosum (L.) Morong	14
Maclura tinctoria (L.) D.Don ex Steud.	14
Spondias mombin L.	12
Cordia collococca L.	11
Cochlospermum sp.	10


Especie	N° de Ind / sp/ha
Albizia saman (Jacq.) Merr.	9
Guazuma ulmifolia Lam.	9
Cedrela odorata L.	9
Cassia fistula L.	8
Gliricidia sepium (Jacq.) Walp.	7
Ochoterenaea colombiana F.A.Barkley	6
Caesalpinia coriaria (Jacq.) Willd.	6
Ceiba pentandra (L.) Gaertn.	6
Hieronyma alchorneoides Allemão	6
Swietenia macrophylla King	5
Coccoloba pubescens L.	5
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	4
Cedrela angustifolia DC.	4
Trichilia hirta L.	4
Handroanthus guayacan (Seem.) S.O.Grose	3
Abarema jupunba (Willd.) Britton & Killip	3
Annona purpurea Moc. & Sessé ex Dunal	2
Crescentia cujete L.	2
Eschweilera caudiculata R.Knuth	2
Sterculia apetala (Jacq.) H.Karst.	2
Chrysophyllum cainito L.	2
Annona cherimola Mill.	1
Handroanthus chrysanthus (Jacq.) S.O.Grose	1
Cordia alba (Jacq.) Roem. & Schult.	1
Cordia alliodora (Ruiz & Pav.) Oken	1
Conocarpus erectus L.	1
Hura crepitans L.	1
Vitex cymosa Bertero ex Spreng	1
Gustavia superba (Kunth) O.Berg	1
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1
Enterolobium cyclocarpum (Jacq.) Griseb.	1
Inga sp.	1
Piptadenia sp.	1
Platymiscium pinnatum (Jacq.) Dugand	1
Senna spectabilis (DC.) H.S.Irwin & Barneby	1
Pachira quinata (Jacq.) W.S.Alverson	1
Ficus dugandii Standl.	1
Virola sp.	1
Swinglea glutinosa (Blanco) Merr.	1
Melicoccus bijugatus Jacq.	1

Especie	N° de Ind / sp/ha
Cecropia peltata L.	1

Figura 107. Distribución de N° de individuos por especie

Fuente: Elaboración equipo técnico

La cobertura de bosque fragmentado con pastos y cultivos presenta un área basal por ha de 20,3159 m^2 en las 48 especies, obteniendo un área basal promedio/individuo/especie de 0,1061 m^2 y área basal promedio/especie /hectárea de 0,4232 m^2 ; en la Tabla 187 se presenta los indicadores detallados por especie.

Tabla 187. Indicadores por especie de área basal

Especie	AB/sp /ha	AB/ ind/ sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,1457	0,0437
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,0841	0,1261
Albizia saman (Jacq.) Merr.	3,7339	0,3501
Annona cherimola Mill.	0,0184	0,0138
Annona purpurea Moc. & Sessé ex Dunal	0,1160	0,0435
Bursera simaruba (L.) Sarg.	1,1571	0,0560
Caesalpinia coriaria (Jacq.) Willd.	0,4746	0,0647
Cassia fistula L.	0,7870	0,0908
Cecropia peltata L.	0,0379	0,0569
Cedrela angustifolia DC.	0,0819	0,0205
Cedrela odorata L.	0,2663	0,0266
Ceiba pentandra (L.) Gaertn.	1,6954	0,2543

Especie	AB/sp /ha	AB/ ind/ sp/ha
Chrysophyllum cainito L.	0,0595	0,0223
Coccoloba pubescens L.	0,1550	0,0258
Cochlospermum sp.	0,5974	0,0527
Conocarpus erectus L.	0,0054	0,0081
Cordia alba (Jacq.) Roem. & Schult.	0,0270	0,0406
Cordia alliodora (Ruiz & Pav.) Oken	0,0075	0,0112
Cordia collococca L.	0,9016	0,0751
Crescentia cujete L.	0,0530	0,0265
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0131	0,0197
Eschweilera caudiculata R.Knuth	0,2364	0,0886
Ficus dugandii Standl.	0,1214	0,0910
Gliricidia sepium (Jacq.) Walp.	0,1277	0,0147
Guazuma ulmifolia Lam.	0,3328	0,0312
Gustavia superba (Kunth) O.Berg	0,0388	0,0581
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0181	0,0136
Handroanthus guayacan (Seem.) S.O.Grose	0,2232	0,0670
Hieronyma alchorneoides Allemão	0,2521	0,0378
Hura crepitans L.	0,0075	0,0112
Inga sp.	1,2175	1,8263
Maclura tinctoria (L.) D.Don ex Steud.	0,8817	0,0529
Melicoccus bijugatus Jacq.	0,0307	0,0230
Ochoterenaea colombiana F.A.Barkley	0,1856	0,0253
Pachira quinata (Jacq.) W.S.Alverson	0,1467	0,2200
Piptadenia sp.	0,0048	0,0072
Platymiscium pinnatum (Jacq.) Dugand	0,2266	0,3398
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,1109	0,0238
Sapium glandulosum (L.) Morong	0,6074	0,0364
Senna spectabilis (DC.) H.S.Irwin & Barneby	0,0091	0,0136
Spondias mombin L.	0,9895	0,0707
Sterculia apetala (Jacq.) H.Karst.	0,3033	0,1516
Swietenia macrophylla King	0,1051	0,0175
Swinglea glutinosa (Blanco) Merr.	0,0439	0,0329
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,1701	0,1012
Trichilia hirta L.	0,1778	0,0381
Virola sp.	0,0330	0,0495
Vitex cymosa Bertero ex Spreng	0,2966	0,2225

En cuanto a los indicadores de volumen se encuentra distribuido en 13 clases diamétricas, siendo la clase XIII que presenta los mayores volúmenes.

Para el caso del volumen total se obtiene 151,338 m3; en la Figura 108 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de bosque fragmentado con pastos y cultivos, encontrándose la clase XIII con un volumen de 28,1630 m³ seguido de la clase III con 25,5812 m³.

28,1630 30 25,5812 25 Volumen total (m3) 18,2691 20 16.0338 14,8622 13,8488 13,2881 15 9.6000 9,5448 10 5 2,1471 0 |||||VIIIIX XIII Clase diamétrica

Figura 108. Distribución del volumen total por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen total por especie se calcula un promedio de 3,15 m³ y un volumen promedio por especie por individuo de 0,88 m³; en la Tabla 188 se evidencia el volumen de cada una de las especies por hectárea y en la Tabla 189 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 188. Indicadores por especie de volumen total

Especie	VT/sp /ha	VT ind/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,8670	0,2601
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,9834	1,4751
Albizia saman (Jacq.) Merr.	26,1320	2,4499
Annona cherimola Mill.	0,0651	0,0488
Annona purpurea Moc. & Sessé ex Dunal	0,7359	0,2760
Bursera simaruba (L.) Sarg.	7,8827	0,3814
Caesalpinia coriaria (Jacq.) Willd.	3,6933	0,5036
Cassia fistula L.	5,4813	0,6325
Cecropia peltata L.	0,2465	0,3697
Cedrela angustifolia DC.	0,5004	0,1251
Cedrela odorata L.	1,5320	0,1532
Ceiba pentandra (L.) Gaertn.	16,7260	2,5089
Chrysophyllum cainito L.	0,3468	0,1300

Especie	VT/sp /ha	VT ind/sp/ha
Coccoloba pubescens L.	0,8227	0,1371
Cochlospermum sp.	3,7347	0,3295
Conocarpus erectus L.	0,0211	0,0317
Cordia alba (Jacq.) Roem. & Schult.	0,1582	0,2373
Cordia alliodora (Ruiz & Pav.) Oken	0,0438	0,0657
Cordia collococca L.	5,4471	0,4539
Crescentia cujete L.	0,2592	0,1296
Enterolobium cyclocarpum (Jacq.) Griseb.	0,1026	0,1538
Eschweilera caudiculata R.Knuth	1,8589	0,6971
Ficus dugandii Standl.	0,8437	0,6328
Gliricidia sepium (Jacq.) Walp.	0,6483	0,0748
Guazuma ulmifolia Lam.	1,7454	0,1636
Gustavia superba (Kunth) O.Berg	0,1008	0,1512
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1119	0,0839
Handroanthus guayacan (Seem.) S.O.Grose	1,4668	0,4400
Hieronyma alchorneoides Allemão	1,0888	0,1633
Hura crepitans L.	0,0341	0,0511
Inga sp.	11,8710	17,8065
Maclura tinctoria (L.) D.Don ex Steud.	5,1373	0,3082
Melicoccus bijugatus Jacq.	0,1828	0,1371
Ochoterenaea colombiana F.A.Barkley	1,0007	0,1365
Pachira quinata (Jacq.) W.S.Alverson	1,0486	1,5728
Piptadenia sp.	0,0218	0,0327
Platymiscium pinnatum (Jacq.) Dugand	2,2090	3,3135
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,6883	0,1475
Sapium glandulosum (L.) Morong	4,0211	0,2413
Senna spectabilis (DC.) H.S.Irwin & Barneby	0,0471	0,0707
Spondias mombin L.	6,6741	0,4767
Sterculia apetala (Jacq.) H.Karst.	2,3142	1,1571
Swietenia macrophylla King	0,5549	0,0925
Swinglea glutinosa (Blanco) Merr.	0,3256	0,2442
Tabebuia rosea (Bertol.) Bertero ex A.DC.	27,5776	0,8801
Trichilia hirta L.	1,0725	0,2298
Virola sp.	0,2576	0,3864
Vitex cymosa Bertero ex Spreng	2,6536	1,9902

Tabla 189. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /Ha /Ct diam.
	9,6000

Clase diamétrica / Especie	VTsp /Ha /Ct diam.
Abarema jupunba (Willd.) Britton & Killip	0,1249
Albizia saman (Jacq.) Merr.	0,0616
Annona cherimola Mill.	0,0651
Annona purpurea Moc. & Sessé ex Dunal	0,0429
Bursera simaruba (L.) Sarg.	0,5062
Caesalpinia coriaria (Jacq.) Willd.	0,2343
Cassia fistula L.	0,0823
Cedrela angustifolia DC.	0,3004
Cedrela odorata L.	0,5817
Ceiba pentandra (L.) Gaertn.	0,0855
Chrysophyllum cainito L.	0,2102
Coccoloba pubescens L.	0,3338
Cochlospermum sp.	0,3459
Conocarpus erectus L.	0,0211
Cordia alliodora (Ruiz & Pav.) Oken	0,0438
Cordia collococca L.	0,3451
Crescentia cujete L.	0,0487
Enterolobium cyclocarpum (Jacq.) Griseb.	0,1026
Gliricidia sepium (Jacq.) Walp.	0,5197
Guazuma ulmifolia Lam.	0,4709
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1119
Hieronyma alchorneoides Allemão	0,1239
Hura crepitans L.	0,0341
Maclura tinctoria (L.) D.Don ex Steud.	1,0381
Melicoccus bijugatus Jacq.	0,1828
Ochoterenaea colombiana F.A.Barkley	0,3617
Piptadenia sp.	0,0218
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,5207
Sapium glandulosum (L.) Morong	0,5573
Senna spectabilis (DC.) H.S.Irwin & Barneby	0,0471
Spondias mombin L.	0,3777
Swietenia macrophylla King	0,5549
Swinglea glutinosa (Blanco) Merr.	0,0232
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,8641
Trichilia hirta L.	0,2418
Vitex cymosa Bertero ex Spreng	0,0125
II	16,0338
Abarema jupunba (Willd.) Britton & Killip	0,2089
Albizia saman (Jacq.) Merr.	0,2169
Annona purpurea Moc. & Sessé ex Dunal	0,6929

Clase diamétrica / Especie	VTsp /Ha /Ct diam.
Bursera simaruba (L.) Sarg.	1,6859
Caesalpinia coriaria (Jacq.) Willd.	0,0928
Cassia fistula L.	0,4515
Cecropia peltata L.	0,2465
Cedrela angustifolia DC.	0,1999
Cedrela odorata L.	0,6611
Chrysophyllum cainito L.	0,1366
Coccoloba pubescens L.	0,4890
Cochlospermum sp.	0,4956
Cordia alba (Jacq.) Roem. & Schult.	0,1582
Cordia collococca L.	0,6304
Crescentia cujete L.	0,2105
Eschweilera caudiculata R.Knuth	0,0998
Gliricidia sepium (Jacq.) Walp.	0,1286
Guazuma ulmifolia Lam.	1,0221
Gustavia superba (Kunth) O.Berg	0,1008
Handroanthus guayacan (Seem.) S.O.Grose	0,3765
Hieronyma alchorneoides Allemão	0,7215
Maclura tinctoria (L.) D.Don ex Steud.	0,4190
Ochoterenaea colombiana F.A.Barkley	0,3408
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,1677
Sapium glandulosum (L.) Morong	2,4378
Spondias mombin L.	1,0060
Swinglea glutinosa (Blanco) Merr.	0,3024
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,9769
Trichilia hirta L.	0,0997
Virola sp.	0,2576
III	25,5812
Abarema jupunba (Willd.) Britton & Killip	0,5332
Albizia saman (Jacq.) Merr.	1,6810
Bursera simaruba (L.) Sarg.	3,4690
Caesalpinia coriaria (Jacq.) Willd.	1,9593
Cassia fistula L.	2,3424
Cedrela odorata L.	0,2892
Cochlospermum sp.	1,5736
Cordia collococca L.	2,3245
Eschweilera caudiculata R.Knuth	1,0124
Ficus dugandii Standl.	0,3295
Guazuma ulmifolia Lam.	0,2524
Handroanthus guayacan (Seem.) S.O.Grose	1,0903

Clase diamétrica / Especie	VTsp /Ha /Ct diam.
Hieronyma alchorneoides Allemão	0,2434
Maclura tinctoria (L.) D.Don ex Steud.	0,1937
Ochoterenaea colombiana F.A.Barkley	0,2982
Sapium glandulosum (L.) Morong	1,0261
Spondias mombin L.	1,0967
Sterculia apetala (Jacq.) H.Karst.	0,5258
Tabebuia rosea (Bertol.) Bertero ex A.DC.	5,3405
IV	18,2691
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,9834
Albizia saman (Jacq.) Merr.	2,3107
Bursera simaruba (L.) Sarg.	2,2216
Cassia fistula L.	2,6051
Ceiba pentandra (L.) Gaertn.	1,0500
Cochlospermum sp.	1,3197
Eschweilera caudiculata R.Knuth	0,7466
Ficus dugandii Standl.	0,5142
Maclura tinctoria (L.) D.Don ex Steud.	1,5471
Spondias mombin L.	1,0768
Sterculia apetala (Jacq.) H.Karst.	0,5656
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,5973
Trichilia hirta L.	0,7310
V	14,8622
Albizia saman (Jacq.) Merr.	3,4779
Caesalpinia coriaria (Jacq.) Willd.	1,4069
Ceiba pentandra (L.) Gaertn.	2,8698
Maclura tinctoria (L.) D.Don ex Steud.	0,6231
Pachira quinata (Jacq.) W.S.Alverson	1,0486
Spondias mombin L.	1,0552
Sterculia apetala (Jacq.) H.Karst.	1,2228
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,1579
VI	13,8488
Ceiba pentandra (L.) Gaertn.	8,4363
Maclura tinctoria (L.) D.Don ex Steud.	1,3164
Tabebuia rosea (Bertol.) Bertero ex A.DC.	4,0962
VII	13,2881
Albizia saman (Jacq.) Merr.	2,0918
Ceiba pentandra (L.) Gaertn.	4,2845
Platymiscium pinnatum (Jacq.) Dugand	2,2090
Spondias mombin L.	2,0617
Vitex cymosa Bertero ex Spreng	2,6411

Clase diamétrica / Especie	VTsp /Ha /Ct diam.
VIII	9,5448
Tabebuia rosea (Bertol.) Bertero ex A.DC.	9,5448
IX	2,1471
Cordia collococca L.	2,1471
XIII	28,1630
Albizia saman (Jacq.) Merr.	16,2921
Inga sp.	11,8710

El bosque fragmentado con pastos y cultivos presenta un volumen de fuste por ha de 119,99 m³, distribuido en 13 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 11,99 m³ (Figura 109).

25 22.6974 19,7556 20 Volumen fuste (m3) 14,6536 15 12,1981 11,7066 11,1551 11,7202 10 7,9197 6,8495 5 1.3420 0 \parallel ΙX VIIVIIIXIII Clase diamétrica

Figura 109. Distribución del volumen del fuste por clase diamétrica

Fuente: Elaboración equipo técnico

De igual forma, el volumen de fuste por especie promedio es de 2,50 m³ y un volumen promedio por especie por individuo de 0,72 m³ de volumen de fuste por individuo por especie. En la Tabla 190 se evidencia el volumen de cada una de las especies y en la Tabla 191 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 190. Indicadores por especie de volumen de fuste

Especie	VF/sp /ha	VF ind/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,6190	0,1857
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,8741	1,3112
Albizia saman (Jacq.) Merr.	20,4024	1,9127

Especie	VF/sp /ha	VF ind/sp/ha
Annona cherimola Mill.	0,0424	0,0318
Annona purpurea Moc. & Sessé ex Dunal	0,5355	0,2008
Bursera simaruba (L.) Sarg.	6,0773	0,2941
Caesalpinia coriaria (Jacq.) Willd.	2,8126	0,3835
Cassia fistula L.	4,2830	0,4942
Cecropia peltata L.	0,1725	0,2588
Cedrela angustifolia DC.	0,3781	0,0945
Cedrela odorata L.	1,0938	0,1094
Ceiba pentandra (L.) Gaertn.	14,2169	2,1325
Chrysophyllum cainito L.	0,2410	0,0904
Coccoloba pubescens L.	0,5754	0,0959
Cochlospermum sp.	2,8836	0,2544
Conocarpus erectus L.	0,0141	0,0211
Cordia alba (Jacq.) Roem. & Schult.	0,1054	0,1582
Cordia alliodora (Ruiz & Pav.) Oken	0,0292	0,0438
Cordia collococca L.	3,9333	0,3278
Crescentia cujete L.	0,1074	0,0537
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0897	0,1346
Eschweilera caudiculata R.Knuth	1,4595	0,5473
Ficus dugandii Standl.	0,6483	0,4862
Gliricidia sepium (Jacq.) Walp.	0,4544	0,0524
Guazuma ulmifolia Lam.	1,2470	0,1169
Gustavia superba (Kunth) O.Berg	0,0252	0,0378
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0854	0,0641
Handroanthus guayacan (Seem.) S.O.Grose	1,0697	0,3209
Hieronyma alchorneoides Allemão	0,6891	0,1034
Hura crepitans L.	0,0195	0,0292
Inga sp.	10,2882	15,4323
Maclura tinctoria (L.) D.Don ex Steud.	3,7701	0,2262
Melicoccus bijugatus Jacq.	0,1406	0,1054
Ochoterenaea colombiana F.A.Barkley	0,6727	0,0917
Pachira quinata (Jacq.) W.S.Alverson	0,7626	1,1439
Piptadenia sp.	0,0156	0,0234
Platymiscium pinnatum (Jacq.) Dugand	1,7672	2,6508
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,5328	0,1142
Sapium glandulosum (L.) Morong	3,1098	0,1866
Senna spectabilis (DC.) H.S.Irwin & Barneby	0,0295	0,0442
Spondias mombin L.	5,2588	0,3756

Especie	VF/sp /ha	VF ind/sp/ha
Sterculia apetala (Jacq.) H.Karst.	1,9927	0,9964
Swietenia macrophylla King	0,4060	0,0677
Swinglea glutinosa (Blanco) Merr.	0,2450	0,1837
Tabebuia rosea (Bertol.) Bertero ex A.DC.	22,6930	0,7242
Trichilia hirta L.	0,8278	0,1774
Virola sp.	0,2254	0,3381
Vitex cymosa Bertero ex Spreng	2,0751	1,5563

Fuente: Elaboración equipo técnico

Tabla 191. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /ha/Ct diam.
l	6,8579
Abarema jupunba (Willd.) Britton & Killip	0,0790
Albizia saman (Jacq.) Merr.	0,0431
Annona cherimola Mill.	0,0424
Annona purpurea Moc. & Sessé ex Dunal	0,0268
Bursera simaruba (L.) Sarg.	0,3649
Caesalpinia coriaria (Jacq.) Willd.	0,1728
Cassia fistula L.	0,0576
Cedrela angustifolia DC.	0,2114
Cedrela odorata L.	0,4153
Ceiba pentandra (L.) Gaertn.	0,0684
Chrysophyllum cainito L.	0,1454
Coccoloba pubescens L.	0,2272
Cochlospermum sp.	0,2474
Conocarpus erectus L.	0,0141
Cordia alliodora (Ruiz & Pav.) Oken	0,0292
Cordia collococca L.	0,2691
Crescentia cujete L.	0,0285
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0897
Gliricidia sepium (Jacq.) Walp.	0,3451
Guazuma ulmifolia Lam.	0,3146
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0854
Hieronyma alchorneoides Allemão	0,0656
Hura crepitans L.	0,0195
Maclura tinctoria (L.) D.Don ex Steud.	0,7331
Melicoccus bijugatus Jacq.	0,1406
Ochoterenaea colombiana F.A.Barkley	0,2682
Piptadenia sp.	0,0156

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,3965
Sapium glandulosum (L.) Morong	0,4033
Senna spectabilis (DC.) H.S.Irwin & Barneby	0,0295
Spondias mombin L.	0,2781
Swietenia macrophylla King	0,4060
Swinglea glutinosa (Blanco) Merr.	0,0182
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,6295
Trichilia hirta L.	0,1683
Vitex cymosa Bertero ex Spreng	0,0083
II.	11,7202
Abarema jupunba (Willd.) Britton & Killip	0,1804
Albizia saman (Jacq.) Merr.	0,1446
Annona purpurea Moc. & Sessé ex Dunal	0,5086
Bursera simaruba (L.) Sarg.	1,2287
Caesalpinia coriaria (Jacq.) Willd.	0,0530
Cassia fistula L.	0,3003
Cecropia peltata L.	0,1725
Cedrela angustifolia DC.	0,1666
Cedrela odorata L.	0,4977
Chrysophyllum cainito L.	0,0956
Coccoloba pubescens L.	0,3482
Cochlospermum sp.	0,3176
Cordia alba (Jacq.) Roem. & Schult.	0,1054
Cordia collococca L.	0,4917
Crescentia cujete L.	0,0789
Eschweilera caudiculata R.Knuth	0,0599
Gliricidia sepium (Jacq.) Walp.	0,1093
Guazuma ulmifolia Lam.	0,7362
Gustavia superba (Kunth) O.Berg	0,0252
Handroanthus guayacan (Seem.) S.O.Grose	0,2650
Hieronyma alchorneoides Allemão	0,5321
Maclura tinctoria (L.) D.Don ex Steud.	0,3066
Ochoterenaea colombiana F.A.Barkley	0,1957
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,1362
Sapium glandulosum (L.) Morong	1,8713
Spondias mombin L.	0,7203
Swinglea glutinosa (Blanco) Merr.	0,2268
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,5454

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Trichilia hirta L.	0,0748
Virola sp.	0,2254
III	19,7556
Abarema jupunba (Willd.) Britton & Killip	0,3596
Albizia saman (Jacq.) Merr.	1,3747
Bursera simaruba (L.) Sarg.	2,5902
Caesalpinia coriaria (Jacq.) Willd.	1,4437
Cassia fistula L.	1,8122
Cedrela odorata L.	0,1807
Cochlospermum sp.	1,2017
Cordia collococca L.	1,8305
Eschweilera caudiculata R.Knuth	0,8397
Ficus dugandii Standl.	0,2883
Guazuma ulmifolia Lam.	0,1963
Handroanthus guayacan (Seem.) S.O.Grose	0,8048
Hieronyma alchorneoides Allemão	0,0913
Maclura tinctoria (L.) D.Don ex Steud.	0,1453
Ochoterenaea colombiana F.A.Barkley	0,2087
Sapium glandulosum (L.) Morong	0,8352
Spondias mombin L.	0,7401
Sterculia apetala (Jacq.) H.Karst.	0,4601
Tabebuia rosea (Bertol.) Bertero ex A.DC.	4,3526
IV	14,6536
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,8741
Albizia saman (Jacq.) Merr.	1,8578
Bursera simaruba (L.) Sarg.	1,8934
Cassia fistula L.	2,1130
Ceiba pentandra (L.) Gaertn.	0,8250
Cochlospermum sp.	1,1169
Eschweilera caudiculata R.Knuth	0,5600
Ficus dugandii Standl.	0,3599
Maclura tinctoria (L.) D.Don ex Steud.	1,1426
Spondias mombin L.	0,7562
Sterculia apetala (Jacq.) H.Karst.	0,4628
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,1070
Trichilia hirta L.	0,5848
V	12,1981
Albizia saman (Jacq.) Merr.	2,7663

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Caesalpinia coriaria (Jacq.) Willd.	1,1431
Ceiba pentandra (L.) Gaertn.	2,4471
Maclura tinctoria (L.) D.Don ex Steud.	0,3895
Pachira quinata (Jacq.) W.S.Alverson	0,7626
Spondias mombin L.	0,9233
Sterculia apetala (Jacq.) H.Karst.	1,0699
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,6964
VI	11,7066
Ceiba pentandra (L.) Gaertn.	7,2111
Maclura tinctoria (L.) D.Don ex Steud.	1,0531
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,4424
VII	11,1551
Albizia saman (Jacq.) Merr.	1,8066
Ceiba pentandra (L.) Gaertn.	3,6654
Platymiscium pinnatum (Jacq.) Dugand	1,7672
Spondias mombin L.	1,8408
Vitex cymosa Bertero ex Spreng	2,0751
VIII	7,9197
Tabebuia rosea (Bertol.) Bertero ex A.DC.	7,9197
IX	1,3420
Cordia collococca L.	1,3420
XIII	22,6974
Albizia saman (Jacq.) Merr.	12,4092
Inga sp.	10,2882

En el caso del volumen comercial se obtiene un volumen de 65,81 m³ por hectárea distribuido en las 13 clases diamétricas, con un volumen promedio por clase diamétrica de 6,58 m³. En la Figura 110 se presenta la distribución del volumen comercial por clase diamétrica.

11,2122 12 9,7875 10 Volumen comercial (m3) 8,5725 8,1754 7,0462 8 6,4844 5,9486 3,3109 1,6103 2 0 ||XIII |||IX Clase diamétrica

Figura 110. Distribución del volumen comercial por clase diamétrica

De igual manera, el volumen comercial por especie un promedio de 1,37 m³ y un volumen promedio por especie por individuo de 0,37 m³. En la Tabla 192 se evidencia el volumen de cada una de las especies y en la Tabla 193 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 192. Indicadores por especie de volumen comercial

Especie	VC/sp /ha	VC ind/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,2840	0,0852
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,4371	0,6556
Albizia saman (Jacq.) Merr.	8,8597	0,8306
Annona cherimola Mill.	0,0182	0,0136
Annona purpurea Moc. & Sessé ex Dunal	0,2332	0,0875
Bursera simaruba (L.) Sarg.	3,7887	0,1833
Caesalpinia coriaria (Jacq.) Willd.	1,9183	0,2616
Cassia fistula L.	3,1156	0,3595
Cecropia peltata L.	0,1232	0,1848
Cedrela angustifolia DC.	0,2265	0,0566
Cedrela odorata L.	0,4919	0,0492
Ceiba pentandra (L.) Gaertn.	10,8602	1,6290
Chrysophyllum cainito L.	0,1181	0,0443
Coccoloba pubescens L.	0,1065	0,0178
Cochlospermum sp.	1,4126	0,1246
Conocarpus erectus L.	0,0106	0,0158

Especie	VC/sp /ha	VC ind/sp/ha
Cordia alba (Jacq.) Roem. & Schult.	0,0703	0,1054
Cordia alliodora (Ruiz & Pav.) Oken	0,0292	0,0438
Cordia collococca L.	2,9684	0,2474
Crescentia cujete L.	0,0608	0,0304
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0085	0,0128
Eschweilera caudiculata R.Knuth	0,7239	0,2715
Ficus dugandii Standl.	0,2863	0,2147
Gliricidia sepium (Jacq.) Walp.	0,1673	0,0193
Guazuma ulmifolia Lam.	0,4345	0,0407
Gustavia superba (Kunth) O.Berg	0,0378	0,0567
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0471	0,0353
Handroanthus guayacan (Seem.) S.O.Grose	0,6993	0,2098
Hieronyma alchorneoides Allemão	0,4106	0,0616
Hura crepitans L.	0,0292	0,0438
Inga sp.	4,7484	7,1226
Maclura tinctoria (L.) D.Don ex Steud.	1,6131	0,0968
Melicoccus bijugatus Jacq.	0,0949	0,0711
Ochoterenaea colombiana F.A.Barkley	0,3217	0,0439
Pachira quinata (Jacq.) W.S.Alverson	0,3813	0,5719
Piptadenia sp.	0,0062	0,0093
Platymiscium pinnatum (Jacq.) Dugand	1,0309	1,5463
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,5391	0,1155
Sapium glandulosum (L.) Morong	1,6785	0,1007
Senna spectabilis (DC.) H.S.Irwin & Barneby	0,0295	0,0442
Spondias mombin L.	2,1891	0,1564
Sterculia apetala (Jacq.) H.Karst.	1,2847	0,6423
Swietenia macrophylla King	0,1873	0,0312
Swinglea glutinosa (Blanco) Merr.	0,1275	0,0956
Tabebuia rosea (Bertol.) Bertero ex A.DC.	12,3363	0,3937
Trichilia hirta L.	0,3326	0,0713
Virola sp.	0,0859	0,1288
Vitex cymosa Bertero ex Spreng	0,8502	0,6376

Tabla 193. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
I	3,6665
Abarema jupunba (Willd.) Britton & Killip	0,0357
Albizia saman (Jacq.) Merr.	0,0277
Annona cherimola Mill.	0,0182
Annona purpurea Moc. & Sessé ex Dunal	0,0215

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Bursera simaruba (L.) Sarg.	0,1842
Caesalpinia coriaria (Jacq.) Willd.	0,0847
Cassia fistula L.	0,0329
Cedrela angustifolia DC.	0,1265
Cedrela odorata L.	0,2453
Ceiba pentandra (L.) Gaertn.	0,0769
Chrysophyllum cainito L.	0,0634
Coccoloba pubescens L.	0,0597
Cochlospermum sp.	0,0730
Conocarpus erectus L.	0,0106
Cordia alliodora (Ruiz & Pav.) Oken	0,0292
Cordia collococca L.	0,1560
Crescentia cujete L.	0,0135
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0085
Gliricidia sepium (Jacq.) Walp.	0,1480
Guazuma ulmifolia Lam.	0,0930
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0471
Hieronyma alchorneoides Allemão	0,0330
Hura crepitans L.	0,0292
Maclura tinctoria (L.) D.Don ex Steud.	0,3182
Melicoccus bijugatus Jacq.	0,0949
Ochoterenaea colombiana F.A.Barkley	0,1119
Piptadenia sp.	0,0062
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,4134
Sapium glandulosum (L.) Morong	0,2743
Senna spectabilis (DC.) H.S.Irwin & Barneby	0,0295
Spondias mombin L.	0,1368
Swietenia macrophylla King	0,1873
Swinglea glutinosa (Blanco) Merr.	0,0015
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,3915
Trichilia hirta L.	0,0821
Vitex cymosa Bertero ex Spreng	0,0012
II	5,9486
Abarema jupunba (Willd.) Britton & Killip	0,0760
Albizia saman (Jacq.) Merr.	0,1446
Annona purpurea Moc. & Sessé ex Dunal	0,2117
Bursera simaruba (L.) Sarg.	0,6116
Caesalpinia coriaria (Jacq.) Willd.	0,0066
Cassia fistula L.	0,2499
Cecropia peltata L.	0,1232

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Cedrela angustifolia DC.	0,1000
Cedrela odorata L.	0,2105
Chrysophyllum cainito L.	0,0546
Coccoloba pubescens L.	0,0468
Cochlospermum sp.	0,1717
Cordia alba (Jacq.) Roem. & Schult.	0,0703
Cordia collococca L.	0,3081
Crescentia cujete L.	0,0474
Eschweilera caudiculata R.Knuth	0,0200
Gliricidia sepium (Jacq.) Walp.	0,0193
Guazuma ulmifolia Lam.	0,2629
Gustavia superba (Kunth) O.Berg	0,0378
Handroanthus guayacan (Seem.) S.O.Grose	0,1825
Hieronyma alchorneoides Allemão	0,3167
Maclura tinctoria (L.) D.Don ex Steud.	0,1490
Ochoterenaea colombiana F.A.Barkley	0,1203
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,1258
Sapium glandulosum (L.) Morong	0,9890
Spondias mombin L.	0,3075
Swinglea glutinosa (Blanco) Merr.	0,1260
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,7417
Trichilia hirta L.	0,0312
Virola sp.	0,0859
III	11,2122
Abarema jupunba (Willd.) Britton & Killip	0,1724
Albizia saman (Jacq.) Merr.	0,5796
Bursera simaruba (L.) Sarg.	1,7566
Caesalpinia coriaria (Jacq.) Willd.	0,9477
Cassia fistula L.	1,2007
Cedrela odorata L.	0,0361
Cochlospermum sp.	0,5928
Cordia collococca L.	0,8939
Eschweilera caudiculata R.Knuth	0,3929
Ficus dugandii Standl.	0,0549
Guazuma ulmifolia Lam.	0,0785
Handroanthus guayacan (Seem.) S.O.Grose	0,5168
Hieronyma alchorneoides Allemão	0,0609
Maclura tinctoria (L.) D.Don ex Steud.	0,0484
Ochoterenaea colombiana F.A.Barkley	0,0895
Sapium glandulosum (L.) Morong	0,4153

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Spondias mombin L.	0,3091
Sterculia apetala (Jacq.) H.Karst.	0,2629
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,8033
IV	8,5725
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,4371
Albizia saman (Jacq.) Merr.	0,9641
Bursera simaruba (L.) Sarg.	1,2363
Cassia fistula L.	1,6321
Ceiba pentandra (L.) Gaertn.	0,6000
Cochlospermum sp.	0,5751
Eschweilera caudiculata R.Knuth	0,3111
Ficus dugandii Standl.	0,2314
Maclura tinctoria (L.) D.Don ex Steud.	0,6126
Spondias mombin L.	0,4356
Sterculia apetala (Jacq.) H.Karst.	0,3085
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,0093
Trichilia hirta L.	0,2193
V	7,0462
Albizia saman (Jacq.) Merr.	1,6291
Caesalpinia coriaria (Jacq.) Willd.	0,8793
Ceiba pentandra (L.) Gaertn.	1,3438
Maclura tinctoria (L.) D.Don ex Steud.	0,1558
Pachira quinata (Jacq.) W.S.Alverson	0,3813
Spondias mombin L.	0,2638
Sterculia apetala (Jacq.) H.Karst.	0,7133
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,6798
VI	8,1754
Ceiba pentandra (L.) Gaertn.	5,4466
Maclura tinctoria (L.) D.Don ex Steud.	0,3291
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,3997
VII	6,4844
Albizia saman (Jacq.) Merr.	0,4754
Ceiba pentandra (L.) Gaertn.	3,3929
Platymiscium pinnatum (Jacq.) Dugand	1,0309
Spondias mombin L.	0,7363
Vitex cymosa Bertero ex Spreng	0,8489
VIII	3,3109
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,3109
IX	1,6103
Cordia collococca L.	1,6103

Clase diamétrica / Especie	VCsp /ha/Ct diam.
XIII	9,7875
Albizia saman (Jacq.) Merr.	5,0391
Inga sp.	4,7484

El volumen cosechable calculado para el bosque fragmentado con pastos y cultivos es de 55,68 m³ con un promedio por especie de 1,16 m³, En la Tabla 194 se evidencia el volumen de cada una de las especies y en la Tabla 195 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 194. Indicadores por especie de volumen cosechable

Especie	VCs/sp / ha
Abarema jupunba (Willd.) Britton & Killip	0,2403
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,3698
Albizia saman (Jacq.) Merr.	7,4967
Annona cherimola Mill.	0,0154
Annona purpurea Moc. & Sessé ex Dunal	0,1973
Bursera simaruba (L.) Sarg.	3,2058
Caesalpinia coriaria (Jacq.) Willd.	1,6232
Cassia fistula L.	2,6363
Cecropia peltata L.	0,1043
Cedrela angustifolia DC.	0,1917
Cedrela odorata L.	0,4163
Ceiba pentandra (L.) Gaertn.	9,1894
Chrysophyllum cainito L.	0,0999
Coccoloba pubescens L.	0,0901
Cochlospermum sp.	1,1953
Conocarpus erectus L.	0,0089
Cordia alba (Jacq.) Roem. & Schult.	0,0595
Cordia alliodora (Ruiz & Pav.) Oken	0,0247
Cordia collococca L.	2,5117
Crescentia cujete L.	0,0515
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0072
Eschweilera caudiculata R.Knuth	0,6125
Ficus dugandii Standl.	0,2423
Gliricidia sepium (Jacq.) Walp.	0,1416
Guazuma ulmifolia Lam.	0,3676
Gustavia superba (Kunth) O.Berg	0,0320
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0399
Handroanthus guayacan (Seem.) S.O.Grose	0,5917

Especie	VCs/sp / ha
Hieronyma alchorneoides Allemão	0,3474
Hura crepitans L.	0,0247
Inga sp.	4,0179
Maclura tinctoria (L.) D.Don ex Steud.	1,3649
Melicoccus bijugatus Jacq.	0,0803
Ochoterenaea colombiana F.A.Barkley	0,2722
Pachira quinata (Jacq.) W.S.Alverson	0,3226
Piptadenia sp.	0,0053
Platymiscium pinnatum (Jacq.) Dugand	0,8723
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,4562
Sapium glandulosum (L.) Morong	1,4203
Senna spectabilis (DC.) H.S.Irwin & Barneby	0,0249
Spondias mombin L.	1,8523
Sterculia apetala (Jacq.) H.Karst.	1,0870
Swietenia macrophylla King	0,1584
Swinglea glutinosa (Blanco) Merr.	0,1079
Tabebuia rosea (Bertol.) Bertero ex A.DC.	10,4384
Trichilia hirta L.	0,2814
Virola sp.	0,0727
Vitex cymosa Bertero ex Spreng	0,7194

Tabla 195. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
l	3,1025
Abarema jupunba (Willd.) Britton & Killip	0,0302
Albizia saman (Jacq.) Merr.	0,0235
Annona cherimola Mill.	0,0154
Annona purpurea Moc. & Sessé ex Dunal	0,0182
Bursera simaruba (L.) Sarg.	0,1559
Caesalpinia coriaria (Jacq.) Willd.	0,0716
Cassia fistula L.	0,0278
Cedrela angustifolia DC.	0,1071
Cedrela odorata L.	0,2075
Ceiba pentandra (L.) Gaertn.	0,0651
Chrysophyllum cainito L.	0,0537
Coccoloba pubescens L.	0,0506
Cochlospermum sp.	0,0618
Conocarpus erectus L.	0,0089
Cordia alliodora (Ruiz & Pav.) Oken	0,0247

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Cordia collococca L.	0,1320
Crescentia cujete L.	0,0114
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0072
Gliricidia sepium (Jacq.) Walp.	0,1252
Guazuma ulmifolia Lam.	0,0787
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0399
Hieronyma alchorneoides Allemão	0,0279
Hura crepitans L.	0,0247
Maclura tinctoria (L.) D.Don ex Steud.	0,2692
Melicoccus bijugatus Jacq.	0,0803
Ochoterenaea colombiana F.A.Barkley	0,0947
Piptadenia sp.	0,0053
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,3498
Sapium glandulosum (L.) Morong	0,2321
Senna spectabilis (DC.) H.S.Irwin & Barneby	0,0249
Spondias mombin L.	0,1158
Swietenia macrophylla King	0,1584
Swinglea glutinosa (Blanco) Merr.	0,0013
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,3313
Trichilia hirta L.	0,0695
Vitex cymosa Bertero ex Spreng	0,0011
ll .	5,0334
Abarema jupunba (Willd.) Britton & Killip	0,0643
Albizia saman (Jacq.) Merr.	0,1224
Annona purpurea Moc. & Sessé ex Dunal	0,1792
Bursera simaruba (L.) Sarg.	0,5175
Caesalpinia coriaria (Jacq.) Willd.	0,0056
Cassia fistula L.	0,2114
Cecropia peltata L.	0,1043
Cedrela angustifolia DC.	0,0846
Cedrela odorata L.	0,1781
Chrysophyllum cainito L.	0,0462
Coccoloba pubescens L.	0,0396
Cochlospermum sp.	0,1453
Cordia alba (Jacq.) Roem. & Schult.	0,0595
Cordia collococca L.	0,2607
Crescentia cujete L.	0,0401
Eschweilera caudiculata R.Knuth	0,0169
Gliricidia sepium (Jacq.) Walp.	0,0163
Guazuma ulmifolia Lam.	0,2225

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Gustavia superba (Kunth) O.Berg	0,0320
Handroanthus guayacan (Seem.) S.O.Grose	0,1544
Hieronyma alchorneoides Allemão	0,2680
Maclura tinctoria (L.) D.Don ex Steud.	0,1261
Ochoterenaea colombiana F.A.Barkley	0,1018
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,1064
Sapium glandulosum (L.) Morong	0,8368
Spondias mombin L.	0,2602
Swinglea glutinosa (Blanco) Merr.	0,1066
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,6276
Trichilia hirta L.	0,0264
Virola sp.	0,0727
III	9,4872
Abarema jupunba (Willd.) Britton & Killip	0,1458
Albizia saman (Jacq.) Merr.	0,4904
Bursera simaruba (L.) Sarg.	1,4863
Caesalpinia coriaria (Jacq.) Willd.	0,8019
Cassia fistula L.	1,0160
Cedrela odorata L.	0,0306
Cochlospermum sp.	0,5016
Cordia collococca L.	0,7564
Eschweilera caudiculata R.Knuth	0,3324
Ficus dugandii Standl.	0,0465
Guazuma ulmifolia Lam.	0,0664
Handroanthus guayacan (Seem.) S.O.Grose	0,4373
Hieronyma alchorneoides Allemão	0,0515
Maclura tinctoria (L.) D.Don ex Steud.	0,0410
Ochoterenaea colombiana F.A.Barkley	0,0757
Sapium glandulosum (L.) Morong	0,3514
Spondias mombin L.	0,2615
Sterculia apetala (Jacq.) H.Karst.	0,2224
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,3720
IV	7,2536
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,3698
Albizia saman (Jacq.) Merr.	0,8158
Bursera simaruba (L.) Sarg.	1,0461
Cassia fistula L.	1,3810
Ceiba pentandra (L.) Gaertn.	0,5077
Cochlospermum sp.	0,4866
Eschweilera caudiculata R.Knuth	0,2632

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Ficus dugandii Standl.	0,1958
Maclura tinctoria (L.) D.Don ex Steud.	0,5184
Spondias mombin L.	0,3685
Sterculia apetala (Jacq.) H.Karst.	0,2611
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,8541
Trichilia hirta L.	0,1856
V	5,9622
Albizia saman (Jacq.) Merr.	1,3785
Caesalpinia coriaria (Jacq.) Willd.	0,7440
Ceiba pentandra (L.) Gaertn.	1,1371
Maclura tinctoria (L.) D.Don ex Steud.	0,1318
Pachira quinata (Jacq.) W.S.Alverson	0,3226
Spondias mombin L.	0,2232
Sterculia apetala (Jacq.) H.Karst.	0,6035
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,4214
VI	6,9177
Ceiba pentandra (L.) Gaertn.	4,6087
Maclura tinctoria (L.) D.Don ex Steud.	0,2785
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,0305
VII	5,4868
Albizia saman (Jacq.) Merr.	0,4023
Ceiba pentandra (L.) Gaertn.	2,8709
Platymiscium pinnatum (Jacq.) Dugand	0,8723
Spondias mombin L.	0,6230
Vitex cymosa Bertero ex Spreng	0,7183
VIII	2,8016
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,8016
IX	1,3626
Cordia collococca L.	1,3626
XIII	8,2817
Albizia saman (Jacq.) Merr.	4,2639
Inga sp.	4,0179

5.5.2.9.2. Indicadores estructurales del bosque fragmentado con pastos y cultivos

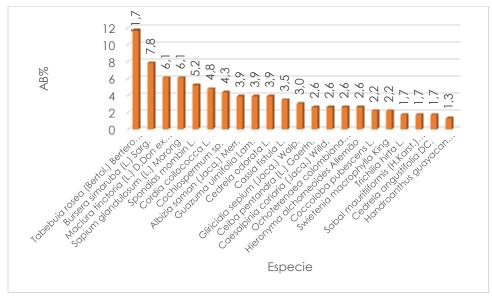
5.5.2.9.2.1. Estructura horizontal

En la Tabla 196 se observa los datos obtenidos del análisis de la estructura horizontal del bosque fragmentado con pastos y cultivos.

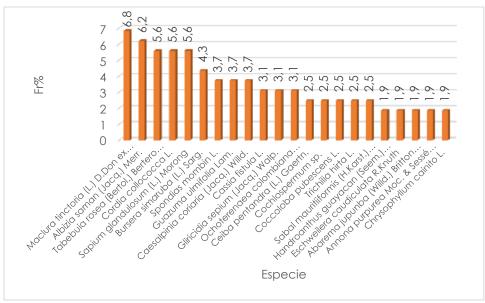
Tabla 196. Estructura horizontal para el bosque fragmentado con pastos y cultivos

	N° de	Abundancia		Dominancia		Frecue	ncia	
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Tabebuia rosea (Bertol.) Bertero ex A.DC.	47	0,117	11,739	0,156	15,604	0,529	5,590	32,933
Albizia saman (Jacq.) Merr.	16	0,039	3,913	0,184	18,379	0,588	6,211	28,504
Bursera simaruba (L.) Sarg.	31	0,078	7,826	0,057	5,695	0,412	4,348	17,869
Maclura tinctoria (L.) D.Don ex Steud.	25	0,061	6,087	0,043	4,340	0,647	6,832	17,259
Cordia collococca L.	18	0,048	4,783	0,044	4,438	0,529	5,590	14,811
Sapium glandulosum (L.) Morong	25	0,061	6,087	0,030	2,990	0,529	5,590	14,667
Spondias mombin L.	21	0,052	5,217	0,049	4,871	0,353	3,727	13,815
Ceiba pentandra (L.) Gaertn.	10	0,026	2,609	0,083	8,345	0,235	2,484	13,438
Cassia fistula L.	13	0,035	3,478	0,039	3,874	0,294	3,106	10,458
Cochlospermum sp.	17	0,043	4,348	0,029	2,941	0,235	2,484	9,773
Guazuma ulmifolia Lam.	16	0,039	3,913	0,016	1,638	0,353	3,727	9,278
Caesalpinia coriaria (Jacq.) Willd.	11	0,026	2,609	0,023	2,336	0,353	3,727	8,672
Inga sp.	1	0,004	0,435	0,060	5,993	0,059	0,621	7,049
Gliricidia sepium (Jacq.) Walp.	13	0,030	3,043	0,006	0,629	0,294	3,106	6,778
Ochoterenaea colombiana F.A.Barkley	11	0,026	2,609	0,009	0,914	0,294	3,106	6,628
Cedrela odorata L.	15	0,039	3,913	0,013	1,311	0,118	1,242	6,466
Coccoloba pubescens L.	9	0,022	2,174	0,008	0,763	0,235	2,484	5,421
Trichilia hirta L.	7	0,017	1,739	0,009	0,875	0,235	2,484	5,099
Hieronyma alchorneoides Allemão	10	0,026	2,609	0,012	1,241	0,118	1,242	5,092
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	7	0,017	1,739	0,005	0,546	0,235	2,484	4,769
Handroanthus guayacan (Seem.) S.O.Grose	5	0,013	1,304	0,011	1,099	0,176	1,863	4,266
Swietenia macrophylla King	9	0,022	2,174	0,005	0,517	0,118	1,242	3,934
Eschweilera caudiculata R.Knuth	4	0,009	0,870	0,012	1,164	0,176	1,863	3,896
Abarema jupunba (Willd.) Britton & Killip	5	0,013	1,304	0,007	0,717	0,176	1,863	3,885
Sterculia apetala (Jacq.) H.Karst.	3	0,009	0,870	0,015	1,493	0,118	1,242	3,605
Cedrela angustifolia DC.	6	0,017	1,739	0,004	0,403	0,118	1,242	3,385
Annona purpurea Moc. & Sessé ex Dunal	4	0,009	0,870	0,006	0,571	0,176	1,863	3,304
Vitex cymosa Bertero ex Spreng	2	0,004	0,435	0,015	1,460	0,118	1,242	3,137
Chrysophyllum cainito L.	4	0,009	0,870	0,003	0,293	0,176	1,863	3,026
Crescentia cujete L.	3	0,009	0,870	0,003	0,261	0,176	1,863	2,994
Ficus dugandii Standl.	2	0,004	0,435	0,006	0,597	0,118	1,242	2,274
Platymiscium pinnatum (Jacq.) Dugand	1	0,004	0,435	0,011	1,115	0,059	0,621	2,171
Swinglea glutinosa (Blanco) Merr.	2	0,004	0,435	0,002	0,216	0,118	1,242	1,893
Melicoccus bijugatus Jacq.	2	0,004	0,435	0,002	0,151	0,118	1,242	1,828
·								

	N° de	Abundancia		Dominar	ncia	Frecue	ncia	
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Pachira quinata (Jacq.) W.S.Alverson	1	0,004	0,435	0,007	0,722	0,059	0,621	1,778
Handroanthus chrysanthus (Jacq.) S.O.Grose	2	0,004	0,435	0,001	0,089	0,118	1,242	1,766
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1	0,004	0,435	0,004	0,414	0,059	0,621	1,470
Gustavia superba (Kunth) O.Berg	1	0,004	0,435	0,002	0,191	0,059	0,621	1,247
Cecropia peltata L.	1	0,004	0,435	0,002	0,187	0,059	0,621	1,243
Virola sp.	1	0,004	0,435	0,002	0,163	0,059	0,621	1,218
Cordia alba (Jacq.) Roem. & Schult.	1	0,004	0,435	0,001	0,133	0,059	0,621	1,189
Annona cherimola Mill.	2	0,004	0,435	0,001	0,091	0,059	0,621	1,147
Enterolobium cyclocarpum (Jacq.) Griseb.	1	0,004	0,435	0,001	0,065	0,059	0,621	1,121
Senna spectabilis (DC.) H.S.Irwin & Barneby	1	0,004	0,435	0,000	0,045	0,059	0,621	1,101
Cordia alliodora (Ruiz & Pav.) Oken	1	0,004	0,435	0,000	0,037	0,059	0,621	1,093
Hura crepitans L.	1	0,004	0,435	0,000	0,037	0,059	0,621	1,093
Conocarpus erectus L.	1	0,004	0,435	0,000	0,027	0,059	0,621	1,083
Piptadenia sp.	1	0,004	0,435	0,000	0,024	0,059	0,621	1,079
Totales Generales		1	100	1	100	9,4706	100	300


<u>Abundancia</u>

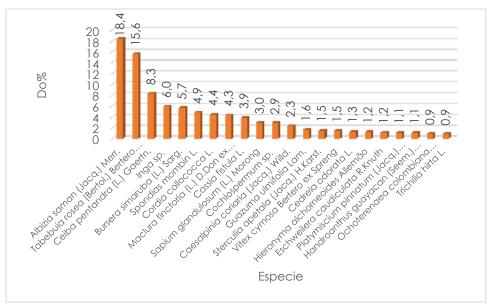
La abundancia absoluta y relativa presente en la cobertura de bosque fragmentado con pastos y cultivos muestra que la especie más abundante es *Tabebuia rosea* (Bertol.) Bertero ex A.DC con 27 individuos en una hectárea y de abundancia relativa 11,7%. Igualmente, la especie Bursera simaruba (L.) Sarg presenta la segunda mayor abundancia con 18 individuos por hectárea y una abundancia realtiva de 7,8 % (Figura 111).


Figura 111. Distribución de la abundancia relativa para el bosque fragmentado con pastos y cultivos

<u>Frecuencia</u>

La especie Maclura tinctoria (L.) D.Don ex Steud. es la mas frecuente con una presencia en 11 parcelas de las 17 realizadas, seguida de Albizia saman (Jacq.) Merr. con una presencia en 10 parcelas de las 17 realizadas con una frecuencia realtiva de 6,2 % (Figura 112).

Figura 112. Distribución de frecuencia relativa para el bosque fragmentado con pastos y cultivos

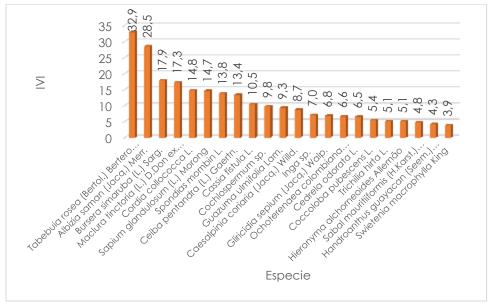


Dominancia

La especie de mayor dominancia es *Albizia saman* (Jacq.) Merr. con 18,38 % y área basal de 6,3476 m², seguida de la especie *Tabebuia rosea* (Bertol.) Bertero ex A.DC.. con 15,60 % y un área basal de 5,3891 m² (Figura 113).

Figura 113. Distribución de la dominancia relativa para el bosque fragmentado con pastos y cultivos

Fuente: Elaboración equipo técnico


Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es *Tabebuia rosea* (Bertol.) Bertero ex A.DC. con un IVI de 32,9, seguida de la especie *Albizia saman* (Jacq.) Merr. con un peso ecológico de 28,5, evidenciando el comportamiento de J invertida de bosque natural (Figura 114**¡Error! No se encuentra el origen de la referencia.**).

Figura 114. Distribución del IVI para el bosque fragmentado con pastos y cultivos

Coefiente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1 / \frac{48}{391}$$

$$CM = 1/0,122$$

$$CM = 8.19$$

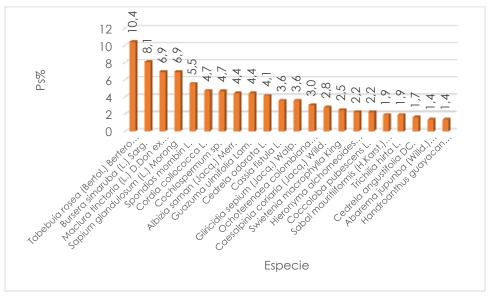
El coeficiente de mezcla obtenido implica que por cada 8,19 individuos estudiados hay una especie nueva para el bosque fragmentado con pastos y cultivos.

5.5.2.9.2.2. Estructura vertical

Posición sociólogica

La posición sociológica muestra que la especie con mayor peso es *Tabebuia rosea* (Bertol.) Bertero ex A.DC.con 10,41 % debido a la presencia de la totalidad de sus individuos en el estrato dominante, el detallado de cada una de las especies se muestra en la Tabla 197 y Figura 115.

Tabla 197. Posición sociológica de las especies del bosque fragmentado con pastos y cultivos


Especies Suprimido Codominante Ps Ps% Ps% Tabebuía roseo (Bertol.) Bertero ex A.D.C. 0 37 10 13560 10,413 8 8 154 10,413 8 8 1054 10,413 8 8 1054 10,413 8 8 10,54 10,413 8 8 10,54 10,413 8 8 10,54 10,413 8 8 10,54 10,413 8 8 10,54 10,413 8 8 10,54 10,413 8 10,54 1		ı	1	r	ı	ı
Bursera simaruba (L.) Sarg.	Especies	Suprimido	Codominante	Dominante	Ps	Ps%
Macclura tinctoria (L.) D.Don ex Steud.	Tabebuia rosea (Bertol.) Bertero ex A.DC.	0	37	10	13560	10,413
Sapium glandulosum (L.) Morong	Bursera simaruba (L.) Sarg.	0	29	2	10488	8,054
Spandias mombin L. 1 20 0 7207 5.534	Maclura tinctoria (L.) D.Don ex Steud.	0	25	0	9000	6,911
Cordia collococca L.	Sapium glandulosum (L.) Morong	0	25	0	9000	6,911
Cochlospermum sp. 0	Spondias mombin L.	1	20	0	7207	5,534
Albizia saman (Jacq.) Merr. 0 16 0 5760 4,423	Cordia collococca L.	0	17	1	6144	4,718
Guazuma ulmifolia Lam.	Cochlospermum sp.	0	17	0	6120	4,700
Cedrela adorafa L.	Albizia saman (Jacq.) Merr.	0	16	0	5760	4,423
Cassia fistula L. 0 13 0 4680 3.594 Gliricidia sepium (Jacq.) Walp. 0 13 0 4680 3.594 Ochoterenaea colombiana F.A.Barkley 0 11 0 3960 3.041 Caesalpinia coriaria (Jacq.) Willd. 0 10 1 3624 2.783 Swietenia macrophylla King 0 9 0 3240 2.488 Hieronyma alchomeoides Allemão 2 8 0 2894 2.222 Coccoloba pubescens L. 1 8 0 2887 2.217 Sabal mauritifiormis (H.Karst.) Griseb. & H.Wendl. 0 7 0 2520 1,935 Trichilia hirta L. 0 7 0 2520 1,935 Trichilia hirta L. 0 7 0 2520 1,935 Abarema jupunba (Willd.) Britton & Killip 0 5 0 1800 1,382 Handroanthus guayacan (Seem.) S.O.Grose 0 5 0 1800 1,382	Guazuma ulmifolia Lam.	0	16	0	5760	4,423
Cliricidia sepium (Jacq.) Walp. 0 13 0 4680 3,594	Cedrela odorata L.	0	15	0	5400	4,147
Ochoterenaea colombiana F.A.Barkley 0 11 0 3960 3,041 Caesalpinia coriaria (Jacq.) Willd. 0 10 1 3624 2,783 Swietenia macrophylla King 0 9 0 3240 2,488 Hieronyma alchorneoides Allemão 2 8 0 2894 2,222 Coccoloba pubescens L. 1 8 0 2887 2,217 Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl. 0 7 0 2520 1,935 Trichilia hirta L. 0 7 0 2520 1,935 Cedrela angustifolia DC. 0 6 0 2160 1,659 Abarema jupunba (Willd.) Britton & Killip 0 5 0 1800 1,382 Handroanthus guayacan (Seem.) S.O.Grose 0 5 0 1800 1,382 Ceiba pentandra (L.) Gaertn. 0 4 6 1584 1,216 Annona purpurea Moc. & Sessé ex Dunal 0 4 0 1440 1,106 <td>Cassia fistula L.</td> <td>0</td> <td>13</td> <td>0</td> <td>4680</td> <td>3,594</td>	Cassia fistula L.	0	13	0	4680	3,594
Caesalpinia coriaria (Jacq.) Willd. 0 10 1 3624 2,783 Swietenia macrophylla King 0 9 0 3240 2,488 Hieronyma alchorneoides Allemão 2 8 0 2894 2,222 Coccoloba pubescens L. 1 8 0 2887 2,217 Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl. 0 7 0 2520 1,935 Trichilla hirta L. 0 7 0 2520 1,935 Cedrela angustifolía DC. 0 6 0 2160 1,659 Abarema jupunba (Willd.) Britton & Killip 0 5 0 1800 1,382 Handroanthus guayacan (Seem.) S.O.Grose 0 5 0 1800 1,382 Ceiba pentandra (L.) Gaertn. 0 4 6 1584 1,216 Annona purpurea Moc. & Sessé ex Dunal 0 4 0 1440 1,106 Eschweilera caudiculata R.Knuth 0 3 1 1104 0,849	Gliricidia sepium (Jacq.) Walp.	0	13	0	4680	3,594
Swietenia macrophylla King 0 9 0 3240 2,488 Hieronyma alchorneoides Allemão 2 8 0 2894 2,222 Coccoloba pubescens L. 1 8 0 2887 2,217 Sabal mauritiirormis (H.Karst.) Griseb. & H.Wendl. 0 7 0 2520 1,935 Trichilia hirta L. 0 7 0 2520 1,935 Cedrela angustifolia DC. 0 6 0 2160 1,659 Abarema jupunba (Willd.) Britton & Killip 0 5 0 1800 1,382 Handroanthus guayacan (Seem.) S.O.Grose 0 5 0 1800 1,382 Ceiba pentandra (L.) Gaertn. 0 4 6 1584 1,216 Annona purpurea Moc. & Sessé ex Dunal 0 4 0 1440 1,106 Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829	Ochoterenaea colombiana F.A.Barkley	0	11	0	3960	3,041
Hieronyma alchorneoides Allemão 2 8 0 2894 2,222	Caesalpinia coriaria (Jacq.) Willd.	0	10	1	3624	2,783
Coccoloba pubescens L. 1 8 0 2887 2,217 Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl. 0 7 0 2520 1,935 Trichilla hirta L. 0 7 0 2520 1,935 Cedrela angustifolia DC. 0 6 0 2160 1,659 Abarema jupunba (Willd.) Britton & Killip 0 5 0 1800 1,382 Handroanthus guayacan (Seem.) S.O.Grose 0 5 0 1800 1,382 Ceiba pentandra (L.) Gaertn. 0 4 6 1584 1,216 Annona purpurea Moc. & Sessé ex Dunal 0 4 0 1440 1,106 Chrysophyllum cainito L. 0 4 0 1440 1,106 Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829 Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829	Swietenia macrophylla King	0	9	0	3240	2,488
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl. 0 7 0 2520 1,935 Trichilla hirta L. 0 7 0 2520 1,935 Cedrela angustifolia DC. 0 6 0 2160 1,659 Abarema jupunba (Willd.) Britton & Killip 0 5 0 1800 1,382 Handroanthus guayacan (Seem.) S.O.Grose 0 5 0 1800 1,382 Ceiba pentandra (L.) Gaertn. 0 4 6 1584 1,216 Annona purpurea Moc. & Sessé ex Dunal 0 4 0 1440 1,106 Chrysophyllum cainito L. 0 4 0 1440 1,106 Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829 Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829 Ficus dugandii Standl. 0 2 0 720 0,553	Hieronyma alchorneoides Allemão	2	8	0	2894	2,222
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl. 0 7 0 2520 1,935 Trichilla hirta L. 0 7 0 2520 1,935 Cedrela angustifolia DC. 0 6 0 2160 1,659 Abarema jupunba (Willd.) Britton & Killip 0 5 0 1800 1,382 Handroanthus guayacan (Seem.) S.O.Grose 0 5 0 1800 1,382 Ceiba pentandra (L.) Gaertn. 0 4 6 1584 1,216 Annona purpurea Moc. & Sessé ex Dunal 0 4 0 1440 1,106 Chrysophyllum cainito L. 0 4 0 1440 1,106 Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829 Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829 Ficus dugandii Standl. 0 2 0 720 0,553	Coccoloba pubescens L.	1	8	0	2887	2,217
Cedrela angustifolia DC. 0 6 0 2160 1,659 Abarema jupunba (Willd.) Britton & Killip 0 5 0 1800 1,382 Handroanthus guayacan (Seem.) S.O.Grose 0 5 0 1800 1,382 Ceiba pentandra (L.) Gaertn. 0 4 6 1584 1,216 Annona purpurea Moc. & Sessé ex Dunal 0 4 0 1440 1,106 Chrysophyllum cainito L. 0 4 0 1440 1,106 Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829 Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829 Ficus dugandii Standl. 0 2 0 720 0,553 Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553	Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0	7	0	2520	1,935
Abarema jupunba (Willd.) Britton & Killip 0 5 0 1800 1,382 Handroanthus guayacan (Seem.) S.O.Grose 0 5 0 1800 1,382 Ceiba pentandra (L.) Gaertn. 0 4 6 1584 1,216 Annona purpurea Moc. & Sessé ex Dunal 0 4 0 1440 1,106 Chrysophyllum cainito L. 0 4 0 1440 1,106 Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829 Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829 Ficus dugandii Standl. 0 2 0 720 0,553 Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553	Trichilia hirta L.	0	7	0	2520	1,935
Handroanthus guayacan (Seem.) S.O.Grose 0 5 0 1800 1,382 Ceiba pentandra (L.) Gaertn. 0 4 6 1584 1,216 Annona purpurea Moc. & Sessé ex Dunal 0 4 0 1440 1,106 Chrysophyllum cainito L. 0 4 0 1440 1,106 Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829 Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829 Ficus dugandii Standl. 0 2 0 720 0,553 Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 0 367 0,282 Vi	Cedrela angustifolia DC.	0	6	0	2160	1,659
Ceiba pentandra (L.) Gaertn. 0 4 6 1584 1,216 Annona purpurea Moc. & Sessé ex Dunal 0 4 0 1440 1,106 Chrysophyllum cainito L. 0 4 0 1440 1,106 Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829 Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829 Ficus dugandii Standl. 0 2 0 720 0,553 Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 360 0,276	Abarema jupunba (Willd.) Britton & Killip	0	5	0	1800	1,382
Ceiba pentandra (L.) Gaertn. 0 4 6 1584 1,216 Annona purpurea Moc. & Sessé ex Dunal 0 4 0 1440 1,106 Chrysophyllum cainito L. 0 4 0 1440 1,106 Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829 Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829 Ficus dugandii Standl. 0 2 0 720 0,553 Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 360 0,276 Cordia alba	Handroanthus guayacan (Seem.) S.O.Grose	0	5	0	1800	1,382
Chrysophyllum cainito L. 0 4 0 1440 1,106 Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829 Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829 Ficus dugandii Standl. 0 2 0 720 0,553 Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 360 0,276 Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276	Ceiba pentandra (L.) Gaertn.	0	4	6	1584	1,216
Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829 Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829 Ficus dugandii Standl. 0 2 0 720 0,553 Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 367 0,282 Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276	Annona purpurea Moc. & Sessé ex Dunal	0	4	0	1440	1,106
Eschweilera caudiculata R.Knuth 0 3 1 1104 0,848 Crescentia cujete L. 0 3 0 1080 0,829 Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829 Ficus dugandii Standl. 0 2 0 720 0,553 Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 367 0,282 Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276	Chrysophyllum cainito L.	0	4	0	1440	1,106
Sterculia apetala (Jacq.) H.Karst. 0 3 0 1080 0,829 Ficus dugandii Standl. 0 2 0 720 0,553 Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 367 0,282 Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276	Eschweilera caudiculata R.Knuth	0	3	1	1104	0,848
Ficus dugandii Standl. 0 2 0 720 0,553 Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 367 0,282 Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276	Crescentia cujete L.	0	3	0	1080	0,829
Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 367 0,282 Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276	Sterculia apetala (Jacq.) H.Karst.	0	3	0	1080	0,829
Handroanthus chrysanthus (Jacq.) S.O.Grose 0 2 0 720 0,553 Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 367 0,282 Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276	Ficus dugandii Standl.	0	2	0	720	0,553
Melicoccus bijugatus Jacq. 0 2 0 720 0,553 Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 367 0,282 Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276						
Swinglea glutinosa (Blanco) Merr. 0 2 0 720 0,553 Annona cherimola Mill. 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 367 0,282 Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276	Melicoccus bijugatus Jacq.	0		0	720	
Annona cherimola Mill. 1 1 0 367 0,282 Vitex cymosa Bertero ex Spreng 1 1 0 367 0,282 Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276		0		0	720	
Vitex cymosa Bertero ex Spreng 1 1 0 367 0,282 Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276				0		
Cecropia peltata L. 0 1 0 360 0,276 Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276		1	1			
Conocarpus erectus L. 0 1 0 360 0,276 Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276		0	1			
Cordia alba (Jacq.) Roem. & Schult. 0 1 0 360 0,276						

Especies	Suprimido	Codominante	Dominante	Ps	Ps%
Enterolobium cyclocarpum (Jacq.) Griseb.	0	1	0	360	0,276
Hura crepitans L.	0	1	0	360	0,276
Pachira quinata (Jacq.) W.S.Alverson	0	1	0	360	0,276
Piptadenia sp.	0	1	0	360	0,276
Senna spectabilis (DC.) H.S.Irwin & Barneby	0	1	0	360	0,276
Virola sp.	0	1	0	360	0,276
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0	0	1	24	0,018
Inga sp.	0	0	1	24	0,018
Platymiscium pinnatum (Jacq.) Dugand	0	0	1	24	0,018
Gustavia superba (Kunth) O.Berg	1	0	0	7	0,005

Figura 115. Distribución de la posición sociológica de las especies del bosque fragmentado con pastos y cultivos

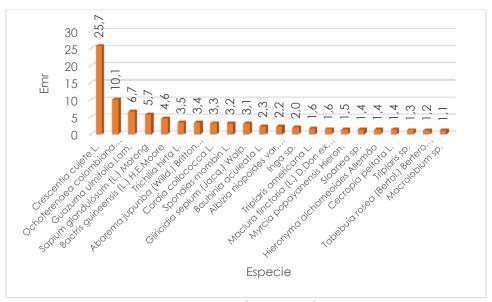
Fuente: Elaboración equipo técnico

5.5.2.9.2.3. Analisis del sotobosque

Categoria de tamaño absoluta

El análisis de regeneración natural muestra que la especie que presenta mayor representación es *Crescentia cujete* L. con una categoría de tamaño de 33,626 %, seguido de *Ochoterenaea colombiana* F.A. Barkley con una categoría de tamaño de 13,450 % (Figura 116**¡Error! No se encuentra el origen de la referencia.**) (Tabla 198).

Tabla 198. Cálculo de la estructura de sotobosque en el bosque fragmentado con pastos y cultivos


	1		1	T
<u>Especie</u>	<u>AB%</u>	<u>FA%</u>	CTaEM%	<u>Emr</u>
Crescentia cujete L.	33,280	10,219	33,626	25,708
Ochoterenaea colombiana F.A.Barkley	13,280	3,650	13,450	10,127
Guazuma ulmifolia Lam.	5,600	8,759	5,629	6,663
Sapium glandulosum (L.) Morong	3,840	9,489	3,826	5,718
Bactris guineensis (L.) H.E.Moore	6,000	2,190	5,702	4,631
Trichilia hirta L.	3,040	4,380	2,959	3,459
Abarema jupunba (Willd.) Britton & Killip	4,320	1,460	4,412	3,397
Cordia collococca L.	2,720	4,380	2,679	3,260
Spondias mombin L.	3,360	2,920	3,308	3,196
Gliricidia sepium (Jacq.) Walp.	2,480	4,380	2,425	3,095
Bauhinia aculeata L.	3,040	0,730	3,051	2,274
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,120	4,380	1,104	2,201
Inga sp.	1,120	3,650	1,106	1,958
Triplaris americana L.	1,360	2,190	1,313	1,621
Maclura tinctoria (L.) D.Don ex Steud.	1,280	2,190	1,239	1,570
Myrcia popayanensis Hieron.	1,120	2,190	1,158	1,489
Sloanea sp.	1,040	2,190	1,047	1,426
Hieronyma alchorneoides Allemão	1,760	0,730	1,720	1,403
Cecropia peltata L.	1,680	0,730	1,685	1,365
Triplaris sp.	0,800	2,190	0,768	1,253
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,040	1,460	1,103	1,201
Macrolobium sp.	0,640	2,190	0,608	1,146
Acacia cornigera (L.) Willd.	0,960	1,460	0,933	1,118
Coccoloba pubescens L.	0,960	0,730	0,935	0,875
Sterculia apetala (Jacq.) H.Karst.	0,400	1,460	0,390	0,750
Bellucia grossularioides (L.) Triana	0,240	1,460	0,256	0,652
Sapium sp1.	0,240	1,460	0,256	0,652
Crateva tapia L.	0,240	1,460	0,228	0,643
Piptadenia sp.	0,240	1,460	0,228	0,643
Cochlospermum sp.	0,480	0,730	0,512	0,574
Annona cherimola Mill.	0,320	0,730	0,332	0,461
Handroanthus guayacan (Seem.) S.O.Grose	0,240	0,730	0,247	0,406
Melicoccus bijugatus Jacq.	0,240	0,730	0,239	0,403
Tectona grandis L.f.	0,160	0,730	0,171	0,354
Albizia saman (Jacq.) Merr.	0,160	0,730	0,156	0,349
Pachira quinata (Jacq.) W.S.Alverson	0,160	0,730	0,156	0,349
Cedrela odorata L.	0,160	0,730	0,152	0,347
Caesalpinia coriaria (Jacq.) Willd.	0,080	0,730	0,085	0,298

<u>Especie</u>	<u>AB%</u>	<u>FA%</u>	СтаЕМ%	<u>Emr</u>
Citrus aurantiifolia (Christm.) Swingle	0,080	0,730	0,085	0,298
Croton sp.	0,080	0,730	0,085	0,298
Enterolobium cyclocarpum (Jacq.) Griseb.	0,080	0,730	0,085	0,298
Protium apiculatum Swart	0,080	0,730	0,085	0,298
Annona purpurea Moc. & Sessé ex Dunal	0,080	0,730	0,078	0,296
Mangifera sp.	0,080	0,730	0,078	0,296
Ocotea sp.	0,080	0,730	0,078	0,296
Bursera simaruba (L.) Sarg.	0,080	0,730	0,076	0,295
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,080	0,730	0,076	0,295
Trophis caucana (Pittier) C.C. Berg	0,080	0,730	0,076	0,295
Totales Generales	100	100	100	100

Figura 116. Distribución del sotobosque del bosque fragmentado con pastos y cultivos

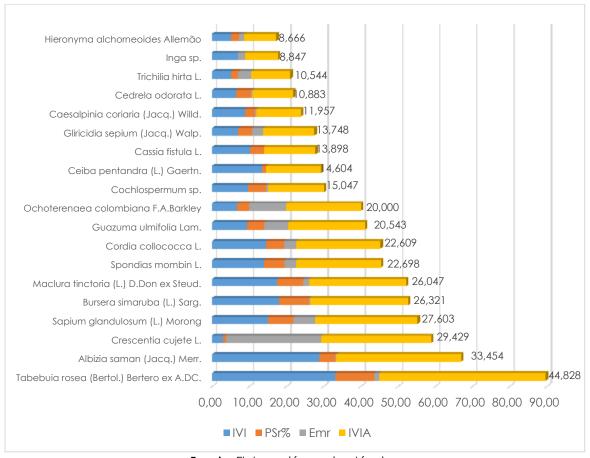
Fuente: Elaboración equipo técnico

Índice de valor de importancia ampliado (IVIA)

La especie con el mayor valor de importancia en el bosque es *Tabebuia rosea* (Bertol.) Bertero ex A.DC., la cual obtuvo un valor de 44,83 de IVIA con la mayor significancia asociado al IVI y PS. La especie *Albizia saman* (Jacq.) Merr presenta un valor de 33,45, también asociado al peso de IVI y Ps (Tabla 199) (Figura 117).

Tabla 199. Índice de valor de importancia ampliado para el bosque fragmentado con pastos y cultivos

<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	IVIA
Tabebuia rosea (Bertol.) Bertero ex A.DC.	33,21	10,41	1,20	44,83
Albizia saman (Jacq.) Merr.	28,68	4,42	0,35	33,45
Crescentia cujete L.	2,89	0,83	25,71	29,43
Sapium glandulosum (L.) Morong	14,97	6,91	5,72	27,40
Bursera simaruba (L.) Sarg.	17,97	8,05	0,30	26,32
Maclura tinctoria (L.) D.Don ex Steud.	17,57	6,91	1,57	26,05
Spondias mombin L.	13,97	5,53	3,20	22,70
Cordia collococca L.	14,63	4,72	3,26	22,61
Guazuma ulmifolia Lam.	9,46	4,42	6,66	20,54
Ochoterenaea colombiana F.A.Barkley	6,83	3,04	10,13	20,00
Cochlospermum sp.	9,77	4,70	0,57	15,05
Ceiba pentandra (L.) Gaertn.	13,39	1,22	0,00	14,60
Cassia fistula L.	10,30	3,59	0,00	13,90
Gliricidia sepium (Jacq.) Walp.	7,06	3,59	3,09	13,75
Caesalpinia coriaria (Jacq.) Willd.	8,88	2,78	0,30	11,96
Cedrela odorata L.	6,39	4,15	0,35	10,88
Trichilia hirta L.	5,15	1,94	3,46	10,54
Inga sp.	6,87	0,02	1,96	8,85
Hieronyma alchorneoides Allemão	5,04	2,22	1,40	8,67
Coccoloba pubescens L.	5,55	2,22	0,88	8,64
Abarema jupunba (Willd.) Britton & Killip	3,86	1,38	3,40	8,64
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	4,82	1,94	0,00	6,76
Swietenia macrophylla King	4,06	2,49	0,00	6,55
Handroanthus guayacan (Seem.) S.O.Grose	4,24	1,38	0,41	6,03
Sterculia apetala (Jacq.) H.Karst.	3,50	0,83	0,75	5,08
Eschweilera caudiculata R.Knuth	4,05	0,85	0,00	4,90
Annona purpurea Moc. & Sessé ex Dunal	3,46	1,11	0,30	4,86
Cedrela angustifolia DC.	3,18	1,66	0,00	4,84
Bactris guineensis (L.) H.E.Moore	0,00	0,00	4,63	4,63
Chrysophyllum cainito L.	3,18	1,11	0,00	4,28
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,29	0,02	2,20	3,51
Vitex cymosa Bertero ex Spreng	3,21	0,28	0,00	3,50
Ficus dugandii Standl.	2,35	0,55	0,00	2,90
Melicoccus bijugatus Jacq.	1,90	0,55	0,40	2,86
Cecropia peltata L.	1,06	0,28	1,37	2,71
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,84	0,55	0,30	2,69
Swinglea glutinosa (Blanco) Merr.	1,97	0,55	0,00	2,52



<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	<u>IVIA</u>
Bauhinia aculeata L.	0,00	0,00	2,27	2,27
Pachira quinata (Jacq.) W.S.Alverson	1,60	0,28	0,35	2,22
Platymiscium pinnatum (Jacq.) Dugand	1,99	0,02	0,00	2,01
Annona cherimola Mill.	1,22	0,28	0,46	1,97
Piptadenia sp.	0,90	0,28	0,64	1,82
Triplaris americana L.	0,00	0,00	1,62	1,62
Enterolobium cyclocarpum (Jacq.) Griseb.	0,94	0,28	0,30	1,52
Myrcia popayanensis Hieron.	0,00	0,00	1,49	1,49
Sloanea sp.	0,00	0,00	1,43	1,43
Virola sp.	1,04	0,28	0,00	1,32
Cordia alba (Jacq.) Roem. & Schult.	1,01	0,28	0,00	1,29
Triplaris sp.	0,00	0,00	1,25	1,25
Senna spectabilis (DC.) H.S.Irwin & Barneby	0,92	0,28	0,00	1,20
Cordia alliodora (Ruiz & Pav.) Oken	0,91	0,28	0,00	1,19
Hura crepitans L.	0,91	0,28	0,00	1,19
Conocarpus erectus L.	0,90	0,28	0,00	1,18
Macrolobium sp.	0,00	0,00	1,15	1,15
Acacia cornigera (L.) Willd.	0,00	0,00	1,12	1,12
Gustavia superba (Kunth) O.Berg	1,07	0,01	0,00	1,07
Bellucia grossularioides (L.) Triana	0,00	0,00	0,65	0,65
Sapium sp1.	0,00	0,00	0,65	0,65
Crateva tapia L.	0,00	0,00	0,64	0,64
Tectona grandis L.f.	0,00	0,00	0,35	0,35
Citrus aurantiifolia (Christm.) Swingle	0,00	0,00	0,30	0,30
Croton sp.	0,00	0,00	0,30	0,30
Protium apiculatum Swart	0,00	0,00	0,30	0,30
Mangifera sp.	0,00	0,00	0,30	0,30
Ocotea sp.	0,00	0,00	0,30	0,30
Trophis caucana (Pittier) C.C. Berg	0,00	0,00	0,30	0,30

Figura 117. Distribución del IVIA para el bosque fragmentado con pastos y cultivos

5.5.2.9.2.4. Indicadores de diversidad alfa del bosque fragmentado con pastos y cultivos

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 200.

Tabla 200. Índices de biodiversidad alfa del bosque fragmentado con pastos y cultivos

Parámetro	Valor
Dmn	2,427
Dsi	1/0,0487= 20,54
d	1-0,199= 0,87
H′	3,32
dmg	7,87

El índice de Menhinick muestra una tendencia media a la diversidad, siendo poco heterogéneo en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra tendencia a la alta diversidad del bosque, teniendo en cuenta que la probabilidad de sacar individuos iguales es muy baja.

Para la cobertura de bosque fragmentado con pastos y cultivos, el índice de Shannon establece que es típicamente diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es altamente biodiverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad media.

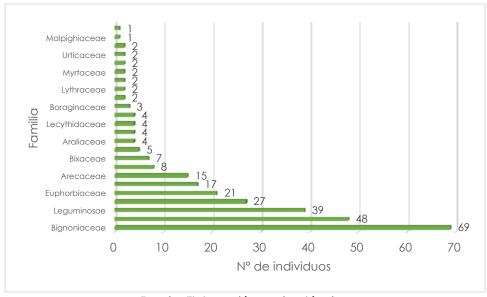
5.5.2.10. Cobertura de Bosque Fragmentado con Vegetación Secundaria

El bosque fragmentado con vegetación secundaria se encuentra constituido por un total de 48 especies distribuidas en 24 familias registradas en el inventario forestal.

En la Tabla 201, se identifica la familia Bignoniaceae y Malvaceae son las que presentan la mayor representación. A su vez se identifica que la familia Euphorbiaceae se encuentra representada en 2 generos y 2 especies, resaltando la especie *Croton sp* con 20 individuos (Figura 118).

Tabla 201. Composición florística del bosque fragmentado con vegetación secundaria

Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
		Anacardium excelsum (Bertero ex Kunth) Skeels	1
Anacardiaceae	27	Astronium graveolens Jacq.	14
		Spondias mombin L.	12
A 10 10 10 10 10 10 10 10 10 10 10 10 10	2	Annona sp.	1
Annonaceae	2	Annona squamosa L.	1
Araliaceae	4	Aralia excelsa (Griseb.) J.Wen	4
A	1.5	Cocos nucifera L.	4
Arecaceae 15		Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	11
		Crescentia cujete L.	7
Bignoniaceae	69	Handroanthus chrysanthus (Jacq.) S.O.Grose	2
		Handroanthus guayacan (Seem.) S.O.Grose	9
		Tabebuia rosea (Bertol.) Bertero ex A.DC.	51
Bixaceae	7	Cochlospermum vitifolium (Willd.) Spreng.	7
Boraginaceae	3	Cordia collococca L.	3
Burseraceae	17	Bursera simaruba (L.) Sarg.	17
Funda arlai ara a	0.1	Croton sp.	20
Euphorbiaceae 21		Sapium sp.	1
Hernandiaceae	4	Gyrocarpus americanus Jacq.	4
Lamiaceae	5	Vitex cymosa Bertero ex Spreng	5



Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
La avida alara a ara	4	Eschweilera caudiculata R.Knuth	1
Lecythidaceae 4		Grias cauliflora L.	3
		Abarema jupunba (Willd.) Britton & Killip	4
		Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	14
		Caesalpinia coriaria (Jacq.) Willd.	3
		Cassia fistula L.	2
Leguminosae	39	Centrolobium paraense Tul.	5
301		Copaifera canime Harms	1
		Delonix regia (Hook.) Raf.	1
		Dipteryx sp.	1
		Gliricidia sepium (Jacq.) Walp.	7
		Platymiscium pinnatum (Jacq.) Dugand	1
Lythraceae	2	Lagerstroemia speciosa (L.) Pers.	2
Malpighiaceae	1	Malpighia sp.	1
	48	Guazuma ulmifolia Lam.	5
Malvaceae		Pseudobombax septenatum (Jacq.) Dugand	38
Maivaceae		Sterculia apetala (Jacq.) H.Karst.	3
		Trichospermum galeottii (Turcz.) Kosterm.	2
Malianasas	0	Cedrela odorata L.	3
Meliaceae	8	Trichilia hirta L.	5
Moraceae	2	Maclura tinctoria (L.) D.Don ex Steud.	2
Muntingiaceae	1	Muntingia calabura L.	1
Myrtaceae	2	Psidium guajava L.	2
Rubiaceae	2	Genipa americana L.	2
	4	Chrysophyllum cainito L.	1
Sapotaceae		Manilkara huberi (Ducke) Standl.	1
		Micropholis sp.	2
Urticaceae	2	Cecropia peltata L.	2
Zygophyllaceae	2	Bulnesia arborea (Jacq.) Engl.	2

Figura 118. Distribución florística de las familias identificadas en el bosque fragmentado con vegetación secundaria

5.5.2.10.1. Indicadores dasométricos del bosque fragmentado con vegetación secundaria.

El bosque fragmentado con vegetación secundaria presenta un total de 291 individuos / ha en 48 especies; siendo la de mayor número la especie *Tabebuia rosea* (Bertol.) Bertero ex A.DC. con 51 individuos, seguido de la especie *Pseudobombax septenatum* (Jacq.) Dugand con 38 individuos por Ha. En la Tabla 202, se presenta el N° de individuos de cada una de las especies por Ha (Figura 119).

Tabla 202. Nº de individuos/especie/ha del bosque fragmentado con vegetación secundaria

Especie	N° de Ind / sp/ ha
Tabebuia rosea (Bertol.) Bertero ex A.DC.	51
Pseudobombax septenatum (Jacq.) Dugand	38
Croton sp.	20
Bursera simaruba (L.) Sarg.	17
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	14
Astronium graveolens Jacq.	14
Spondias mombin L.	12
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	11
Handroanthus guayacan (Seem.) S.O.Grose	9
Cochlospermum vitifolium (Willd.) Spreng.	7
Crescentia cujete L.	7
Gliricidia sepium (Jacq.) Walp.	7

Especie	N° de Ind / sp/ ha
Centrolobium paraense Tul.	5
Guazuma ulmifolia Lam.	5
Trichilia hirta L.	5
Vitex cymosa Bertero ex Spreng	5
Abarema jupunba (Willd.) Britton & Killip	4
Aralia excelsa (Griseb.) J.Wen	4
Cocos nucifera L.	4
Gyrocarpus americanus Jacq.	4
Caesalpinia coriaria (Jacq.) Willd.	3
Cedrela odorata L.	3
Cordia collococca L.	3
Grias cauliflora L.	3
Sterculia apetala (Jacq.) H.Karst.	3
Bulnesia arborea (Jacq.) Engl.	2
Cassia fistula L.	2
Cecropia peltata L.	2
Genipa americana L.	2
Handroanthus chrysanthus (Jacq.) S.O.Grose	2
Lagerstroemia speciosa (L.) Pers.	2
Maclura tinctoria (L.) D.Don ex Steud.	2
Micropholis sp.	2
Psidium guajava L.	2
Trichospermum galeottii (Turcz.) Kosterm.	2
Anacardium excelsum (Bertero ex Kunth) Skeels	1
Annona sp.	1
Annona squamosa L.	1
Chrysophyllum cainito L.	1
Copaifera canime Harms	1
Delonix regia (Hook.) Raf.	1
Dipteryx sp.	1
Eschweilera caudiculata R.Knuth	1
Malpighia sp.	1
Manilkara huberi (Ducke) Standl.	1
Muntingia calabura L.	1
Platymiscium pinnatum (Jacq.) Dugand	1
Sapium sp.	1

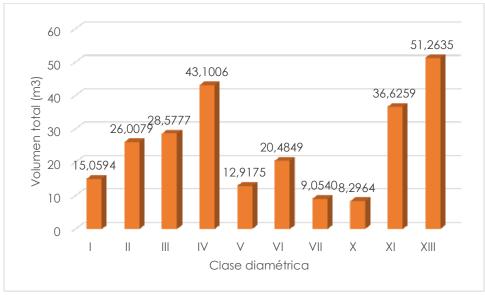
60 51 N° de individuos 50 38 40 30 20 10 0 Sadd Midniffer of the control of the et Church fritter of Steel Bitte cido se dum lacel mod Whote chief of some state of the state of th Administration of the state of Especie

Figura 119. Distribución de N° de individuos por especie

La cobertura de bosque fragmentado con vegetación secundaria presenta un área basal por ha de 27,0382 m² en las 48 especies, obteniendo un área basal promedio/individuo/especie de 0,0677 m² y área basal promedio/especie /hectárea de 0,5633 m²; en la Tabla 203 se presenta los indicadores detallados por especie.

Tabla 203. Indicadores por especie de área basal

Especie	AB/sp/ha	AB/ind/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,1306	0,0326
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,7087	0,0506
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0092	0,0092
Annona sp.	0,0268	0,0268
Annona squamosa L.	0,0087	0,0087
Aralia excelsa (Griseb.) J.Wen	0,7612	0,1903
Astronium graveolens Jacq.	0,3896	0,0278
Bulnesia arborea (Jacq.) Engl.	0,1649	0,0824
Bursera simaruba (L.) Sarg.	1,1639	0,0685
Caesalpinia coriaria (Jacq.) Willd.	1,1317	0,3772
Cassia fistula L.	0,1455	0,0727
Cecropia peltata L.	0,0766	0,0383
Cedrela odorata L.	0,5590	0,1863
Centrolobium paraense Tul.	0,3936	0,0787
Chrysophyllum cainito L.	0,0087	0,0087
Cochlospermum vitifolium (Willd.) Spreng.	0,5654	0,0808


Especie	AB/sp/ha	AB/ind/sp/ha
Cocos nucifera L.	0,0685	0,0171
Copaifera canime Harms	0,0424	0,0424
Cordia collococca L.	0,0531	0,0177
Crescentia cujete L.	0,2326	0,0332
Croton sp.	1,0636	0,0532
Delonix regia (Hook.) Raf.	0,0268	0,0268
Dipteryx sp.	0,0259	0,0259
Eschweilera caudiculata R.Knuth	0,0127	0,0127
Genipa americana L.	0,0337	0,0168
Gliricidia sepium (Jacq.) Walp.	0,4303	0,0615
Grias cauliflora L.	0,0354	0,0118
Guazuma ulmifolia Lam.	0,0908	0,0182
Gyrocarpus americanus Jacq.	0,3202	0,0800
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0195	0,0098
Handroanthus guayacan (Seem.) S.O.Grose	0,4697	0,0522
Lagerstroemia speciosa (L.) Pers.	0,0926	0,0463
Maclura tinctoria (L.) D.Don ex Steud.	0,1205	0,0603
Malpighia sp.	0,0268	0,0268
Manilkara huberi (Ducke) Standl.	0,1345	0,1345
Micropholis sp.	0,0218	0,0109
Muntingia calabura L.	0,0316	0,0316
Platymiscium pinnatum (Jacq.) Dugand	0,1284	0,1284
Pseudobombax septenatum (Jacq.) Dugand	11,0259	0,2902
Psidium guajava L.	0,0639	0,0319
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,3399	0,0309
Sapium sp.	0,0796	0,0796
Spondias mombin L.	1,9659	0,1638
Sterculia apetala (Jacq.) H.Karst.	0,4417	0,1472
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,7261	0,0535
Trichilia hirta L.	0,3166	0,0633
Trichospermum galeottii (Turcz.) Kosterm.	0,2108	0,1054
Vitex cymosa Bertero ex Spreng	0,1428	0,0286

En cuanto a los indicadores de volumen se encuentra distribuido en 13 clases diamétricas, siendo la clase XIII que presenta los mayores volúmenes. Para el caso del volumen total se obtiene 251,387 m³; en la Figura 120 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de bosque fragmentado con vegetación secundaria, encontrándose la clase XIII con un volumen de 51,2635 m³ seguido de la clase IV con 43,1006 m³.

Figura 120. Distribución del volumen total por clase diamétrica

De igual manera, el volumen total por especie se calcula un promedio de 5,23 m³ y un volumen promedio por especie por individuo de 0,57 m³; en la Tabla 204 se evidencia el volumen de cada una de las especies por hectárea y en la

Tabla 205 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 204. Indicadores por especie de volumen total

Especie	VT/sp /ha	VT ind/sp/ho
Abarema jupunba (Willd.) Britton & Killip	0,9923	0,2481
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	5,7532	0,4109
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0598	0,0598
Annona sp.	0,1044	0,1044
Annona squamosa L.	0,0282	0,0282
Aralia excelsa (Griseb.) J.Wen	7,1947	1,7987
Astronium graveolens Jacq.	2,8016	0,2001
Bulnesia arborea (Jacq.) Engl.	0,9802	0,4901
Bursera simaruba (L.) Sarg.	11,1058	0,6533
Caesalpinia coriaria (Jacq.) Willd.	9,7937	3,2646
Cassia fistula L.	1,3060	0,6530
Cecropia peltata L.	0,6233	0,3117
Cedrela odorata L.	6,2687	2,0896
Centrolobium paraense Tul.	4,0935	0,8187
Chrysophyllum cainito L.	0,0394	0,0394
Cochlospermum vitifolium (Willd.) Spreng.	5,0892	0,7270
Cocos nucifera L.	0,4282	0,1070
Copaifera canime Harms	0,3308	0,3308
Cordia collococca L.	0,5066	0,1689
Crescentia cujete L.	1,1185	0,1598
Croton sp.	8,8145	0,4407
Delonix regia (Hook.) Raf.	0,1392	0,1392
Dipteryx sp.	0,1513	0,1513
Eschweilera caudiculata R.Knuth	0,0662	0,0662
Genipa americana L.	0,2190	0,1095
Gliricidia sepium (Jacq.) Walp.	2,7071	0,3867
Grias cauliflora L.	0,1765	0,0588
Guazuma ulmifolia Lam.	0,6379	0,1276
Gyrocarpus americanus Jacq.	2,5841	0,6460
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0955	0,0477
Handroanthus guayacan (Seem.) S.O.Grose	3,9822	0,4425
Lagerstroemia speciosa (L.) Pers.	0,6022	0,3011
Maclura tinctoria (L.) D.Don ex Steud.	1,1306	0,5653
Malpighia sp.	0,1218	0,1218
Manilkara huberi (Ducke) Standl.	0,6993	0,6993

Especie	VT/sp /ha	VT ind/sp/ha
Micropholis sp.	0,0992	0,0496
Muntingia calabura L.	0,1642	0,1642
Platymiscium pinnatum (Jacq.) Dugand	1,1263	1,1263
Pseudobombax septenatum (Jacq.) Dugand	117,7606	3,0990
Psidium guajava L.	0,3735	0,1868
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	2,2095	0,2009
Sapium sp.	0,6724	0,6724
Spondias mombin L.	17,3551	1,4463
Sterculia apetala (Jacq.) H.Karst.	5,0706	1,6902
Tabebuia rosea (Bertol.) Bertero ex A.DC.	20,1785	0,3957
Trichilia hirta L.	2,3616	0,4723
Trichospermum galeottii (Turcz.) Kosterm.	2,2896	1,1448
Vitex cymosa Bertero ex Spreng	0,9809	0,1962

Tabla 205. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /ha/Ct diam.
I	15,0594
Abarema jupunba (Willd.) Britton & Killip	0,1967
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,8133
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0598
Annona sp.	0,1044
Annona squamosa L.	0,0282
Astronium graveolens Jacq.	1,3407
Bursera simaruba (L.) Sarg.	1,1766
Caesalpinia coriaria (Jacq.) Willd.	0,1862
Cecropia peltata L.	0,0787
Chrysophyllum cainito L.	0,0394
Cochlospermum vitifolium (Willd.) Spreng.	0,1942
Cocos nucifera L.	0,4282
Cordia collococca L.	0,5066
Crescentia cujete L.	0,3865
Croton sp.	0,9174
Delonix regia (Hook.) Raf.	0,1392
Dipteryx sp.	0,1513
Eschweilera caudiculata R.Knuth	0,0662
Genipa americana L.	0,2190
Gliricidia sepium (Jacq.) Walp.	0,2274
Grias cauliflora L.	0,1765
Guazuma ulmifolia Lam.	0,6379
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0955
Handroanthus guayacan (Seem.) S.O.Grose	0,4423
Lagerstroemia speciosa (L.) Pers.	0,1925
Malpighia sp.	0,1218
Micropholis sp.	0,0992
Pseudobombax septenatum (Jacq.) Dugand	1,4776
Psidium guajava L.	0,0749
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,8090
Spondias mombin L.	0,0737
Sterculia apetala (Jacq.) H.Karst.	0,3989
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,4939
Trichilia hirta L.	0,2784
Trichospermum galeottii (Turcz.) Kosterm.	0,0944
Vitex cymosa Bertero ex Spreng	0,3330

Clase diamétrica / Especie	VTsp /ha/Ct diam.	
II	26,0079	
Abarema jupunba (Willd.) Britton & Killip	0,7956	
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	3,2449	
Astronium graveolens Jacq.	1,4609	
Bulnesia arborea (Jacq.) Engl.	0,3656	
Bursera simaruba (L.) Sarg.	0,8778	
Cassia fistula L.	0,6853	
Cecropia peltata L.	0,5447	
Centrolobium paraense Tul.	1,4437	
Cochlospermum vitifolium (Willd.) Spreng.	0,5485	
Copaifera canime Harms	0,3308	
Croton sp.	1,2551	
Gliricidia sepium (Jacq.) Walp.	1,3395	
Gyrocarpus americanus Jacq.	0,2392	
Handroanthus guayacan (Seem.) S.O.Grose	0,9729	
Lagerstroemia speciosa (L.) Pers.	0,4097	
Maclura tinctoria (L.) D.Don ex Steud.	1,1306	
Muntingia calabura L.	0,1642	
Pseudobombax septenatum (Jacq.) Dugand	1,3418	
Psidium guajava L.	0,2987	
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,4005	
Tabebuia rosea (Bertol.) Bertero ex A.DC.	6,2492	
Trichilia hirta L.	0,2607	
Vitex cymosa Bertero ex Spreng	0,6479	
III	28,5777	
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,6950	
Bulnesia arborea (Jacq.) Engl.	0,6145	
Bursera simaruba (L.) Sarg.	1,4816	
Cassia fistula L.	0,6207	
Cedrela odorata L.	0,7469	
Centrolobium paraense Tul.	1,0763	
Cochlospermum vitifolium (Willd.) Spreng.	1,5134	
Croton sp.	3,9046	
Gyrocarpus americanus Jacq.	2,3449	
Handroanthus guayacan (Seem.) S.O.Grose	1,2471	
Pseudobombax septenatum (Jacq.) Dugand	6,3293	
Sapium sp.	0,6724	
Spondias mombin L.	2,2800	

Clase diamétrica / Especie	VTsp /ha/Ct diam.
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,2282
Trichilia hirta L.	1,8225
IV	43,1006
Aralia excelsa (Griseb.) J.Wen	3,1724
Bursera simaruba (L.) Sarg.	3,0076
Cedrela odorata L.	1,2166
Centrolobium paraense Tul.	1,5735
Cochlospermum vitifolium (Willd.) Spreng.	2,8332
Crescentia cujete L.	0,7320
Handroanthus guayacan (Seem.) S.O.Grose	1,3198
Manilkara huberi (Ducke) Standl.	0,6993
Platymiscium pinnatum (Jacq.) Dugand	1,1263
Pseudobombax septenatum (Jacq.) Dugand	9,2724
Spondias mombin L.	8,9404
Tabebuia rosea (Bertol.) Bertero ex A.DC.	9,2073
V	12,9175
Aralia excelsa (Griseb.) J.Wen	4,0223
Caesalpinia coriaria (Jacq.) Willd.	1,3111
Gliricidia sepium (Jacq.) Walp.	1,1403
Pseudobombax septenatum (Jacq.) Dugand	2,5700
Spondias mombin L.	1,6787
Trichospermum galeottii (Turcz.) Kosterm.	2,1952
VI	20,4849
Bursera simaruba (L.) Sarg.	4,5622
Cedrela odorata L.	4,3052
Croton sp.	2,7373
Pseudobombax septenatum (Jacq.) Dugand	8,8802
VII	9,0540
Spondias mombin L.	4,3823
Sterculia apetala (Jacq.) H.Karst.	4,6717
X	8,2964
Caesalpinia coriaria (Jacq.) Willd.	8,2964
XI	36,6259
Pseudobombax septenatum (Jacq.) Dugand	36,6259
XIII	51,2635
Pseudobombax septenatum (Jacq.) Dugand	51,2635

El bosque fragmentado con vegetación secundaria presenta un volumen de fuste por ha de 144,65 m3, distribuido en 13 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 14,46 m³ (Figura 121).

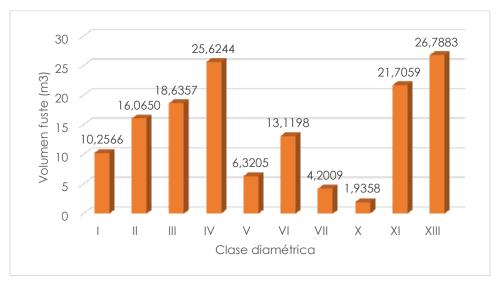


Figura 121. Distribución del volumen del fuste por clase diamétrica

Fuente: Elaboración equipo técnico

De igual forma, el volumen de fuste por especie promedio es de 3,01 m³ y un volumen promedio por especie por individuo de 0,31 m³ de volumen de fuste por individuo por especie. En la Tabla 206 se evidencia el volumen de cada una de las especies y en la Tabla 207 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 206. Indicadores por especie de volumen de fuste

Especie	VF/sp / Ha	VF ind/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,6706	0,1676
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	3,6679	0,2620
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0269	0,0269
Annona sp.	0,0696	0,0696
Annona squamosa L.	0,0225	0,0225
Aralia excelsa (Griseb.) J.Wen	2,4842	0,6210
Astronium graveolens Jacq.	1,6605	0,1186
Bulnesia arborea (Jacq.) Engl.	0,3829	0,1915
Bursera simaruba (L.) Sarg.	7,1450	0,4203
Caesalpinia coriaria (Jacq.) Willd.	2,6938	0,8979
Cassia fistula L.	1,0830	0,5415
Cecropia peltata L.	0,3811	0,1906
Cedrela odorata L.	3,9538	1,3179
Centrolobium paraense Tul.	1,8157	0,3631

Especie	VF/sp / Ha	VF ind/sp/ha
Chrysophyllum cainito L.	0,0253	0,0253
Cochlospermum vitifolium (Willd.) Spreng.	3,9364	0,5623
Cocos nucifera L.	0,1814	0,0454
Copaifera canime Harms	0,3308	0,3308
Cordia collococca L.	0,3106	0,1035
Crescentia cujete L.	0,7025	0,1004
Croton sp.	4,3557	0,2178
Delonix regia (Hook.) Raf.	0,1044	0,1044
Dipteryx sp.	0,1260	0,1260
Eschweilera caudiculata R.Knuth	0,0414	0,0414
Genipa americana L.	0,1352	0,0676
Gliricidia sepium (Jacq.) Walp.	1,4015	0,2002
Grias cauliflora L.	0,1146	0,0382
Guazuma ulmifolia Lam.	0,3498	0,0700
Gyrocarpus americanus Jacq.	2,2474	0,5619
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0470	0,0235
Handroanthus guayacan (Seem.) S.O.Grose	2,6044	0,2894
Lagerstroemia speciosa (L.) Pers.	0,1915	0,0958
Maclura tinctoria (L.) D.Don ex Steud.	0,5599	0,2799
Malpighia sp.	0,0870	0,0870
Manilkara huberi (Ducke) Standl.	0,2622	0,2622
Micropholis sp.	0,0746	0,0373
Muntingia calabura L.	0,1396	0,1396
Platymiscium pinnatum (Jacq.) Dugand	0,4589	0,4589
Pseudobombax septenatum (Jacq.) Dugand	69,7521	1,8356
Psidium guajava L.	0,1743	0,0872
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	2,2515	0,2047
Sapium sp.	0,2845	0,2845
Spondias mombin L.	9,1532	0,7628
Sterculia apetala (Jacq.) H.Karst.	3,1654	1,0551
Tabebuia rosea (Bertol.) Bertero ex A.DC.	11,3236	0,2220
Trichilia hirta L.	1,7538	0,3508
Trichospermum galeottii (Turcz.) Kosterm.	1,2290	0,6145
Vitex cymosa Bertero ex Spreng	0,7199	0,1440

Tabla 207. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /ha /Ct diam.
l	10,2566
Abarema jupunba (Willd.) Britton & Killip	0,1193

Clase diamétrica / Especie	VFsp /ha /Ct diam.
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,5383
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0269
Annona sp.	0,0696
Annona squamosa L.	0,0225
Astronium graveolens Jacq.	0,8700
Bursera simaruba (L.) Sarg.	0,9567
Caesalpinia coriaria (Jacq.) Willd.	0,1024
Cecropia peltata L.	0,0669
Chrysophyllum cainito L.	0,0253
Cochlospermum vitifolium (Willd.) Spreng.	0,3597
Cocos nucifera L.	0,1814
Cordia collococca L.	0,3106
Crescentia cujete L.	0,2450
Croton sp.	0,6069
Delonix regia (Hook.) Raf.	0,1044
Dipteryx sp.	0,1260
Eschweilera caudiculata R.Knuth	0,0414
Genipa americana L.	0,1352
Gliricidia sepium (Jacq.) Walp.	0,1249
Grias cauliflora L.	0,1146
Guazuma ulmifolia Lam.	0,3498
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0470
Handroanthus guayacan (Seem.) S.O.Grose	0,2530
Lagerstroemia speciosa (L.) Pers.	0,0481
Malpighia sp.	0,0870
Micropholis sp.	0,0746
Pseudobombax septenatum (Jacq.) Dugand	0,8956
Psidium guajava L.	0,0416
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,8615
Spondias mombin L.	0,0402
Sterculia apetala (Jacq.) H.Karst.	0,3105
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,6262
Trichilia hirta L.	0,1591
Trichospermum galeottii (Turcz.) Kosterm.	0,0669
Vitex cymosa Bertero ex Spreng	0,2473
II	16,0650
Abarema jupunba (Willd.) Britton & Killip	0,5513
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,0900
Astronium graveolens Jacq.	0,7905
Bulnesia arborea (Jacq.) Engl.	0,1371

Clase diamétrica / Especie	VFsp /ha /Ct diam.
Bursera simaruba (L.) Sarg.	0,4737
Cassia fistula L.	0,5140
Cecropia peltata L.	0,3142
Centrolobium paraense Tul.	0,9616
Cochlospermum vitifolium (Willd.) Spreng.	0,5256
Copaifera canime Harms	0,3308
Croton sp.	0,6622
Gliricidia sepium (Jacq.) Walp.	0,7777
Gyrocarpus americanus Jacq.	0,2272
Handroanthus guayacan (Seem.) S.O.Grose	0,4972
Lagerstroemia speciosa (L.) Pers.	0,1434
Maclura tinctoria (L.) D.Don ex Steud.	0,5599
Muntingia calabura L.	0,1396
Pseudobombax septenatum (Jacq.) Dugand	1,0562
Psidium guajava L.	0,1327
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,3899
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,0828
Trichilia hirta L.	0,2347
Vitex cymosa Bertero ex Spreng	0,4726
III	18,6357
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,0396
Bulnesia arborea (Jacq.) Engl.	0,2458
Bursera simaruba (L.) Sarg.	0,9878
Cassia fistula L.	0,5690
Cedrela odorata L.	0,4902
Centrolobium paraense Tul.	0,2422
Cochlospermum vitifolium (Willd.) Spreng.	0,8960
Croton sp.	2,0602
Gyrocarpus americanus Jacq.	2,0202
Handroanthus guayacan (Seem.) S.O.Grose	0,8172
Pseudobombax septenatum (Jacq.) Dugand	4,7111
Sapium sp.	0,2845
Spondias mombin L.	1,4696
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,4425
Trichilia hirta L.	1,3600
IV	25,6244
Aralia excelsa (Griseb.) J.Wen	1,0763
· · · · · · · · · · · · · · · · · · ·	2,1035
Bursera simaruba (L.) Sarg.	2,1000
Bursera simaruba (L.) Sarg. Cedrela odorata L.	0,5576

Clase diamétrica / Especie	VFsp /ha /Ct diam.
Cochlospermum vitifolium (Willd.) Spreng.	2,1551
Crescentia cujete L.	0,4575
Handroanthus guayacan (Seem.) S.O.Grose	1,0370
Manilkara huberi (Ducke) Standl.	0,2622
Platymiscium pinnatum (Jacq.) Dugand	0,4589
Pseudobombax septenatum (Jacq.) Dugand	6,4034
Spondias mombin L.	5,3290
Tabebuia rosea (Bertol.) Bertero ex A.DC.	5,1720
V	6,3205
Aralia excelsa (Griseb.) J.Wen	1,4078
Caesalpinia coriaria (Jacq.) Willd.	0,6555
Gliricidia sepium (Jacq.) Walp.	0,4989
Pseudobombax septenatum (Jacq.) Dugand	1,6277
Spondias mombin L.	0,9685
Trichospermum galeottii (Turcz.) Kosterm.	1,1621
VI	13,1198
Bursera simaruba (L.) Sarg.	2,6233
Cedrela odorata L.	2,9060
Croton sp.	1,0265
Pseudobombax septenatum (Jacq.) Dugand	6,5640
VII	4,2009
Spondias mombin L.	1,3460
Sterculia apetala (Jacq.) H.Karst.	2,8549
X	1,9358
Caesalpinia coriaria (Jacq.) Willd.	1,9358
XI	21,7059
Pseudobombax septenatum (Jacq.) Dugand	21,7059
XIII	26,7883
Pseudobombax septenatum (Jacq.) Dugand	26,7883

En el caso del volumen comercial se obtiene un volumen de 107,83 m³ por hectárea distribuido en las 13 clases diamétricas, con un volumen promedio por clase diamétrica de 10,78 m³. En la Figura 122 se presenta la distribución del volumen comercial por clase diamétrica.

19,6375 18,8290 20 16,9648 18 Volumen comercial (m3) 16 14,0215 14 11,5102 11,1075 12 10 8 6 4,4195 2,9528 4 1,1062 2 0 |||||IV ΧI XIII Clase diamétrica

Figura 122. Distribución del volumen comercial por clase diamétrica

De igual manera, el volumen comercial por especie un promedio de 2,24 m³ y un volumen promedio por especie por individuo de 0,22 m³. En la

Tabla 208 se evidencia el volumen de cada una de las especies y en la Tabla 209 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 208. Indicadores por especie de volumen comercial

Especie	VF/sp /ha	VF ind/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,4639	0,1160
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,6108	0,1865
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0179	0,0179
Annona sp.	0,0174	0,0174
Annona squamosa L.	0,0113	0,0113
Aralia excelsa (Griseb.) J.Wen	1,4843	0,3711
Astronium graveolens Jacq.	1,1231	0,0802
Bulnesia arborea (Jacq.) Engl.	0,1072	0,0536
Bursera simaruba (L.) Sarg.	5,6394	0,3317
Caesalpinia coriaria (Jacq.) Willd.	1,5904	0,5301
Cassia fistula L.	0,7993	0,3997
Cecropia peltata L.	0,3065	0,1532
Cedrela odorata L.	3,4088	1,1363
Centrolobium paraense Tul.	1,3080	0,2616

Especie	VF/sp /ha	VF ind/sp/ha
Chrysophyllum cainito L.	0,0141	0,0141
Cochlospermum vitifolium (Willd.) Spreng.	3,0650	0,4379
Cocos nucifera L.	0,1146	0,0286
Copaifera canime Harms	0,2756	0,2756
Cordia collococca L.	0,2491	0,0830
Crescentia cujete L.	0,3154	0,0451
Croton sp.	3,1992	0,1600
Delonix regia (Hook.) Raf.	0,0696	0,0696
Dipteryx sp.	0,1008	0,1008
Eschweilera caudiculata R.Knuth	0,0290	0,0290
Genipa americana L.	0,0867	0,0433
Gliricidia sepium (Jacq.) Walp.	0,8910	0,1273
Grias cauliflora L.	0,0676	0,0225
Guazuma ulmifolia Lam.	0,2500	0,0500
Gyrocarpus americanus Jacq.	1,8728	0,4682
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0280	0,0140
Handroanthus guayacan (Seem.) S.O.Grose	1,8812	0,2090
Lagerstroemia speciosa (L.) Pers.	0,0807	0,0404
Maclura tinctoria (L.) D.Don ex Steud.	0,3809	0,1905
Malpighia sp.	0,0348	0,0348
Manilkara huberi (Ducke) Standl.	0,1311	0,1311
Micropholis sp.	0,0496	0,0248
Muntingia calabura L.	0,0780	0,0780
Platymiscium pinnatum (Jacq.) Dugand	0,2920	0,2920
Pseudobombax septenatum (Jacq.) Dugand	53,5346	1,4088
Psidium guajava L.	0,0830	0,0415
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,8000	0,1636
Sapium sp.	0,2069	0,2069
Spondias mombin L.	6,9539	0,5795
Sterculia apetala (Jacq.) H.Karst.	2,3389	0,7796
Tabebuia rosea (Bertol.) Bertero ex A.DC.	7,7621	0,1522
Trichilia hirta L.	1,3653	0,2731
Trichospermum galeottii (Turcz.) Kosterm.	0,8298	0,4149

 Tabla 209. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VC sp /ha/Ct diam.
I	7,2861

Clase diamétrica / Especie	VC sp /ha/Ct diam.
Abarema jupunba (Willd.) Britton & Killip	0,0701
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,3910
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0179
Annona sp.	0,0174
Annona squamosa L.	0,0113
Astronium graveolens Jacq.	0,6147
Bursera simaruba (L.) Sarg.	0,7004
Caesalpinia coriaria (Jacq.) Willd.	0,0745
Cecropia peltata L.	0,0551
Chrysophyllum cainito L.	0,0141
Cochlospermum vitifolium (Willd.) Spreng.	0,2796
Cocos nucifera L.	0,1146
Cordia collococca L.	0,2491
Crescentia cujete L.	0,1324
Croton sp.	0,4453
Delonix regia (Hook.) Raf.	0,0696
Dipteryx sp.	0,1008
Eschweilera caudiculata R.Knuth	0,0290
Genipa americana L.	0,0867
Gliricidia sepium (Jacq.) Walp.	0,0732
Grias cauliflora L.	0,0676
Guazuma ulmifolia Lam.	0,2500
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0280
Handroanthus guayacan (Seem.) S.O.Grose	0,1620
Lagerstroemia speciosa (L.) Pers.	0,0192
Malpighia sp.	0,0348
Micropholis sp.	0,0496
Pseudobombax septenatum (Jacq.) Dugand	0,6909
Psidium guajava L.	0,0166
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,6660
Spondias mombin L.	0,0268
Sterculia apetala (Jacq.) H.Karst.	0,2626
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,1000
Trichilia hirta L.	0,1193
Trichospermum galeottii (Turcz.) Kosterm.	0,0551
Vitex cymosa Bertero ex Spreng	0,1908
II	11,5102
Abarema jupunba (Willd.) Britton & Killip	0,3938
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,6132
Astronium graveolens Jacq.	0,5084

Clase diamétrica / Especie	VC sp /ha/Ct diam.
Bulnesia arborea (Jacq.) Engl.	0,0457
Bursera simaruba (L.) Sarg.	0,3107
Cassia fistula L.	0,3855
Cecropia peltata L.	0,2514
Centrolobium paraense Tul.	0,7095
Cochlospermum vitifolium (Willd.) Spreng.	0,4570
Copaifera canime Harms	0,2756
Croton sp.	0,4539
Gliricidia sepium (Jacq.) Walp.	0,5328
Gyrocarpus americanus Jacq.	0,1913
Handroanthus guayacan (Seem.) S.O.Grose	0,3729
Lagerstroemia speciosa (L.) Pers.	0,0615
Maclura tinctoria (L.) D.Don ex Steud.	0,3809
Muntingia calabura L.	0,0780
Pseudobombax septenatum (Jacq.) Dugand	0,8676
Psidium guajava L.	0,0664
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,1340
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,9390
Trichilia hirta L.	0,1564
Vitex cymosa Bertero ex Spreng	0,3247
III	14,0215
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,6066
Bulnesia arborea (Jacq.) Engl.	0,0615
Bursera simaruba (L.) Sarg.	0,8231
Cassia fistula L.	0,4138
Cedrela odorata L.	0,4201
Centrolobium paraense Tul.	0,1614
Cochlospermum vitifolium (Willd.) Spreng.	0,6065
Croton sp.	1,6157
Gyrocarpus americanus Jacq.	1,6814
Handroanthus guayacan (Seem.) S.O.Grose	0,5921
Pseudobombax septenatum (Jacq.) Dugand	3,5632
Sapium sp.	0,2069
Spondias mombin L.	1,1135
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,0661
Trichilia hirta L.	1,0896
IV	18,8290
Aralia excelsa (Griseb.) J.Wen	0,6798
Bursera simaruba (L.) Sarg.	1,5240
Cedrela odorata L.	0,4055

Clase diamétrica / Especie	VC sp /ha/Ct diam.
Centrolobium paraense Tul.	0,4371
Cochlospermum vitifolium (Willd.) Spreng.	1,7219
Crescentia cujete L.	0,1830
Handroanthus guayacan (Seem.) S.O.Grose	0,7542
Manilkara huberi (Ducke) Standl.	0,1311
Platymiscium pinnatum (Jacq.) Dugand	0,2920
Pseudobombax septenatum (Jacq.) Dugand	4,8811
Spondias mombin L.	4,1623
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,6569
V	4,4195
Aralia excelsa (Griseb.) J.Wen	0,8045
Caesalpinia coriaria (Jacq.) Willd.	0,4097
Gliricidia sepium (Jacq.) Walp.	0,2851
Pseudobombax septenatum (Jacq.) Dugand	1,3707
Spondias mombin L.	0,7748
Trichospermum galeottii (Turcz.) Kosterm.	0,7748
VI	11,1075
Bursera simaruba (L.) Sarg.	2,2811
Cedrela odorata L.	2,5831
Croton sp.	0,6843
Pseudobombax septenatum (Jacq.) Dugand	5,5589
VII	2,9528
Spondias mombin L.	0,8765
Sterculia apetala (Jacq.) H.Karst.	2,0763
X	1,1062
Caesalpinia coriaria (Jacq.) Willd.	1,1062
XI	16,9648
Pseudobombax septenatum (Jacq.) Dugand	16,9648
XIII	19,6375
Pseudobombax septenatum (Jacq.) Dugand	19,6375

El volumen cosechable calculado para el bosque fragmentado con vegetación secundaria, es de 91,24 m³ con un promedio por especie de 1,900 m³. En la Tabla 210 se evidencia el volumen de cada una de las especies y en la Tabla 211 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 210. Indicadores por especie de volumen cosechable

Especie	VCs/sp/ha
Abarema jupunba (Willd.) Britton & Killip	0,3925

Especie	VCs/sp/ha
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,2091
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0152
Annona sp.	0,0147
Annona squamosa L.	0,0095
Aralia excelsa (Griseb.) J.Wen	1,2559
Astronium graveolens Jacq.	0,9503
Bulnesia arborea (Jacq.) Engl.	0,0907
Bursera simaruba (L.) Sarg.	4,7718
Caesalpinia coriaria (Jacq.) Willd.	1,3457
Cassia fistula L.	0,6763
Cecropia peltata L.	0,2593
Cedrela odorata L.	2,8844
Centrolobium paraense Tul.	1,1068
Chrysophyllum cainito L.	0,0119
Cochlospermum vitifolium (Willd.) Spreng.	2,5935
Cocos nucifera L.	0,0970
Copaifera canime Harms	0,2332
Cordia collococca L.	0,2108
Crescentia cujete L.	0,2669
Croton sp.	2,7070
Delonix regia (Hook.) Raf.	0,0589
Dipteryx sp.	0,0853
Eschweilera caudiculata R.Knuth	0,0245
Genipa americana L.	0,0733
Gliricidia sepium (Jacq.) Walp.	0,7539
Grias cauliflora L.	0,0572
Guazuma ulmifolia Lam.	0,2115
Gyrocarpus americanus Jacq.	1,5846
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0237
Handroanthus guayacan (Seem.) S.O.Grose	1,5918
Lagerstroemia speciosa (L.) Pers.	0,0683
Maclura tinctoria (L.) D.Don ex Steud.	0,3223
Malpighia sp.	0,0294
Manilkara huberi (Ducke) Standl.	0,1110
Micropholis sp.	0,0420
Muntingia calabura L.	0,0660
Platymiscium pinnatum (Jacq.) Dugand	0,2471
Pseudobombax septenatum (Jacq.) Dugand	45,2985
Psidium guajava L.	0,0702
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,5231

Especie	VCs/sp/ha
Sapium sp.	0,1751
Spondias mombin L.	5,8840
Sterculia apetala (Jacq.) H.Karst.	1,9791
Tabebuia rosea (Bertol.) Bertero ex A.DC.	6,5679
Trichilia hirta L.	1,1553
Trichospermum galeottii (Turcz.) Kosterm.	0,7022
Vitex cymosa Bertero ex Spreng	0,4362

 Tabla 211. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie	VCs sp /ha /Ct diam
I	6,1651
Abarema jupunba (Willd.) Britton & Killip	0,0593
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,3308
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0152
Annona sp.	0,0147
Annona squamosa L.	0,0095
Astronium graveolens Jacq.	0,5202
Bursera simaruba (L.) Sarg.	0,5926
Caesalpinia coriaria (Jacq.) Willd.	0,0630
Cecropia peltata L.	0,0466
Chrysophyllum cainito L.	0,0119
Cochlospermum vitifolium (Willd.) Spreng.	0,2365
Cocos nucifera L.	0,0970
Cordia collococca L.	0,2108
Crescentia cujete L.	0,1120
Croton sp.	0,3768
Delonix regia (Hook.) Raf.	0,0589
Dipteryx sp.	0,0853
Eschweilera caudiculata R.Knuth	0,0245
Genipa americana L.	0,0733
Gliricidia sepium (Jacq.) Walp.	0,0619
Grias cauliflora L.	0,0572
Guazuma ulmifolia Lam.	0,2115
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0237
Handroanthus guayacan (Seem.) S.O.Grose	0,1371
Lagerstroemia speciosa (L.) Pers.	0,0163
Malpighia sp.	0,0294
Micropholis sp.	0,0420
Pseudobombax septenatum (Jacq.) Dugand	0,5846

Clase diamétrica / Especie	VCs sp /ha /Ct diam
Psidium guajava L.	0,0141
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,5636
Spondias mombin L.	0,0227
Sterculia apetala (Jacq.) H.Karst.	0,2222
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,9308
Trichilia hirta L.	0,1009
Trichospermum galeottii (Turcz.) Kosterm.	0,0466
Vitex cymosa Bertero ex Spreng	0,1614
II	9,7394
Abarema jupunba (Willd.) Britton & Killip	0,3332
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,3650
Astronium graveolens Jacq.	0,4302
Bulnesia arborea (Jacq.) Engl.	0,0387
Bursera simaruba (L.) Sarg.	0,2629
Cassia fistula L.	0,3262
Cecropia peltata L.	0,2127
Centrolobium paraense Tul.	0,6004
Cochlospermum vitifolium (Willd.) Spreng.	0,3867
Copaifera canime Harms	0,2332
Croton sp.	0,3841
Gliricidia sepium (Jacq.) Walp.	0,4508
Gyrocarpus americanus Jacq.	0,1619
Handroanthus guayacan (Seem.) S.O.Grose	0,3155
Lagerstroemia speciosa (L.) Pers.	0,0520
Maclura tinctoria (L.) D.Don ex Steud.	0,3223
Muntingia calabura L.	0,0660
Pseudobombax septenatum (Jacq.) Dugand	0,7341
Psidium guajava L.	0,0562
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,9595
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,6407
Trichilia hirta L.	0,1324
Vitex cymosa Bertero ex Spreng	0,2748
III	11,8644
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,5133
Bulnesia arborea (Jacq.) Engl.	0,0520
Bursera simaruba (L.) Sarg.	0,6965
Cassia fistula L.	0,3501
Cedrela odorata L.	0,3555
Centrolobium paraense Tul.	0,1366
Cochlospermum vitifolium (Willd.) Spreng.	0,5132

Clase diamétrica / Especie	VCs sp /ha /Ct diam.
Croton sp.	1,3671
Gyrocarpus americanus Jacq.	1,4227
Handroanthus guayacan (Seem.) S.O.Grose	0,5010
Pseudobombax septenatum (Jacq.) Dugand	3,0150
Sapium sp.	0,1751
Spondias mombin L.	0,9422
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,9021
Trichilia hirta L.	0,9219
IV	15,9322
Aralia excelsa (Griseb.) J.Wen	0,5752
Bursera simaruba (L.) Sarg.	1,2896
Cedrela odorata L.	0,3431
Centrolobium paraense Tul.	0,3698
Cochlospermum vitifolium (Willd.) Spreng.	1,4570
Crescentia cujete L.	0,1548
Handroanthus guayacan (Seem.) S.O.Grose	0,6381
Manilkara huberi (Ducke) Standl.	0,1110
Platymiscium pinnatum (Jacq.) Dugand	0,2471
Pseudobombax septenatum (Jacq.) Dugand	4,1302
Spondias mombin L.	3,5220
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,0943
V	3,7395
Aralia excelsa (Griseb.) J.Wen	0,6807
Caesalpinia coriaria (Jacq.) Willd.	0,3467
Gliricidia sepium (Jacq.) Walp.	0,2412
Pseudobombax septenatum (Jacq.) Dugand	1,1598
Spondias mombin L.	0,6556
Trichospermum galeottii (Turcz.) Kosterm.	0,6556
VI	9,3986
Bursera simaruba (L.) Sarg.	1,9302
Cedrela odorata L.	2,1857
Croton sp.	0,5790
Pseudobombax septenatum (Jacq.) Dugand	4,7037
VII	2,4985
Spondias mombin L.	0,7416
Sterculia apetala (Jacq.) H.Karst.	1,7569
X	0,9360
Caesalpinia coriaria (Jacq.) Willd.	0,9360
XI	14,3548
Pseudobombax septenatum (Jacq.) Dugand	14,3548

Clase diamétrica / Especie	VCs sp /ha /Ct diam.
XIII	16,6164
Pseudobombax septenatum (Jacq.) Dugand	16,6164

5.5.2.10.2. Indicadores estructurales del bosque fragmentado con vegetación secundaria

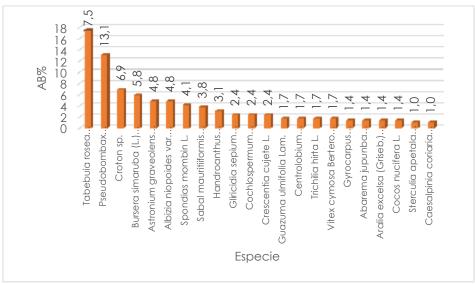
5.5.2.10.2.1. Estructura horizontal

En la Tabla 212 se observa los datos obtenidos del análisis de la estructura horizontal del bosque fragmentado con vegetación secundaria.

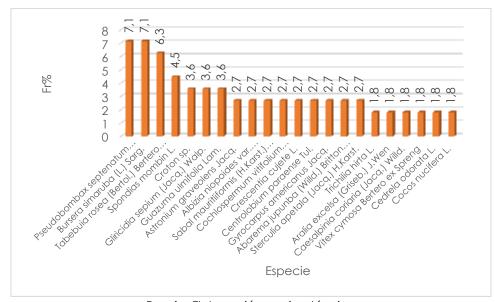
Tabla 212. Estructura horizontal para el bosque fragmentado con vegetación secundaria

	N°	Abund	ancia	Domina	ncia	Frecue	ncia	
Especies	de ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Astronium graveolens Jacq.	14	0,048	4,811	0,772	77,172	0,300	2,679	84,661
Pseudobombax septenatum (Jacq.) Dugand	38	0,131	13,058	0,109	10,852	0,800	7,143	31,053
Tabebuia rosea (Bertol.) Bertero ex A.DC.	51	0,175	17,526	0,021	2,090	0,700	6,250	25,866
Bursera simaruba (L.) Sarg.	17	0,058	5,842	0,009	0,892	0,800	7,143	13,877
Croton sp.	20	0,069	6,873	0,008	0,815	0,400	3,571	11,260
Spondias mombin L.	12	0,041	4,124	0,015	1,507	0,500	4,464	10,095
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	14	0,048	4,811	0,005	0,543	0,300	2,679	8,033
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	11	0,038	3,780	0,003	0,261	0,300	2,679	6,719
Gliricidia sepium (Jacq.) Walp.	7	0,024	2,405	0,003	0,330	0,400	3,571	6,307
Cochlospermum vitifolium (Willd.) Spreng.	7	0,024	2,405	0,004	0,433	0,300	2,679	5,517
Guazuma ulmifolia Lam.	5	0,017	1,718	0,001	0,070	0,400	3,571	5,359
Crescentia cujete L.	7	0,024	2,405	0,002	0,178	0,300	2,679	5,262
Centrolobium paraense Tul.	5	0,017	1,718	0,003	0,302	0,300	2,679	4,699
Handroanthus guayacan (Seem.) S.O.Grose	9	0,031	3,093	0,004	0,360	0,100	0,893	4,346
Gyrocarpus americanus Jacq.	4	0,014	1,375	0,002	0,245	0,300	2,679	4,299
Abarema jupunba (Willd.) Britton & Killip	4	0,014	1,375	0,001	0,100	0,300	2,679	4,153
Sterculia apetala (Jacq.) H.Karst.	3	0,010	1,031	0,003	0,339	0,300	2,679	4,048
Trichilia hirta L.	5	0,017	1,718	0,002	0,243	0,200	1,786	3,747
Aralia excelsa (Griseb.) J.Wen	4	0,014	1,375	0,006	0,584	0,200	1,786	3,744
Caesalpinia coriaria (Jacq.) Willd.	3	0,010	1,031	0,009	0,868	0,200	1,786	3,684
Vitex cymosa Bertero ex Spreng	5	0,017	1,718	0,001	0,109	0,200	1,786	3,613
Cedrela odorata L.	3	0,010	1,031	0,004	0,429	0,200	1,786	3,245
Cocos nucifera L.	4	0,014	1,375	0,001	0,053	0,200	1,786	3,213
Cordia collococca L.	3	0,010	1,031	0,000	0,041	0,200	1,786	2,857

	N°	Abund	ancia	Dominancia		Frecuencia		
Especies	de ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Grias cauliflora L.	3	0,010	1,031	0,000	0,027	0,200	1,786	2,844
Bulnesia arborea (Jacq.) Engl.	2	0,007	0,687	0,001	0,126	0,200	1,786	2,599
Maclura tinctoria (L.) D.Don ex Steud.	2	0,007	0,687	0,001	0,092	0,200	1,786	2,565
Cecropia peltata L.	2	0,007	0,687	0,001	0,059	0,200	1,786	2,532
Micropholis sp.	2	0,007	0,687	0,000	0,017	0,200	1,786	2,490
Handroanthus chrysanthus (Jacq.) S.O.Grose	2	0,007	0,687	0,000	0,015	0,200	1,786	2,488
Trichospermum galeottii (Turcz.) Kosterm.	2	0,007	0,687	0,002	0,162	0,100	0,893	1,742
Cassia fistula L.	2	0,007	0,687	0,001	0,112	0,100	0,893	1,692
Lagerstroemia speciosa (L.) Pers.	2	0,007	0,687	0,001	0,071	0,100	0,893	1,651
Psidium guajava L.	2	0,007	0,687	0,000	0,049	0,100	0,893	1,629
Genipa americana L.	2	0,007	0,687	0,000	0,026	0,100	0,893	1,606
Manilkara huberi (Ducke) Standl.	1	0,003	0,344	0,001	0,103	0,100	0,893	1,340
Platymiscium pinnatum (Jacq.) Dugand	1	0,003	0,344	0,001	0,098	0,100	0,893	1,335
Sapium sp2.	1	0,003	0,344	0,001	0,061	0,100	0,893	1,298
Copaifera canime Harms	1	0,003	0,344	0,000	0,033	0,100	0,893	1,269
Muntingia calabura L.	1	0,003	0,344	0,000	0,024	0,100	0,893	1,261
Annona sp.	1	0,003	0,344	0,000	0,021	0,100	0,893	1,257
Delonix regia (Hook.) Raf.	1	0,003	0,344	0,000	0,021	0,100	0,893	1,257
Malpighia sp.	1	0,003	0,344	0,000	0,021	0,100	0,893	1,257
Dipteryx sp.	1	0,003	0,344	0,000	0,020	0,100	0,893	1,256
Eschweilera caudiculata R.Knuth	1	0,003	0,344	0,000	0,010	0,100	0,893	1,246
Anacardium excelsum (Bertero ex Kunth) Skeels	1	0,003	0,344	0,000	0,007	0,100	0,893	1,244
Annona squamosa L.	1	0,003	0,344	0,000	0,007	0,100	0,893	1,243
Chrysophyllum cainito L.	1	0,003	0,344	0,000	0,007	0,100	0,893	1,243
Totales Generales		1	100	1	100	11,2	100	300


<u>Abundancia</u>

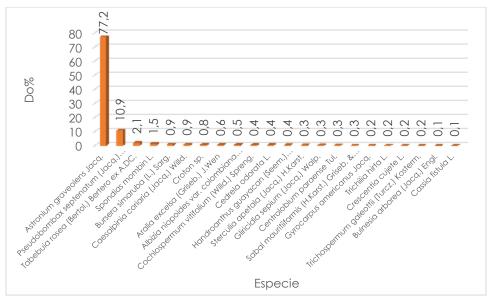
La abundancia absoluta y relativa presente en la cobertura de bosque fragmentado con vegetación secundaria muestra que la especie más abundante es *Tabebuia rosea* (Bertol.) Bertero ex A.DC con 51 individuos en una hectárea y de abundancia relativa 17,5 %. Igualmente, la especie *Pseudobombax septenatum* (Jacq.) Dugandpresenta la segunda mayor abundancia con 38 individuos por hectárea y una abundancia realtiva de 13,1 % (Figura 123).


Figura 123. Distribución de la abundancia relativa para el bosque fragmentado con vegetación secundaria

<u>Frecuencia</u>

La especie *Pseudobombax septenatum* (Jacq.) Dugandes la mas frecuente con una presencia en 8 parcelas de las 10 realizadas, seguida de *Bursera simaruba* (L.) Sarg. con una presencia en 8 parcelas de las 10 realizadas con una frecuencia realtiva de 7,14 % (Figura 124).

Figura 124. Distribución de frecuencia relativa para el bosque fragmentado con vegetación secundaria

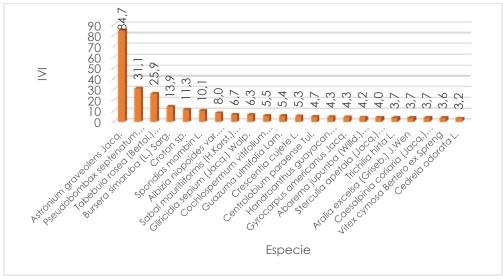


Dominancia

La especie de mayor dominancia es Astronium graveolens Jacq. con 77,17 % y área basal de 100,6670 m^2 , seguida de la especie *Pseudobombax septenatum* (Jacq.) Dugand con 10,85 % y un área basal de 14,1557 m^2 (Figura 125Figura 125).

Figura 125. Distribución de la dominancia relativa para el bosque fragmentado con vegetación secundaria

Fuente: Elaboración equipo técnico


Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es Astronium graveolens Jacq. con un IVI de 84,7, seguida de la especie Pseudobombax septenatum (Jacq.) Dugand con un peso ecológico de 31,1, evidenciando el comportamiento de J invertida de bosque natural (Figura 126).

Figura 126. Distribución del IVI para el bosque fragmentado con vegetación secundaria

Coefiente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1/\frac{48}{291}$$

$$CM = 1/0,164$$

$$CM = 6.06$$

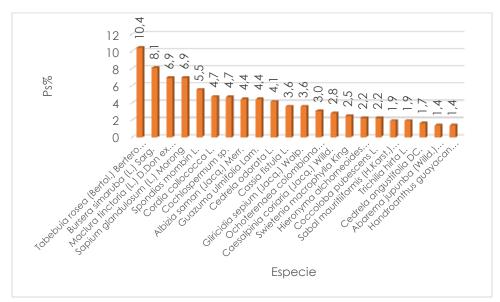
El coeficiente de mezcla obtenido implica que por cada 6,06 individuos estudiados hay una especie nueva para el bosque fragmentado con vegetación secundaria.

5.5.2.10.2.2. Estructura vertical

Posición sociólogica

La posición sociológica muestra que la especie con mayor peso es *Tabebuia rosea* (Bertol.) Bertero ex A.DC. con 20,04 % debido a la presencia de la totalidad de sus individuos en el estrato dominante, el detallado de cada una de las especies se muestra en la Tabla 213 y Figura 127.

Tabla 213. Posición sociológica de las especies del bosque fragmentado con vegetación secundaria


Especie	Suprimido	Codominante	Dominante	Ps	Ps%
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0	51	0	12597	20,040
Pseudobombax septenatum (Jacq.) Dugand	0	27	11	7142	11,362
Croton sp.	0	15	5	3920	6,236
Bursera simaruba (L.) Sarg.	0	14	3	3587	5,706
Astronium graveolens Jacq.	0	14	0	3458	5,501
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0	11	3	2846	4,528
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0	11	0	2717	4,322
Spondias mombin L.	0	9	3	2352	3,742
Handroanthus guayacan (Seem.) S.O.Grose	0	7	2	1815	2,887
Crescentia cujete L.	0	7	0	1729	2,751
Gliricidia sepium (Jacq.) Walp.	0	7	0	1729	2,751
Guazuma ulmifolia Lam.	0	5	0	1235	1,965
Trichilia hirta L.	0	5	0	1235	1,965
Vitex cymosa Bertero ex Spreng	0	5	0	1235	1,965
Cochlospermum vitifolium (Willd.) Spreng.	1	4	2	1075	1,710
Abarema jupunba (Willd.) Britton & Killip	0	4	0	988	1,572
Cocos nucifera L.	0	4	0	988	1,572
Centrolobium paraense Tul.	0	3	2	827	1,316
Gyrocarpus americanus Jacq.	0	3	1	784	1,247
Grias cauliflora L.	0	3	0	741	1,179
Aralia excelsa (Griseb.) J.Wen	0	2	2	580	0,923
Caesalpinia coriaria (Jacq.) Willd.	0	2	1	537	0,854
Cordia collococca L.	0	2	1	537	0,854
Bulnesia arborea (Jacq.) Engl.	0	2	0	494	0,786
Cecropia peltata L.	0	2	0	494	0,786
Genipa americana L.	0	2	0	494	0,786
Handroanthus chrysanthus (Jacq.) S.O.Grose	0	2	0	494	0,786
Lagerstroemia speciosa (L.) Pers.	0	2	0	494	0,786
Micropholis sp.	0	2	0	494	0,786
Psidium guajava L.	0	2	0	494	0,786
Cedrela odorata L.	0	1	2	333	0,530
Sterculia apetala (Jacq.) H.Karst.	0	1	2	333	0,530
Cassia fistula L.	0	1	1	290	0,461
Maclura tinctoria (L.) D.Don ex Steud.	0	1	1	290	0,461
Trichospermum galeottii (Turcz.) Kosterm.	0	1	1	290	0,461
Anacardium excelsum (Bertero ex Kunth) Skeels	0	1	0	247	0,393
Annona sp.	0	1	0	247	0,393

Especie	Suprimido	Codominante	Dominante	Ps	Ps%
Annona squamosa L.	0	1	0	247	0,393
Chrysophyllum cainito L.	0	1	0	247	0,393
Copaifera canime Harms	0	1	0	247	0,393
Delonix regia (Hook.) Raf.	0	1	0	247	0,393
Dipteryx sp.	0	1	0	247	0,393
Eschweilera caudiculata R.Knuth	0	1	0	247	0,393
Malpighia sp.	0	1	0	247	0,393
Manilkara huberi (Ducke) Standl.	0	1	0	247	0,393
Muntingia calabura L.	0	1	0	247	0,393
Platymiscium pinnatum (Jacq.) Dugand	0	1	0	247	0,393
Sapium sp2.	0	1	0	247	0,393

Figura 127. Distribución de la posición sociológica de las especies del bosque fragmentado con vegetación secundaria

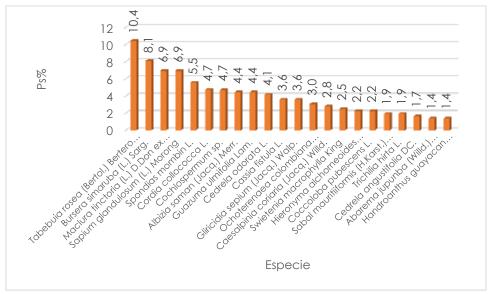
Fuente: Elaboración equipo técnico

5.5.2.10.2.3. Analisis de sotobosque

Categoria de tamaño absoluto

El análisis de regeneración natural muestra que la especie que presenta mayor representación es *Tabebuia rosea* (Bertol.) Bertero ex A.DC. con una categoría de tamaño de 8,640 %, seguido de *Handroanthus chrysanthus* (Jacq.) S.O.Grose con una categoría de tamaño de 8,140 % (Figura 128) (Tabla 214).

Tabla 214. Cálculo de la estructura de sotobosque en el bosque fragmentado con vegetación secundaria


<u>Especie</u>	AB%	FA%	СТаЕМ%	Emr
Tabebuia rosea (Bertol.) Bertero ex A.DC.	10,199	5,556	10,166	8,640
Handroanthus chrysanthus (Jacq.) S.O.Grose	8,458	6,481	9,482	8,140
Crescentia cujete L.	6,468	8,333	5,976	6,926
Spondias mombin L.	5,473	5,556	5,733	5,587
Handroanthus guayacan (Seem.) S.O.Grose	5,721	2,778	5,665	4,721
Bursera simaruba (L.) Sarg.	3,483	5,556	4,039	4,359
Abarema jupunba (Willd.) Britton & Killip	4,726	2,778	5,088	4,197
Cedrela odorata L.	4,726	2,778	3,880	3,795
Astronium graveolens Jacq.	3,980	2,778	4,437	3,732
Eschweilera caudiculata R.Knuth	3,731	3,704	3,751	3,729
Dipteryx sp.	2,985	4,630	3,104	3,573
Gliricidia sepium (Jacq.) Walp.	5,224	0,926	4,385	3,512
Inga sp.	2,985	3,704	3,064	3,251
Inga oerstediana Benth.	2,736	1,852	2,484	2,357
Cordia collococca L.	1,741	3,704	1,622	2,356
Caesalpinia sp.	2,985	0,926	2,955	2,289
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,493	2,778	1,586	1,952
Muntingia calabura L.	2,736	0,926	2,045	1,902
Guazuma ulmifolia Lam.		1,852	1,837	1,893
Trichilia hirta L.		0,926	2,229	1,881
Pseudobombax septenatum (Jacq.) Dugand	1,244	2,778	1,407	1,809
Centrolobium paraense Tul.	1,244	2,778	1,226	1,749
Cassia fistula L.	1,493	1,852	1,331	1,559
Ceiba pentandra (L.) Gaertn.	1,244	1,852	1,333	1,476
Cecropia peltata L.		1,852	1,154	1,334
Cochlospermum vitifolium (Willd.) Spreng.	0,995	1,852	1,082	1,310
Trichospermum galeottii (Turcz.) Kosterm.	1,244	0,926	1,371	1,180
Malpighia sp.	0,746	1,852	0,794	1,131
Croton sp.	0,995	0,926	1,154	1,025
Acacia mangium Willd.	0,498	1,852	0,505	0,952
Sterculia apetala (Jacq.) H.Karst.		0,926	0,866	0,846
Chrysophyllum cainito L.		0,926	0,577	0,667
Macrosamanea sp.		0,926	0,577	0,667
Acacia cornigera (L.) Willd.		0,926	0,358	0,594
Annona squamosa L.		0,926	0,358	0,594
Anacardium excelsum (Bertero ex Kunth) Skeels	0,249	0,926	0,289	0,488
Cordia alliodora (Ruiz & Pav.) Oken	0,249	0,926	0,289	0,488
Cordia sp.	0,249	0,926	0,289	0,488

<u>Especie</u>	<u>AB%</u>	<u>FA%</u>	CTaEM%	<u>Emr</u>
Genipa americana L.	0,249	0,926	0,289	0,488
Malpighia glabra L.	0,249	0,926	0,289	0,488
Manilkara huberi (Ducke) Standl.	0,249	0,926	0,289	0,488
Triplaris sp.	0,249	0,926	0,289	0,488
Psidium guajava L.	0,249	0,926	0,179	0,451
Swinglea glutinosa (Blanco) Merr.	0,249	0,926	0,179	0,451
Totales Generales	100	100	100	100

Figura 128. Distribución del sotobosque del bosque fragmentado con vegetación secundaria

Fuente: Elaboración equipo técnico

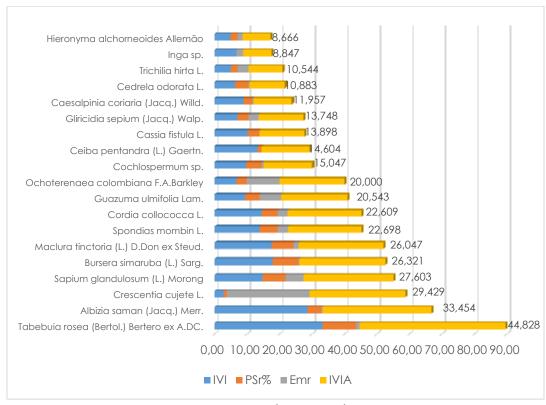
<u>Índice de valor de importancia ampliado (IVIA)</u>

La especie con el mayor valor de importancia en el bosque es Astronium graveolens Jacq, la cual obtuvo un valor de 93,89 de IVIA con la mayor significancia asociado al IVI y PS. La especie *Tabebuia rosea* (Bertol.) Bertero ex A.DC. presenta un valor de 54,54, también asociado al peso de IVI y Ps (Tabla 215) (Figura 129).

Tabla 215. Índice de valor de importancia ampliado para el bosque fragmentado con vegetación secundaria

<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	<u>IVIA</u>
Astronium graveolens Jacq.	84,661	5,501	3,732	93,894
Tabebuia rosea (Bertol.) Bertero ex A.DC.	25,866	20,040	8,640	54,546
Pseudobombax septenatum (Jacq.) Dugand	31,053	11,362	1,809	44,224
Bursera simaruba (L.) Sarg.	13,877	5,706	4,359	23,943

<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	IVIA
Spondias mombin L.	10,095	3,742	5,587	19,424
Croton sp.	11,260	6,236	1,025	18,521
Crescentia cujete L.	5,262	2,751	6,926	14,939
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	8,033	4,528	1,952	14,513
Gliricidia sepium (Jacq.) Walp.	6,307	2,751	3,512	12,569
Handroanthus guayacan (Seem.) S.O.Grose	4,346	2,887	4,721	11,954
Handroanthus chrysanthus (Jacq.) S.O.Grose	2,488	0,786	8,140	11,414
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	6,719	4,322	0,000	11,042
Abarema jupunba (Willd.) Britton & Killip	4,153	1,572	4,197	9,922
Guazuma ulmifolia Lam.	5,359	1,965	1,893	9,217
Cochlospermum vitifolium (Willd.) Spreng.	5,517	1,710	1,310	8,537
Centrolobium paraense Tul.	4,699	1,316	1,749	7,763
Trichilia hirta L.	3,747	1,965	1,881	7,592
Cedrela odorata L.	3,245	0,530	3,795	7,570
Cordia collococca L.	2,857	0,854	2,356	6,067
Vitex cymosa Bertero ex Spreng	3,613	1,965	0,000	5,578
Gyrocarpus americanus Jacq.	4,299	1,247	0,000	5,546
Sterculia apetala (Jacq.) H.Karst.	4,048	0,530	0,846	5,424
Eschweilera caudiculata R.Knuth	1,246	0,393	3,729	5,368
Dipteryx sp.	1,256	0,393	3,573	5,222
Cocos nucifera L.	3,213	1,572	0,000	4,785
Aralia excelsa (Griseb.) J.Wen	3,744	0,923	0,000	4,666
Cecropia peltata L.	2,532	0,786	1,334	4,651
Caesalpinia coriaria (Jacq.) Willd.	3,684	0,854	0,000	4,538
Grias cauliflora L.	2,844	1,179	0,000	4,023
Cassia fistula L.	1,692	0,461	1,559	3,712
Muntingia calabura L.	1,261	0,393	1,902	3,556
Bulnesia arborea (Jacq.) Engl.	2,599	0,786	0,000	3,385
Trichospermum galeottii (Turcz.) Kosterm.	1,742	0,461	1,180	3,383
Micropholis sp.	2,490	0,786	0,000	3,276
Inga sp.	0,000	0,000	3,251	3,251
Maclura tinctoria (L.) D.Don ex Steud.	2,565	0,461	0,000	3,027
Genipa americana L.	1,606	0,786	0,488	2,880
Psidium guajava L.	1,629	0,786	0,451	2,866
Malpighia sp.	1,257	0,393	1,131	2,781
Lagerstroemia speciosa (L.) Pers.	1,651	0,786	0,000	2,437
Inga oerstediana Benth.	0,000	0,000	2,357	2,357
Chrysophyllum cainito L.	1,243	0,393	0,667	2,303



<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	<u>IVIA</u>
Caesalpinia sp.	0,000	0,000	2,289	2,289
Annona squamosa L.	1,243	0,393	0,594	2,230
Manilkara huberi (Ducke) Standl.	1,340	0,393	0,488	2,220
Anacardium excelsum (Bertero ex Kunth) Skeels	1,244	0,393	0,488	2,124
Platymiscium pinnatum (Jacq.) Dugand	1,335	0,393	0,000	1,728
Sapium sp2.	1,298	0,393	0,000	1,690
Copaifera canime Harms	1,269	0,393	0,000	1,662
Annona sp.	1,257	0,393	0,000	1,650
Delonix regia (Hook.) Raf.	1,257	0,393	0,000	1,650
Ceiba pentandra (L.) Gaertn.	0,000	0,000	1,476	1,476
Acacia mangium Willd.	0,000	0,000	0,952	0,952
Macrosamanea sp.	0,000	0,000	0,667	0,667
Acacia cornigera (L.) Willd.	0,000	0,000	0,594	0,594
Cordia alliodora (Ruiz & Pav.) Oken	0,000	0,000	0,488	0,488
Cordia sp.	0,000	0,000	0,488	0,488
Malpighia glabra L.	0,000	0,000	0,488	0,488
Triplaris sp.	0,000	0,000	0,488	0,488
Swinglea glutinosa (Blanco) Merr.	0,000	0,000	0,451	0,451

Figura 129. Distribución del IVIA para el bosque fragmentado con vegetación secundaria

5.5.2.10.3. Indicadores de diversidad alfa del bosque fragmentado con vegetación secundaria

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 216.

Tabla 216.Índices de biodiversidad alfa del bosque fragmentado con vegetación secundaria

Parámetro	Valor
Dmn	2,814
Dsi	1/3,1913= 0,31
d	1-0,175= 0,82
H′	3,19
dmg	8,28

Fuente: Elaboración equipo técnico

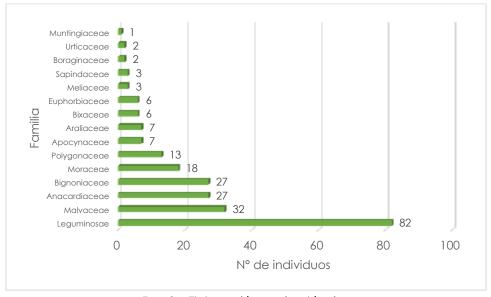
El índice de Menhinick muestra una tendencia media a la diversidad, siendo poco heterogéneo en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra tendencia a la media diversidad del bosque, sin embargo presenta baja dominancia.

Para la cobertura de bosque abierto bajo de tierra firme, el índice de Shannon establece que es típicamente diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es altamente biodiverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad media.

5.5.2.11. Cobertura de Bosque de Galería

El bosque de galería se encuentra constituido por un total de 44 especies distribuidas en 15 familias registradas en el inventario forestal. En la Tabla 217, se identifica la familia Leguminosae y Malvaceae las que presentan la mayor representación. A su vez se identifica que la familia Leguminosae se encuentra representada en 10 generos y 12 especies, resaltando la especie Albizia niopoides var. colombiana (Britton & Killip) Barneby & J. con 22 individuos (Figura 130).

Tabla 217. Composición florística del bosque de galeria


N° de ind / Familia	Especie	N° de Ind / sp/ ha
	Anacardium excelsum (Bertero ex Kunth) Skeels	17
27	Ochoterenaea colombiana F.A.Barkley	2
	Spondias mombin L.	8
7	Aspidosperma sp.	5
/	Malouetia sp.	2
7	Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2
/	Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	5
	Handroanthus chrysanthus (Jacq.) S.O.Grose	20
27	Handroanthus impetiginosus (Mart. ex DC.) Mattos	1
	Tabebuia rosea (Bertol.) Bertero ex A.DC.	6
6	Bixa orellana L.	6
2	Cordia collococca L.	2
6	Sapium glandulosum (L.) Morong	6
	Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	22
	Albizia saman (Jacq.) Merr.	15
	Brownea ariza Benth.	1
	Calliandra magdalenae (DC.) Benth.	4
	Cassia fistula L.	2
82	Enterolobium cyclocarpum (Jacq.) Griseb.	17
	Gliricidia sepium (Jacq.) Walp.	7
	Inga macrophylla Willd.	4
	Inga sp.	5
	Macrolobium sp.	1
	Schizolobium parahyba (Vell.) S.F.Blake	1

N° de ind / Familia	Especie	N° de Ind / sp/ ha
	Zygia longifolia (Willd.) Britton & Rose	3
	Ceiba pentandra (L.) Gaertn.	2
	Guazuma ulmifolia Lam.	17
	Ochroma pyramidale (Cav. ex Lam.) Urb.	3
32	Pachira quinata (Jacq.) W.S.Alverson	3
	Pseudobombax septenatum (Jacq.) Dugand	1
	Sterculia apetala (Jacq.) H.Karst.	5
	Trichospermum galeottii (Turcz.) Kosterm.	1
2	Swietenia macrophylla King	2
3	Trichilia hirta L.	1
	Ficus citrifolia Mill.	6
18	Ficus magdalenica Dugand	2
	Maclura tinctoria (L.) D.Don ex Steud.	10
1	Muntingia calabura L.	1
	Coccoloba pubescens L.	5
13	Coccoloba uvifera (L.) L.	7
	Triplaris americana L.	1
2	Matayba sp.	1
3	Melicoccus bijugatus Jacq.	2
2	Cecropia peltata L.	2

Figura 130. Distribución florística de las familias identificadas en el bosque de galería

5.5.2.11.1. Indicadores dasométricos del bosque de galería

El bosque de galería presenta un total de 236 individuos / ha en 44 especies; siendo la de mayor número la especie Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.con 22 individuos, seguido de la especie Handroanthus chrysanthus (Jacq.) S.O. Grose con 20 individuos por Ha. En la Tabla 218, se presenta el N° de individuos de cada una de las especies por Ha (Figura 131).

Tabla 218. Nº de individuos/especie/Ha del bosque de galeria

Especie	N° de Ind / sp/ ho
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	22
Handroanthus chrysanthus (Jacq.) S.O.Grose	20
Anacardium excelsum (Bertero ex Kunth) Skeels	17
Enterolobium cyclocarpum (Jacq.) Griseb.	17
Guazuma ulmifolia Lam.	17
Albizia saman (Jacq.) Merr.	15
Maclura tinctoria (L.) D.Don ex Steud.	10
Spondias mombin L.	8
Coccoloba uvifera (L.) L.	7
Gliricidia sepium (Jacq.) Walp.	7
Bixa orellana L.	6
Ficus citrifolia Mill.	6
Sapium glandulosum (L.) Morong	6
Tabebuia rosea (Bertol.) Bertero ex A.DC.	6
Aspidosperma sp.	5
Coccoloba pubescens L.	5
Inga sp.	5
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	5
Sterculia apetala (Jacq.) H.Karst.	5
Calliandra magdalenae (DC.) Benth.	4
Inga macrophylla Willd.	4
Ochroma pyramidale (Cav. ex Lam.) Urb.	3
Pachira quinata (Jacq.) W.S.Alverson	3
Zygia longifolia (Willd.) Britton & Rose	3
Cassia fistula L.	2
Cecropia peltata L.	2
Ceiba pentandra (L.) Gaertn.	2
Cordia collococca L.	2
Ficus magdalenica Dugand	2
Malouetia sp.	2
Melicoccus bijugatus Jacq.	2

Especie	N° de Ind / sp/ ha
Ochoterenaea colombiana F.A.Barkley	2
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2
Swietenia macrophylla King	2
Brownea ariza Benth.	1
Handroanthus impetiginosus (Mart. ex DC.) Mattos	1
Macrolobium sp.	1
Matayba sp.	1
Muntingia calabura L.	1
Pseudobombax septenatum (Jacq.) Dugand	1
Schizolobium parahyba (Vell.) S.F.Blake	1
Trichilia hirta L.	1
Trichospermum galeottii (Turcz.) Kosterm.	1
Triplaris americana L.	1

-22 25 N° de individuos 20 17 17 17 15 15 10 5 tandedinus cinsalinus. Applied Strong Hotel Hotel Property Party of the Property of the Strong Property of the Proper Sability of the state of the st un dendulosum II. Motorod Bereich 0 Coccool Type of Lilly Mark. Reductive and all the state of Journal of the Control of the Contro denie schant de geren 3Roads Horizon Lilly esplosterius v. est. us to hald sport of the second Especie

Figura 131. Distribución de N° de individuos por especie

Fuente: Elaboración equipo técnico

La cobertura de bosque de galería presenta un área basal por ha de 27,9917 m² en las 44 especies, obteniendo un área basal promedio/individuo/especie de 0,1156 m² y área basal promedio/especie/hectárea de 0,6362 m²; en la

Tabla 219 se presenta los indicadores detallados por especie.

Tabla 219. Indicadores por especie de área basal

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,6869	0,0750
Albizia saman (Jacq.) Merr.	2,9778	0,1985
Anacardium excelsum (Bertero ex Kunth) Skeels	5,0092	0,3006
Aspidosperma sp.	0,1175	0,0235
Bixa orellana L.	0,0924	0,0158
Brownea ariza Benth.	0,5311	0,6373
Calliandra magdalenae (DC.) Benth.	0,2099	0,0504
Cassia fistula L.	0,3411	0,2046
Cecropia peltata L.	0,0208	0,0125
Ceiba pentandra (L.) Gaertn.	0,6759	0,4056
Coccoloba pubescens L.	2,1456	0,4291
Coccoloba uvifera (L.) L.	0,2391	0,0359
Cordia collococca L.	0,0332	0,0199
Enterolobium cyclocarpum (Jacq.) Griseb.	3,7439	0,2139
Ficus citrifolia Mill.	0,8971	0,1538
Ficus magdalenica Dugand	0,2322	0,0929
Gliricidia sepium (Jacq.) Walp.	0,4417	0,0589
Guazuma ulmifolia Lam.	0,6946	0,0417
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,5310	0,0766
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,0125	0,0151
Inga macrophylla Willd.	0,0425	0,0128
Inga sp.	0,1999	0,0400
Maclura tinctoria (L.) D.Don ex Steud.	0,4806	0,0481
Macrolobium sp.	0,0086	0,0103
Malouetia sp.	0,0655	0,0262
Matayba sp.	0,0072	0,0087
Melicoccus bijugatus Jacq.	0,1051	0,0420
Muntingia calabura L.	0,0239	0,0286
Ochoterenaea colombiana F.A.Barkley	0,1457	0,0583
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,1264	0,0379
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,1664	0,0998
Pachira quinata (Jacq.) W.S.Alverson	0,1410	0,0564
Pseudobombax septenatum (Jacq.) Dugand	0,2470	0,2964
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,1724	0,0345
Sapium glandulosum (L.) Morong	0,5979	0,0897
Schizolobium parahyba (Vell.) S.F.Blake	0,1337	0,1605
Spondias mombin L.	1,3869	0,1664
Sterculia apetala (Jacq.) H.Karst.	0,8460	0,1450
Swietenia macrophylla King	0,2930	0,1758

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,3107	0,0466
Trichilia hirta L.	0,0637	0,0764
Trichospermum galeottii (Turcz.) Kosterm.	0,0525	0,0630
Triplaris americana L.	0,0086	0,0103
Zygia longifolia (Willd.) Britton & Rose	0,7330	0,2932

En cuanto a los indicadores de volumen se encuentra distribuido en 13 clases diamétricas, siendo la clase VI que presenta los mayores volúmenes. Para el caso del volumen total se obtiene 255,8990 m³; en la Figura 132 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de bosque de galería, encontrándose la clase VI con un volumen de 31,3366 m³ seguido de la clase IX con 31,0801 m³.

29,0459 35 31,3366 31,0801 29,4043 30 25,6534 Volumen total (m3) 23,8082 25 20,0760 19,0392 20 16,3024 15 10,5008 7,8753 10 6,6444 5,1324 5 |||VII \vee III IX Clase diamétrica

Figura 132. Distribución del volumen total por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen total por especie se calcula un promedio de 5,81 m³ y un volumen promedio por especie por individuo de 1,00 m³; en la Tabla 220 se evidencia el volumen de cada una de las especies por hectárea y en la Tabla 221 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 220. Indicadores por especie de volumen total

Especie	VT/sp /ha	VT ind/sp/ha
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	13,5287	0,6013
Albizia saman (Jacq.) Merr.	27,2754	1,8184
Anacardium excelsum (Bertero ex Kunth) Skeels	59,6505	3,5790

Especie	VT/sp /ha	VT ind/sp/ha
Aspidosperma sp.	0,4472	0,0894
Bixa orellana L.	0,5120	0,0878
Brownea ariza Benth.	3,1070	3,7284
Calliandra magdalenae (DC.) Benth.	1,1632	0,2792
Cassia fistula L.	4,0718	2,4431
Cecropia peltata L.	0,0903	0,0542
Ceiba pentandra (L.) Gaertn.	5,2257	3,1354
Coccoloba pubescens L.	20,5034	4,1007
Coccoloba uvifera (L.) L.	2,2902	0,3435
Cordia collococca L.	0,1725	0,1035
Enterolobium cyclocarpum (Jacq.) Griseb.	33,5086	1,9148
Ficus citrifolia Mill.	7,3169	1,2543
Ficus magdalenica Dugand	1,0853	0,4341
Gliricidia sepium (Jacq.) Walp.	2,3178	0,3090
Guazuma ulmifolia Lam.	4,0316	0,2419
Handroanthus chrysanthus (Jacq.) S.O.Grose	16,1751	0,8088
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,0816	0,0979
Inga macrophylla Willd.	0,2228	0,0668
Inga sp.	1,0469	0,2094
Maclura tinctoria (L.) D.Don ex Steud.	2,7410	0,2741
Macrolobium sp.	0,0335	0,0402
Malouetia sp.	0,2931	0,1172
Matayba sp.	0,0329	0,0394
Melicoccus bijugatus Jacq.	0,5295	0,2118
Muntingia calabura L.	0,1086	0,1303
Ochoterenaea colombiana F.A.Barkley	0,7037	0,2815
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,7192	0,2157
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,2977	0,7786
Pachira quinata (Jacq.) W.S.Alverson	1,7321	0,6929
Pseudobombax septenatum (Jacq.) Dugand	4,8168	5,7802
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,5677	0,3135
Sapium glandulosum (L.) Morong	4,2197	0,6330
Schizolobium parahyba (Vell.) S.F.Blake	1,0430	1,2516
Spondias mombin L.	12,4943	1,4993
Sterculia apetala (Jacq.) H.Karst.	9,2291	1,5821
Swietenia macrophylla King	2,1119	1,2671
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,4039	0,3606
Trichilia hirta L.	0,4140	0,4968
Trichospermum galeottii (Turcz.) Kosterm.	0,3756	0,4507
Triplaris americana L.	0,0670	0,0804

Especie	VT/sp /ha	VT ind/sp/ha
Zygia longifolia (Willd.) Britton & Rose	5,1403	2,0561

Tabla 221. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /ha /Ct diam.
I	6,6444
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,6992
Anacardium excelsum (Bertero ex Kunth) Skeels	0,1096
Aspidosperma sp.	0,4472
Bixa orellana L.	0,5120
Calliandra magdalenae (DC.) Benth.	0,2057
Cecropia peltata L.	0,0903
Ceiba pentandra (L.) Gaertn.	0,0932
Coccoloba pubescens L.	0,1048
Coccoloba uvifera (L.) L.	0,5011
Cordia collococca L.	0,1725
Enterolobium cyclocarpum (Jacq.) Griseb.	0,3485
Ficus citrifolia Mill.	0,1009
Gliricidia sepium (Jacq.) Walp.	0,1232
Guazuma ulmifolia Lam.	0,7377
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,5056
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,0816
Inga macrophylla Willd.	0,2228
Inga sp.	0,0335
Maclura tinctoria (L.) D.Don ex Steud.	0,0964
Macrolobium sp.	0,0335
Malouetia sp.	0,1695
Matayba sp.	0,0329
Melicoccus bijugatus Jacq.	0,2313
Muntingia calabura L.	0,1086
Pachira quinata (Jacq.) W.S.Alverson	0,0621
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,4112
Spondias mombin L.	0,1090
Sterculia apetala (Jacq.) H.Karst.	0,1922
Triplaris americana L.	0,0670
Zygia longifolia (Willd.) Britton & Rose	0,0414
II	25,6534
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	3,4384
Albizia saman (Jacq.) Merr.	0,5505
Anacardium excelsum (Bertero ex Kunth) Skeels	1,6580

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Calliandra magdalenae (DC.) Benth.	0,2737
Coccoloba uvifera (L.) L.	1,7891
Enterolobium cyclocarpum (Jacq.) Griseb.	0,1821
Ficus magdalenica Dugand	0,4154
Gliricidia sepium (Jacq.) Walp.	0,8756
Guazuma ulmifolia Lam.	2,9049
Handroanthus chrysanthus (Jacq.) S.O.Grose	2,9691
Inga sp.	1,0134
Maclura tinctoria (L.) D.Don ex Steud.	2,2859
Malouetia sp.	0,1236
Melicoccus bijugatus Jacq.	0,2982
Ochoterenaea colombiana F.A.Barkley	0,7037
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,7192
Pachira quinata (Jacq.) W.S.Alverson	0,2185
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,1565
Sapium glandulosum (L.) Morong	0,5677
Spondias mombin L.	0,4949
Sterculia apetala (Jacq.) H.Karst.	0,7846
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,8547
Trichospermum galeottii (Turcz.) Kosterm.	0,3756
III	29,4043
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	5,3804
Albizia saman (Jacq.) Merr.	2,4943
Anacardium excelsum (Bertero ex Kunth) Skeels	0,8546
Calliandra magdalenae (DC.) Benth.	0,6838
Cassia fistula L.	0,8111
Coccoloba pubescens L.	0,3879
Enterolobium cyclocarpum (Jacq.) Griseb.	1,2456
Ficus citrifolia Mill.	1,1405
Guazuma ulmifolia Lam.	0,3890
Handroanthus chrysanthus (Jacq.) S.O.Grose	7,0826
Maclura tinctoria (L.) D.Don ex Steud.	0,3588
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,2977
Pachira quinata (Jacq.) W.S.Alverson	1,4515
Sapium glandulosum (L.) Morong	2,8046
Spondias mombin L.	1,5651
Sterculia apetala (Jacq.) H.Karst.	0,4935
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,5492
Trichilia hirta L.	0,4140
IV	29,0459

Clase diamétrica / Especie	VTsp /ha /Ct diam
Albizia saman (Jacq.) Merr.	5,2311
Anacardium excelsum (Bertero ex Kunth) Skeels	3,6854
Enterolobium cyclocarpum (Jacq.) Griseb.	7,2654
Ficus citrifolia Mill.	3,5146
Ficus magdalenica Dugand	0,6699
Gliricidia sepium (Jacq.) Walp.	1,3190
Sapium glandulosum (L.) Morong	0,8475
Schizolobium parahyba (Vell.) S.F.Blake	1,0430
Spondias mombin L.	1,6125
Swietenia macrophylla King	2,1119
Zygia longifolia (Willd.) Britton & Rose	1,7457
V	23,8082
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,9234
Albizia saman (Jacq.) Merr.	1,5660
Anacardium excelsum (Bertero ex Kunth) Skeels	9,0864
Coccoloba pubescens L.	1,6346
Enterolobium cyclocarpum (Jacq.) Griseb.	3,9800
Handroanthus chrysanthus (Jacq.) S.O.Grose	5,6178
VI	31,3366
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,0873
Albizia saman (Jacq.) Merr.	12,9520
Anacardium excelsum (Bertero ex Kunth) Skeels	3,8746
Cassia fistula L.	3,2606
Enterolobium cyclocarpum (Jacq.) Griseb.	1,7845
Ficus citrifolia Mill.	2,5609
Pseudobombax septenatum (Jacq.) Dugand	4,8168
VII	20,0760
Albizia saman (Jacq.) Merr.	4,4815
Anacardium excelsum (Bertero ex Kunth) Skeels	4,4815
Enterolobium cyclocarpum (Jacq.) Griseb.	8,1831
Spondias mombin L.	2,9299
VIII	16,3024
Enterolobium cyclocarpum (Jacq.) Griseb.	10,5194
Spondias mombin L.	5,7830
IX	31,0801
Anacardium excelsum (Bertero ex Kunth) Skeels	16,8612
Brownea ariza Benth.	3,1070
Sterculia apetala (Jacq.) H.Karst.	7,7588
Zygia longifolia (Willd.) Britton & Rose	3,3532
X	5,1324

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Ceiba pentandra (L.) Gaertn.	5,1324
XI	7,8753
Coccoloba pubescens L.	7,8753
XII	10,5008
Coccoloba pubescens L.	10,5008
XIII	19,0392
Anacardium excelsum (Bertero ex Kunth) Skeels	19,0392

El bosque de galería presenta un volumen de fuste por ha de 124,71 m³, distribuido en 13 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 12,47 m³ (Figura 133).

19,4718 20 18.1471 16,9446 16,7383 18 16 Volumen fuste (m3) 13,3382 14 12 8,6054 10 7,34047,4200 8 5,4283 6 3,5003 3,9665 1,7108^{2,1001} 4 2 0 Ш Ш IV VIIΧI Clase diamétrica

Figura 133. Distribución del volumen del fuste por clase diamétrica

Fuente: Elaboración equipo técnico

De igual forma, el volumen de fuste por especie promedio es de 2,83 m³ y un volumen promedio por especie por individuo de 0,49 m³ de volumen de fuste por individuo por especie. En la Tabla 222 se evidencia el volumen de cada una de las especies y en la Tabla 223 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 222. Indicadores por especie de volumen de fuste

Especie	VF/sp /ha	VF ind/sp/ha
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	7,0961	0,3154
Albizia saman (Jacq.) Merr.	15,9711	1,0647
Anacardium excelsum (Bertero ex Kunth) Skeels	18,9102	1,1346
Aspidosperma sp.	0,4759	0,0952

Especie	VF/sp /ha	VF ind/sp/ha
Bixa orellana L.	0,3851	0,0660
Brownea ariza Benth.	1,8987	2,2784
Calliandra magdalenae (DC.) Benth.	1,2733	0,3056
Cassia fistula L.	0,6962	0,4177
Cecropia peltata L.	0,0993	0,0596
Ceiba pentandra (L.) Gaertn.	1,8274	1,0964
Coccoloba pubescens L.	6,3543	1,2709
Coccoloba uvifera (L.) L.	1,4550	0,2182
Cordia collococca L.	0,1708	0,1025
Enterolobium cyclocarpum (Jacq.) Griseb.	18,9570	1,0833
Ficus citrifolia Mill.	4,6667	0,8000
Ficus magdalenica Dugand	0,8983	0,3593
Gliricidia sepium (Jacq.) Walp.	2,5795	0,3439
Guazuma ulmifolia Lam.	3,0783	0,1847
Handroanthus chrysanthus (Jacq.) S.O.Grose	7,1787	0,3589
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,0571	0,0685
Inga macrophylla Willd.	0,1686	0,0506
Inga sp.	0,8176	0,1635
Maclura tinctoria (L.) D.Don ex Steud.	2,2715	0,2271
Macrolobium sp.	0,0503	0,0603
Malouetia sp.	0,2517	0,1007
Matayba sp.	0,0211	0,0253
Melicoccus bijugatus Jacq.	0,3892	0,1557
Muntingia calabura L.	0,0466	0,0559
Ochoterenaea colombiana F.A.Barkley	0,5854	0,2342
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,5523	0,1657
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,6110	0,3666
Pachira quinata (Jacq.) W.S.Alverson	0,9035	0,3614
Pseudobombax septenatum (Jacq.) Dugand	0,9634	1,1560
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,8952	0,1790
Sapium glandulosum (L.) Morong	2,6873	0,4031
Schizolobium parahyba (Vell.) S.F.Blake	0,3911	0,4693
Spondias mombin L.	5,3221	0,6387
Sterculia apetala (Jacq.) H.Karst.	3,3400	0,5726
Swietenia macrophylla King	2,0518	1,2311
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,7131	0,2570
Trichilia hirta L.	0,4554	0,5464
Trichospermum galeottii (Turcz.) Kosterm.	0,2561	0,3073
Triplaris americana L.	0,0251	0,0302
Zygia longifolia (Willd.) Britton & Rose	5,9136	2,3654

Tabla 223. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /ha/Ct diam.
I	5,4283
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,5702
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0847
Aspidosperma sp.	0,4759
Bixa orellana L.	0,3851
Calliandra magdalenae (DC.) Benth.	0,1230
Cecropia peltata L.	0,0993
Ceiba pentandra (L.) Gaertn.	0,1166
Coccoloba pubescens L.	0,1241
Coccoloba uvifera (L.) L.	0,3662
Cordia collococca L.	0,1708
Enterolobium cyclocarpum (Jacq.) Griseb.	0,3071
Ficus citrifolia Mill.	0,0505
Gliricidia sepium (Jacq.) Walp.	0,1708
Guazuma ulmifolia Lam.	0,6554
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,2091
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,0571
Inga macrophylla Willd.	0,1686
Inga sp.	0,0251
Maclura tinctoria (L.) D.Don ex Steud.	0,0413
Macrolobium sp.	0,0503
Malouetia sp.	0,1546
Matayba sp.	0,0211
Melicoccus bijugatus Jacq.	0,1842
Muntingia calabura L.	0,0466
Pachira quinata (Jacq.) W.S.Alverson	0,0776
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2890
Spondias mombin L.	0,0848
Sterculia apetala (Jacq.) H.Karst.	0,2425
Triplaris americana L.	0,0251
Zygia longifolia (Willd.) Britton & Rose	0,0517
II	18,1471
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,8694
Albizia saman (Jacq.) Merr.	0,7300
Anacardium excelsum (Bertero ex Kunth) Skeels	0,5674
Calliandra magdalenae (DC.) Benth.	0,1065
Coccoloba uvifera (L.) L.	1,0887

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Enterolobium cyclocarpum (Jacq.) Griseb.	0,2094
Ficus magdalenica Dugand	0,5155
Gliricidia sepium (Jacq.) Walp.	1,0330
Guazuma ulmifolia Lam.	2,1311
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,8456
Inga sp.	0,7924
Maclura tinctoria (L.) D.Don ex Steud.	2,0912
Malouetia sp.	0,0971
Melicoccus bijugatus Jacq.	0,2050
Ochoterenaea colombiana F.A.Barkley	0,5854
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,5523
Pachira quinata (Jacq.) W.S.Alverson	0,1002
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,6061
Sapium glandulosum (L.) Morong	0,2740
Spondias mombin L.	0,3917
Sterculia apetala (Jacq.) H.Karst.	0,6184
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,4807
Trichospermum galeottii (Turcz.) Kosterm.	0,2561
III	16,7383
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,5903
Albizia saman (Jacq.) Merr.	1,6868
Anacardium excelsum (Bertero ex Kunth) Skeels	0,3052
Calliandra magdalenae (DC.) Benth.	1,0439
Cassia fistula L.	0,2433
Coccoloba pubescens L.	0,1940
Enterolobium cyclocarpum (Jacq.) Griseb.	0,8259
Ficus citrifolia Mill.	0,7841
Guazuma ulmifolia Lam.	0,2918
Handroanthus chrysanthus (Jacq.) S.O.Grose	3,2866
Maclura tinctoria (L.) D.Don ex Steud.	0,1390
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,6110
Pachira quinata (Jacq.) W.S.Alverson	0,7258
Sapium glandulosum (L.) Morong	1,9190
Spondias mombin L.	1,0586
Sterculia apetala (Jacq.) H.Karst.	0,3455
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,2324
Trichilia hirta L.	0,4554
IV	19,4718
Albizia saman (Jacq.) Merr.	2,9451
Anacardium excelsum (Bertero ex Kunth) Skeels	1,5390

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Enterolobium cyclocarpum (Jacq.) Griseb.	5,3429
Ficus citrifolia Mill.	2,6431
Ficus magdalenica Dugand	0,3828
Gliricidia sepium (Jacq.) Walp.	1,3757
Sapium glandulosum (L.) Morong	0,4944
Schizolobium parahyba (Vell.) S.F.Blake	0,3911
Spondias mombin L.	1,2876
Swietenia macrophylla King	2,0518
Zygia longifolia (Willd.) Britton & Rose	1,0183
V	8,6054
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,5410
Albizia saman (Jacq.) Merr.	1,5008
Anacardium excelsum (Bertero ex Kunth) Skeels	1,9536
Coccoloba pubescens L.	0,4359
Enterolobium cyclocarpum (Jacq.) Griseb.	2,3367
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,8375
VI	13,3382
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,5253
Albizia saman (Jacq.) Merr.	7,4279
Anacardium excelsum (Bertero ex Kunth) Skeels	0,9686
Cassia fistula L.	0,4529
Enterolobium cyclocarpum (Jacq.) Griseb.	0,8111
Ficus citrifolia Mill.	1,1890
Pseudobombax septenatum (Jacq.) Dugand	0,9634
VII	7,3404
Albizia saman (Jacq.) Merr.	1,6806
Anacardium excelsum (Bertero ex Kunth) Skeels	1,4565
Enterolobium cyclocarpum (Jacq.) Griseb.	2,8605
Spondias mombin L.	1,3429
VIII	7,4200
Enterolobium cyclocarpum (Jacq.) Griseb.	6,2634
Spondias mombin L.	1,1566
IX	16,9446
Anacardium excelsum (Bertero ex Kunth) Skeels	8,0687
Brownea ariza Benth.	1,8987
Sterculia apetala (Jacq.) H.Karst.	2,1337
Zygia longifolia (Willd.) Britton & Rose	4,8435
X	1,7108
Ceiba pentandra (L.) Gaertn.	1,7108
XI	2,1001

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Coccoloba pubescens L.	2,1001
XII	3,5003
Coccoloba pubescens L.	3,5003
XIII	3,9665
Anacardium excelsum (Bertero ex Kunth) Skeels	3,9665

En el caso del volumen comercial se obtiene un volumen de 84,69 m³ por hectárea distribuido en las 13 clases diamétricas, con un volumen promedio por clase diamétrica de 8,46 m³. En la Figura 134 se presenta la distribución del volumen comercial por clase diamétrica.

12 10,9114 10,7826 9,3994 Volumen comercial (m3) 10 8,8619 8,5481 8,3160 8 5,2502 2 5,5531 4,9004 **—** 4.9322 4 2,8559 2,4620 1,9247 2 \parallel |||IV VII ΧI Clase diamétrica

Figura 134. Distribución del volumen comercial por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen comercial por especie un promedio de 0,82 m3 y un volumen promedio por especie por individuo de 0,23 m3. En la Tabla 224 se evidencia el volumen de cada una de las especies y en la Tabla 225 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 224. Indicadores por especie de volumen comercial

Especie	VC/sp /ha	VC ind/sp/ha
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	5,6636	0,2517
Albizia saman (Jacq.) Merr.	7,0977	0,4732
Anacardium excelsum (Bertero ex Kunth) Skeels	19,3586	1,1615
Aspidosperma sp.	0,1537	0,0307
Bixa orellana L.	0,1001	0,0172

Especie	VC/sp /ha	VC ind/sp/ha
Brownea ariza Benth.	1,0357	1,2428
Calliandra magdalenae (DC.) Benth.	0,2879	0,0691
Cassia fistula L.	0,8057	0,4834
Cecropia peltata L.	0,0497	0,0298
Ceiba pentandra (L.) Gaertn.	1,9422	1,1653
Coccoloba pubescens L.	11,4225	2,2845
Coccoloba uvifera (L.) L.	1,1439	0,1716
Cordia collococca L.	0,0379	0,0228
Enterolobium cyclocarpum (Jacq.) Griseb.	7,1430	0,4082
Ficus citrifolia Mill.	0,9627	0,1650
Ficus magdalenica Dugand	0,3759	0,1504
Gliricidia sepium (Jacq.) Walp.	0,7004	0,0934
Guazuma ulmifolia Lam.	1,0591	0,0635
Handroanthus chrysanthus (Jacq.) S.O.Grose	6,4986	0,3249
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,0326	0,0392
Inga macrophylla Willd.	0,0679	0,0204
Inga sp.	0,3126	0,0625
Maclura tinctoria (L.) D.Don ex Steud.	0,7770	0,0777
Macrolobium sp.	0,0056	0,0067
Malouetia sp.	0,0956	0,0382
Matayba sp.	0,0235	0,0282
Melicoccus bijugatus Jacq.	0,1592	0,0637
Muntingia calabura L.	0,0466	0,0559
Ochoterenaea colombiana F.A.Barkley	0,3165	0,1266
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,1776	0,0533
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,7029	0,4217
Pachira quinata (Jacq.) W.S.Alverson	0,5424	0,2169
Pseudobombax septenatum (Jacq.) Dugand	1,6056	1,9267
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,4264	0,2853
Sapium glandulosum (L.) Morong	0,9990	0,1499
Schizolobium parahyba (Vell.) S.F.Blake	0,4346	0,5215
Spondias mombin L.	3,3025	0,3963
Sterculia apetala (Jacq.) H.Karst.	4,5495	0,7799
Swietenia macrophylla King	0,9089	0,5453
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,0856	0,1628
Trichilia hirta L.	0,1242	0,1490
Trichospermum galeottii (Turcz.) Kosterm.	0,1024	0,1229
Triplaris americana L.	0,0559	0,0670
Zygia longifolia (Willd.) Britton & Rose	1,0043	0,4017

Tabla 225. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam
l	2,4620
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2971
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0249
Aspidosperma sp.	0,1537
Bixa orellana L.	0,1001
Calliandra magdalenae (DC.) Benth.	0,0597
Cecropia peltata L.	0,0497
Ceiba pentandra (L.) Gaertn.	0,0175
Coccoloba pubescens L.	0,0326
Coccoloba uvifera (L.) L.	0,1897
Cordia collococca L.	0,0379
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0989
Ficus citrifolia Mill.	0,0112
Gliricidia sepium (Jacq.) Walp.	0,0280
Guazuma ulmifolia Lam.	0,1606
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,2763
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,0326
Inga macrophylla Willd.	0,0679
Inga sp.	0,0168
Maclura tinctoria (L.) D.Don ex Steud.	0,0224
Macrolobium sp.	0,0056
Malouetia sp.	0,0249
Matayba sp.	0,0235
Melicoccus bijugatus Jacq.	0,0846
Muntingia calabura L.	0,0466
Pachira quinata (Jacq.) W.S.Alverson	0,0362
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,3725
Spondias mombin L.	0,0182
Sterculia apetala (Jacq.) H.Karst.	0,0818
Triplaris americana L.	0,0559
Zygia longifolia (Willd.) Britton & Rose	0,0345
II	10,9114
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,5247
Albizia saman (Jacq.) Merr.	0,1662
Anacardium excelsum (Bertero ex Kunth) Skeels	1,0979
Calliandra magdalenae (DC.) Benth.	0,0456
Coccoloba uvifera (L.) L.	0,9542
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0364

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Ficus magdalenica Dugand	0,1366
Gliricidia sepium (Jacq.) Walp.	0,3649
Guazuma ulmifolia Lam.	0,8012
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,3777
Inga sp.	0,2959
Maclura tinctoria (L.) D.Don ex Steud.	0,6425
Malouetia sp.	0,0706
Melicoccus bijugatus Jacq.	0,0746
Ochoterenaea colombiana F.A.Barkley	0,3165
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,1776
Pachira quinata (Jacq.) W.S.Alverson	0,1275
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,0539
Sapium glandulosum (L.) Morong	0,1070
Spondias mombin L.	0,1300
Sterculia apetala (Jacq.) H.Karst.	0,3909
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,9166
Trichospermum galeottii (Turcz.) Kosterm.	0,1024
III	10,7826
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,2383
Albizia saman (Jacq.) Merr.	0,7265
Anacardium excelsum (Bertero ex Kunth) Skeels	0,6104
Calliandra magdalenae (DC.) Benth.	0,1825
Cassia fistula L.	0,0811
Coccoloba pubescens L.	0,2586
Enterolobium cyclocarpum (Jacq.) Griseb.	0,4138
Ficus citrifolia Mill.	0,1901
Guazuma ulmifolia Lam.	0,0973
Handroanthus chrysanthus (Jacq.) S.O.Grose	2,8737
Maclura tinctoria (L.) D.Don ex Steud.	0,1121
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,7029
Pachira quinata (Jacq.) W.S.Alverson	0,3787
Sapium glandulosum (L.) Morong	0,6801
Spondias mombin L.	0,7458
Sterculia apetala (Jacq.) H.Karst.	0,1974
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,1690
Trichilia hirta L.	0,1242
IV	8,5481
Albizia saman (Jacq.) Merr.	1,3978
Anacardium excelsum (Bertero ex Kunth) Skeels	0,9494
Enterolobium cyclocarpum (Jacq.) Griseb.	2,0004

Clase diamétrica / Especie	VCsp /ha/Ct diam
Ficus citrifolia Mill.	0,4870
Ficus magdalenica Dugand	0,2392
Gliricidia sepium (Jacq.) Walp.	0,3075
Sapium glandulosum (L.) Morong	0,2119
Schizolobium parahyba (Vell.) S.F.Blake	0,4346
Spondias mombin L.	0,6415
Swietenia macrophylla King	0,9089
Zygia longifolia (Willd.) Britton & Rose	0,9699
V	9,3994
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,2021
Albizia saman (Jacq.) Merr.	0,2610
Anacardium excelsum (Bertero ex Kunth) Skeels	4,1907
Coccoloba pubescens L.	0,9808
Enterolobium cyclocarpum (Jacq.) Griseb.	0,7939
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,9709
VI	8,3160
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,4014
Albizia saman (Jacq.) Merr.	4,0980
Anacardium excelsum (Bertero ex Kunth) Skeels	0,9686
Cassia fistula L.	0,7246
Enterolobium cyclocarpum (Jacq.) Griseb.	0,2433
Ficus citrifolia Mill.	0,2744
Pseudobombax septenatum (Jacq.) Dugand	1,6056
VII	4,9322
Albizia saman (Jacq.) Merr.	0,4481
Anacardium excelsum (Bertero ex Kunth) Skeels	2,0167
Enterolobium cyclocarpum (Jacq.) Griseb.	1,8570
Spondias mombin L.	0,6104
VIII	2,8559
Enterolobium cyclocarpum (Jacq.) Griseb.	1,6993
Spondias mombin L.	1,1566
IX	9,6070
Anacardium excelsum (Bertero ex Kunth) Skeels	3,9468
Brownea ariza Benth.	1,0357
Sterculia apetala (Jacq.) H.Karst.	3,8794
Zygia longifolia (Willd.) Britton & Rose	0,7452
X	1,9247
Ceiba pentandra (L.) Gaertn.	1,9247
XI	5,2502
Coccoloba pubescens L.	5,2502

Clase diamétrica / Especie	VCsp /ha/Ct diam.
XII	4,9004
Coccoloba pubescens L.	4,9004
XIII	5,5531
Anacardium excelsum (Bertero ex Kunth) Skeels	5,5531

El volumen cosechable calculado para el bosque de galería es de 72,29 m³ con un promedio por especie de 1,64 m³. En la Tabla 226 se evidencia el volumen de cada una de las especies y en la Tabla 227 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 226. Indicadores por especie de volumen cosechable

Especie	VCs/sp /ha
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	4,7923
Albizia saman (Jacq.) Merr.	6,0057
Anacardium excelsum (Bertero ex Kunth) Skeels	16,3803
Aspidosperma sp.	0,1301
Bixa orellana L.	0,0847
Brownea ariza Benth.	0,8763
Calliandra magdalenae (DC.) Benth.	0,2436
Cassia fistula L.	0,6817
Cecropia peltata L.	0,0421
Ceiba pentandra (L.) Gaertn.	1,6434
Coccoloba pubescens L.	9,6652
Coccoloba uvifera (L.) L.	0,9679
Cordia collococca L.	0,0321
Enterolobium cyclocarpum (Jacq.) Griseb.	6,0441
Ficus citrifolia Mill.	0,8146
Ficus magdalenica Dugand	0,3181
Gliricidia sepium (Jacq.) Walp.	0,5926
Guazuma ulmifolia Lam.	0,8961
Handroanthus chrysanthus (Jacq.) S.O.Grose	5,4988
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,0276
Inga macrophylla Willd.	0,0574
Inga sp.	0,2645
Maclura tinctoria (L.) D.Don ex Steud.	0,6575
Macrolobium sp.	0,0047
Malouetia sp.	0,0809
Matayba sp.	0,0199
Melicoccus bijugatus Jacq.	0,1347
Muntingia calabura L.	0,0394

Especie	VCs/sp /ha
Ochoterenaea colombiana F.A.Barkley	0,2678
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,1502
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,5948
Pachira quinata (Jacq.) W.S.Alverson	0,4589
Pseudobombax septenatum (Jacq.) Dugand	1,3586
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,2070
Sapium glandulosum (L.) Morong	0,8453
Schizolobium parahyba (Vell.) S.F.Blake	0,3677
Spondias mombin L.	2,7944
Sterculia apetala (Jacq.) H.Karst.	3,8496
Swietenia macrophylla King	0,7691
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,9186
Trichilia hirta L.	0,1051
Trichospermum galeottii (Turcz.) Kosterm.	0,0867
Triplaris americana L.	0,0473
Zygia longifolia (Willd.) Britton & Rose	1,4803

Fuente: Elaboración equipo técnico

Tabla 227. Indicadores por especie de volumen cosechable

Clase diamétrica / Especie	VCsp /ha/Ct diam.
1	2,0832
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2514
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0211
Aspidosperma sp.	0,1301
Bixa orellana L.	0,0847
Calliandra magdalenae (DC.) Benth.	0,0505
Cecropia peltata L.	0,0421
Ceiba pentandra (L.) Gaertn.	0,0148
Coccoloba pubescens L.	0,0276
Coccoloba uvifera (L.) L.	0,1605
Cordia collococca L.	0,0321
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0837
Ficus citrifolia Mill.	0,0095
Gliricidia sepium (Jacq.) Walp.	0,0237
Guazuma ulmifolia Lam.	0,1359
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,2338
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,0276
Inga macrophylla Willd.	0,0574
Inga sp.	0,0142
Maclura tinctoria (L.) D.Don ex Steud.	0,0190
Macrolobium sp.	0,0047

Clase diamétrica / Especie	VCsp /ha/Ct diam
Malouetia sp.	0,0211
Matayba sp.	0,0199
Melicoccus bijugatus Jacq.	0,0716
Muntingia calabura L.	0,0394
Pachira quinata (Jacq.) W.S.Alverson	0,0307
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,3152
Spondias mombin L.	0,0154
Sterculia apetala (Jacq.) H.Karst.	0,0692
Triplaris americana L.	0,0473
Zygia longifolia (Willd.) Britton & Rose	0,0292
II	9,2327
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,2901
Albizia saman (Jacq.) Merr.	0,1406
Anacardium excelsum (Bertero ex Kunth) Skeels	0,9290
Calliandra magdalenae (DC.) Benth.	0,0386
Coccoloba uvifera (L.) L.	0,8074
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0308
Ficus magdalenica Dugand	0,1156
Gliricidia sepium (Jacq.) Walp.	0,3088
Guazuma ulmifolia Lam.	0,6779
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,1657
Inga sp.	0,2503
Maclura tinctoria (L.) D.Don ex Steud.	0,5436
Malouetia sp.	0,0598
Melicoccus bijugatus Jacq.	0,0631
Ochoterenaea colombiana F.A.Barkley	0,2678
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,1502
Pachira quinata (Jacq.) W.S.Alverson	0,1079
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,8918
Sapium glandulosum (L.) Morong	0,0905
Spondias mombin L.	0,1100
Sterculia apetala (Jacq.) H.Karst.	0,3307
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,7756
Trichospermum galeottii (Turcz.) Kosterm.	0,0867
III	9,1237
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,8939
Albizia saman (Jacq.) Merr.	0,6147
Anacardium excelsum (Bertero ex Kunth) Skeels	0,5165
Calliandra magdalenae (DC.) Benth.	0,1545
Cassia fistula L.	0,0686

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Coccoloba pubescens L.	0,2188
Enterolobium cyclocarpum (Jacq.) Griseb.	0,3502
Ficus citrifolia Mill.	0,1608
Guazuma ulmifolia Lam.	0,0823
Handroanthus chrysanthus (Jacq.) S.O.Grose	2,4316
Maclura tinctoria (L.) D.Don ex Steud.	0,0949
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,5948
Pachira quinata (Jacq.) W.S.Alverson	0,3204
Sapium glandulosum (L.) Morong	0,5755
Spondias mombin L.	0,6311
Sterculia apetala (Jacq.) H.Karst.	0,1670
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,1430
Trichilia hirta L.	0,1051
IV	7,2330
Albizia saman (Jacq.) Merr.	1,1828
Anacardium excelsum (Bertero ex Kunth) Skeels	0,8034
Enterolobium cyclocarpum (Jacq.) Griseb.	1,6926
Ficus citrifolia Mill.	0,4121
Ficus magdalenica Dugand	0,2024
Gliricidia sepium (Jacq.) Walp.	0,2602
Sapium glandulosum (L.) Morong	0,1793
Schizolobium parahyba (Vell.) S.F.Blake	0,3677
Spondias mombin L.	0,5428
Swietenia macrophylla King	0,7691
Zygia longifolia (Willd.) Britton & Rose	0,8206
V	7,9534
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,0172
Albizia saman (Jacq.) Merr.	0,2209
Anacardium excelsum (Bertero ex Kunth) Skeels	3,5460
Coccoloba pubescens L.	0,8299
Enterolobium cyclocarpum (Jacq.) Griseb.	0,6718
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,6677
VI	7,0366
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,3396
Albizia saman (Jacq.) Merr.	3,4676
Anacardium excelsum (Bertero ex Kunth) Skeels	0,8196
Cassia fistula L.	0,6131
Enterolobium cyclocarpum (Jacq.) Griseb.	0,2059
Ficus citrifolia Mill.	0,2322
Pseudobombax septenatum (Jacq.) Dugand	1,3586

Clase diamétrica / Especie	VCsp /ha/Ct diam.
VII	4,1734
Albizia saman (Jacq.) Merr.	0,3792
Anacardium excelsum (Bertero ex Kunth) Skeels	1,7064
Enterolobium cyclocarpum (Jacq.) Griseb.	1,5713
Spondias mombin L.	0,5165
VIII	2,4165
Enterolobium cyclocarpum (Jacq.) Griseb.	1,4379
Spondias mombin L.	0,9787
IX	8,1290
Anacardium excelsum (Bertero ex Kunth) Skeels	3,3396
Brownea ariza Benth.	0,8763
Sterculia apetala (Jacq.) H.Karst.	3,2826
Zygia longifolia (Willd.) Britton & Rose	0,6305
X	1,6286
Ceiba pentandra (L.) Gaertn.	1,6286
XI	4,4424
Coccoloba pubescens L.	4,4424
XII	4,1465
Coccoloba pubescens L.	4,1465
XIII	4,6988
Anacardium excelsum (Bertero ex Kunth) Skeels	4,6988

5.5.2.11.2. Indicadores estructurales del bosque de galería

5.5.2.11.2.1. Estructura horizontal

En la Tabla 228 se observa los datos obtenidos del análisis de la estructura horizontal del bosque de galería.

Tabla 228. Estructura horizontal para el bosque de galeria

_	N° de	Abundancia		Dominancia		Frecuencia		
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Anacardium excelsum (Bertero ex Kunth) Skeels	20	0,071	7,067	0,179	17,896	0,333	3,279	28,241
Enterolobium cyclocarpum (Jacq.) Griseb.	21	0,074	7,420	0,134	13,375	0,333	3,279	24,074
Albizia saman (Jacq.) Merr.	18	0,064	6,360	0,106	10,638	0,500	4,918	21,917
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	27	0,095	9,541	0,060	6,024	0,583	5,738	21,303
Guazuma ulmifolia Lam.	20	0,071	7,067	0,025	2,481	0,750	7,377	16,926
Handroanthus chrysanthus (Jacq.) S.O.Grose	24	0,085	8,481	0,055	5,470	0,250	2,459	16,409

	N° de	Abund	ancia	Domi	nancia	Frecue	ncia	
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Spondias mombin L.	10	0,035	3,534	0,050	4,955	0,500	4,918	13,406
Coccoloba pubescens L.	6	0,021	2,120	0,077	7,665	0,250	2,459	12,244
Sterculia apetala (Jacq.) H.Karst.	7	0,025	2,473	0,030	3,022	0,500	4,918	10,414
Sapium glandulosum (L.) Morong	8	0,028	2,827	0,021	2,136	0,417	4,098	9,061
Gliricidia sepium (Jacq.) Walp.	9	0,032	3,180	0,016	1,578	0,417	4,098	8,857
Maclura tinctoria (L.) D.Don ex Steud.	12	0,042	4,240	0,017	1,717	0,250	2,459	8,416
Ficus citrifolia Mill.	7	0,025	2,473	0,032	3,205	0,250	2,459	8,137
Coccoloba uvifera (L.) L.	8	0,028	2,827	0,009	0,854	0,250	2,459	6,140
Inga sp.	6	0,021	2,120	0,007	0,714	0,333	3,279	6,113
Tabebuia rosea (Bertol.) Bertero ex A.DC.	8	0,028	2,827	0,011	1,110	0,167	1,639	5,576
Bixa orellana L.	7	0,025	2,473	0,003	0,330	0,250	2,459	5,263
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	6	0,021	2,120	0,006	0,616	0,250	2,459	5,195
Calliandra magdalenae (DC.) Benth.	5	0,018	1,767	0,007	0,750	0,250	2,459	4,976
Ceiba pentandra (L.) Gaertn.	2	0,007	0,707	0,024	2,415	0,167	1,639	4,761
Zygia longifolia (Willd.) Britton & Rose	3	0,011	1,060	0,026	2,619	0,083	0,820	4,498
Aspidosperma sp.	6	0,021	2,120	0,004	0,420	0,167	1,639	4,179
Inga macrophylla Willd.	4	0,014	1,413	0,002	0,152	0,250	2,459	4,024
Pachira quinata (Jacq.) W.S.Alverson	3	0,011	1,060	0,005	0,504	0,250	2,459	4,023
Malouetia sp.	3	0,011	1,060	0,002	0,234	0,250	2,459	3,753
Cassia fistula L.	2	0,007	0,707	0,012	1,219	0,167	1,639	3,565
Ficus magdalenica Dugand	3	0,011	1,060	0,008	0,829	0,167	1,639	3,529
Ochroma pyramidale (Cav. ex Lam.) Urb.	4	0,014	1,413	0,005	0,452	0,167	1,639	3,504
Swietenia macrophylla King	2	0,007	0,707	0,010	1,047	0,167	1,639	3,393
Ochoterenaea colombiana F.A.Barkley	3	0,011	1,060	0,005	0,520	0,167	1,639	3,220
Melicoccus bijugatus Jacq.	3	0,011	1,060	0,004	0,376	0,167	1,639	3,075
Brownea ariza Benth.	1	0,004	0,353	0,019	1,897	0,083	0,820	3,070
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2	0,007	0,707	0,006	0,594	0,167	1,639	2,940
Pseudobombax septenatum (Jacq.) Dugand	1	0,004	0,353	0,009	0,882	0,083	0,820	2,056
Schizolobium parahyba (Vell.) S.F.Blake	1	0,004	0,353	0,005	0,478	0,083	0,820	1,651
Cordia collococca L.	2	0,007	0,707	0,001	0,119	0,083	0,820	1,645
Cecropia peltata L.	2	0,007	0,707	0,001	0,074	0,083	0,820	1,601
Trichilia hirta L.	1	0,004	0,353	0,002	0,228	0,083	0,820	1,401
Trichospermum galeottii (Turcz.) Kosterm.	1	0,004	0,353	0,002	0,188	0,083	0,820	1,361
Muntingia calabura L.	1	0,004	0,353	0,001	0,085	0,083	0,820	1,258
Handroanthus impetiginosus (Mart. ex DC.) Mattos	1	0,004	0,353	0,000	0,045	0,083	0,820	1,218
Macrolobium sp.	1	0,004	0,353	0,000	0,031	0,083	0,820	1,204

	N° de	N° de Abundancia		Dominancia		Frecuencia		
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Triplaris americana L.	1	0,004	0,353	0,000	0,031	0,083	0,820	1,204
Matayba sp.	1	0,004	0,353	0,000	0,026	0,083	0,820	1,199
Totales Generales		1	100	1	100	10,167	100	300

Abundancia

La abundancia absoluta y relativa presente en la cobertura de bosque de galería muestra que la especie más abundante es *Albizia niopoides* var. colombiana (Britton & Killip) Barneby & Jcon 22 individuos en una hectárea y de abundancia relativa 9,54 %. Igualmente, la especie Handroanthus chrysanthus (Jacq.) S.O.Grose presenta la segunda mayor abundancia con 20 individuos por hectárea y una abundancia realtiva de 8,48 % (Figura 135).

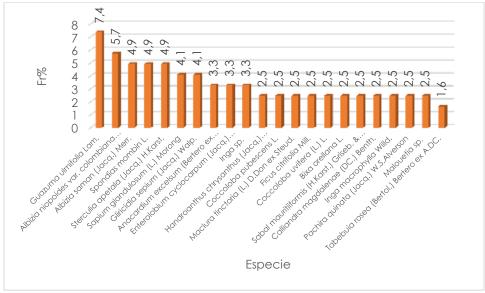
Especie

Especie

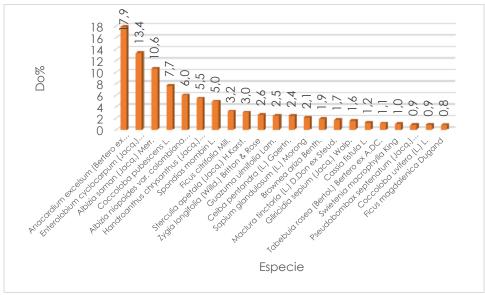
Especie

Figura 135. Distribución de la abundancia relativa para el bosque de galería

Fuente: Elaboración equipo técnico


<u>Frecuencia</u>

La especie Guazuma ulmifolia Lam. es la mas frecuente con una presencia en 9 parcelas de las 12 realizadas, seguida de Albizia niopoides var. colombiana (Britton & Killip) Barneby & J. con una presencia en 7 parcelas de las 12 realizadas con una frecuencia realtiva de 5,73 % (Figura 136).


Figura 136. Distribución de frecuencia relativa para el bosque de galería

Dominancia

La especie de mayor dominancia es Anacardium excelsum (Bertero ex Kunth) Skeels con 17,89 % y área basal de 6,0110 m², seguida de la especie Enterolobium cyclocarpum (Jacq.) Griseb. con 13,37 % y un área basal de 4,4927 m² (Figura 137).

Figura 137. Distribución de la dominancia relativa para el bosque de galería

Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es Anacardium excelsum (Bertero ex Kunth) Skeels con un IVI de 28,2, seguida de la especie Enterolobium cyclocarpum (Jacq.) Griseb.con un peso ecológico de 24,1, evidenciando el comportamiento de J invertida de bosque natural (Figura 138).

Especie

Especie

Especie

Especie

Figura 138. Distribución del IVI para el bosque de galería

Fuente: Elaboración equipo técnico

Coefiente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1 / \frac{44}{283}$$

$$CM = 1 / 0,155$$

$$CM = 6,45$$

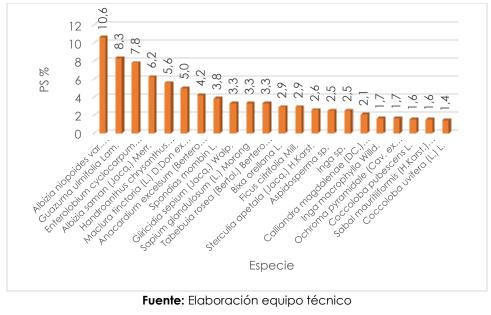
El coeficiente de mezcla obtenido implica que por cada 6,45 individuos estudiados hay una especie nueva para el bosque de galeria.

5.5.2.11.2.2. Estructura vertical

Posición sociólogica

La posición sociológica muestra que la especie con mayor peso es Albizia niopoides var. colombiana (Britton & Killip) Barneby & J. con 10,60 % debido a la presencia de la totalidad de sus individuos en el estrato dominante, el detallado de cada una de las especies se muestra en la Tabla 229 y Figura 139.

Tabla 229. Posición sociológica de las especies del bosque de galeria


Especie	Suprimido	Codominante	Dominante	Ps	Ps%
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0	25	2	5785	10,604
Guazuma ulmifolia Lam.	0	20	0	4540	8,322
Enterolobium cyclocarpum (Jacq.) Griseb.	0	18	3	4251	7,792
Albizia saman (Jacq.) Merr.	0	14	4	3398	6,229
Handroanthus chrysanthus (Jacq.) S.O.Grose	0	10	14	3040	5,572
Maclura tinctoria (L.) D.Don ex Steud.	0	12	0	2724	4,993
Anacardium excelsum (Bertero ex Kunth) Skeels	0	7	13	2304	4,223
Spondias mombin L.	0	9	1	2098	3,846
Gliricidia sepium (Jacq.) Walp.	1	8	0	1817	3,331
Sapium glandulosum (L.) Morong	0	8	0	1816	3,329
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0	8	0	1816	3,329
Bixa orellana L.	0	7	0	1589	2,913
Ficus citrifolia Mill.	0	7	0	1589	2,913
Sterculia apetala (Jacq.) H.Karst.	0	6	1	1417	2,597
Aspidosperma sp.	0	6	0	1362	2,497
Inga sp.	0	6	0	1362	2,497
Calliandra magdalenae (DC.) Benth.	0	5	0	1135	2,080
Inga macrophylla Willd.	0	4	0	908	1,664
Ochroma pyramidale (Cav. ex Lam.) Urb.	0	4	0	908	1,664
Coccoloba pubescens L.	0	3	3	846	1,551
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0	3	3	846	1,551
Coccoloba uvifera (L.) L.	0	2	6	784	1,437
Ficus magdalenica Dugand	0	3	0	681	1,248
Malouetia sp.	0	3	0	681	1,248
Melicoccus bijugatus Jacq.	0	3	0	681	1,248
Ochoterenaea colombiana F.A.Barkley	0	3	0	681	1,248
Pachira quinata (Jacq.) W.S.Alverson	0	2	1	509	0,933

Especie	Suprimido	Codominante	Dominante	Ps	Ps%
Zygia longifolia (Willd.) Britton & Rose	0	2	1	509	0,933
Cecropia peltata L.	0	2	0	454	0,832
Ceiba pentandra (L.) Gaertn.	0	2	0	454	0,832
Cordia collococca L.	0	2	0	454	0,832
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0	2	0	454	0,832
Swietenia macrophylla King	0	2	0	454	0,832
Brownea ariza Benth.	0	1	0	227	0,416
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0	1	0	227	0,416
Macrolobium sp.	0	1	0	227	0,416
Matayba sp.	0	1	0	227	0,416
Muntingia calabura L.	0	1	0	227	0,416
Schizolobium parahyba (Vell.) S.F.Blake	0	1	0	227	0,416
Trichilia hirta L.	0	1	0	227	0,416
Trichospermum galeottii (Turcz.) Kosterm.	0	1	0	227	0,416
Triplaris americana L.	0	1	0	227	0,416
Cassia fistula L.	0	0	2	110	0,202
Pseudobombax septenatum (Jacq.) Dugand	0	0	1	55	0,101
Totales Generales	1	227	55	54555	100

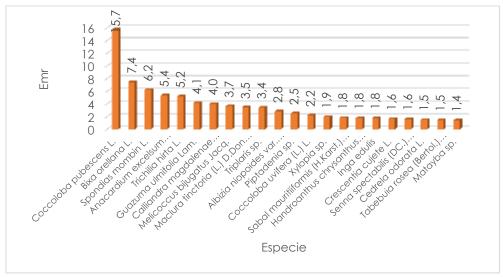
Figura 139. Distribución de la posición sociológica de las especies del bosque de galería

5.5.2.11.2.3. <u>Analisis del sotobosque</u>

Categoria de tamaño absoluta

El análisis de regeneración natural muestra que la especie que presenta mayor representación es Coccoloba pubescens L.con una categoría de tamaño de 19,235 %, seguido de Vata Bixa orellana L. con una categoría de tamaño de 9,249 % (Figura 140) (Tabla 230).

Tabla 230. Cálculo de la estructura de sotobosque en el bosque de galeria


Especie	AB%	FA%	СтаЕМ%	Emr
Coccoloba pubescens L.	20,000	7,965	19,235	15,733
Bixa orellana L.	9,483	3,540	9,249	7,424
Spondias mombin L.	6,034	6,195	6,384	6,204
Anacardium excelsum (Bertero ex Kunth) Skeels	5,517	5,310	5,240	5,356
Trichilia hirta L.	5,000	5,310	5,175	5,161
Guazuma ulmifolia Lam.	3,966	4,425	4,046	4,145
Calliandra magdalenae (DC.) Benth.	4,310	3,540	4,095	3,982
Melicoccus bijugatus Jacq.	4,310	2,655	4,044	3,670
Maclura tinctoria (L.) D.Don ex Steud.	3,276	3,540	3,535	3,450
Triplaris sp.	2,241	5,310	2,652	3,401
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,414	3,540	2,437	2,797
Piptadenia sp.	1,897	3,540	1,975	2,470
Coccoloba uvifera (L.) L.	2,241	1,770	2,459	2,157
Xylopia sp.	2,069	1,770	2,005	1,948
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	2,414	0,885	2,093	1,797
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,897	1,770	1,663	1,776
Inga edulis	1,379	2,655	1,281	1,772
Crescentia cujete L.	1,207	2,655	1,026	1,629
Senna spectabilis (DC.) H.S.Irwin & Barneby	1,897	0,885	2,055	1,612
Cedrela odorata L.	1,379	1,770	1,340	1,497
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,862	2,655	0,860	1,459
Matayba sp.	1,724	0,885	1,594	1,401
Ficus dugandii Standl.	1,034	1,770	1,188	1,331
Sapium glandulosum (L.) Morong	0,862	1,770	0,926	1,186
Cochlospermum sp.	1,207	0,885	1,331	1,141
Bactris guineensis (L.) H.E.Moore	0,690	1,770	0,837	1,099
Gliricidia sepium (Jacq.) Walp.	0,690	1,770	0,837	1,099
Pachira quinata (Jacq.) W.S.Alverson	0,690	1,770	0,837	1,099
Miconia affinis DC.	1,034	0,885	1,255	1,058
Ceiba pentandra (L.) Gaertn.	0,690	1,770	0,644	1,034

Especie	AB%	FA%	СтаЕМ%	Emr
Annona muricata L.	0,517	1,770	0,627	0,972
Miconia sp.	0,862	0,885	1,046	0,931
Cassia fistula L.	0,517	1,770	0,449	0,912
Cecropia peltata L.	0,862	0,885	0,979	0,909
Brownea ariza Benth.	0,862	0,885	0,748	0,832
Ocotea sp.	0,862	0,885	0,748	0,832
Albizia saman (Jacq.) Merr.	0,690	0,885	0,598	0,724
Inga sp.	0,517	0,885	0,449	0,617
Malouetia sp.	0,345	0,885	0,418	0,549
Ochoterenaea colombiana F.A.Barkley	0,345	0,885	0,418	0,549
Aspidosperma album (Vahl) Benoist ex Pichon	0,345	0,885	0,359	0,529
Bellucia grossularioides (L.) Triana	0,345	0,885	0,299	0,510
Guarea glabra Vahl	0,172	0,885	0,209	0,422
Triplaris americana L.	0,172	0,885	0,209	0,422
Cordia alliodora (Ruiz & Pav.) Oken	0,172	0,885	0,150	0,402
Totales	100	100	100	100

Figura 140. Distribución del sotobosque del bosque de galería

Fuente: Elaboración equipo técnico

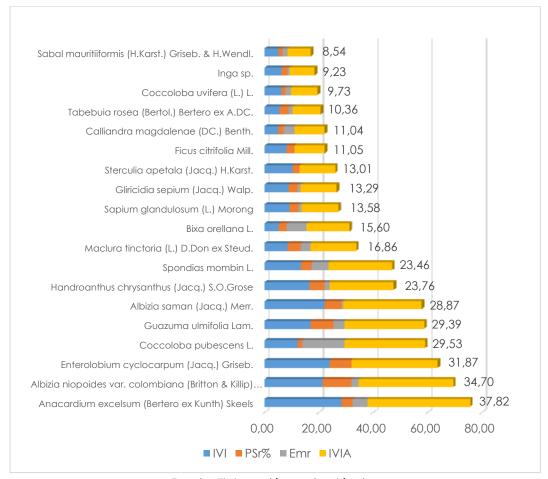
<u>Índice de valor de importancia ampliado (IVIA)</u>

La especie con el mayor valor de importancia en el bosque es Anacardium excelsum (Bertero ex Kunth) Skeels, la cual obtuvo un valor de 37,82 de IVIA con la mayor significancia asociado al IVI y Emr. La especie Albizia niopoides var. colombiana (Britton &

Killip) Barneby & J. presenta un valor de 34,70, asociado al peso de IVI y Ps (Tabla 231) (Figura 141).

Tabla 231. Índice de valor de importancia ampliado para el bosque de galeria

Especie	IVI	PSr%	Emr	IVIA
Anacardium excelsum (Bertero ex Kunth) Skeels	28,24	4,22	5,36	37,82
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	21,30	10,60	2,80	34,70
Enterolobium cyclocarpum (Jacq.) Griseb.	24,07	7,79	0,00	31,87
Coccoloba pubescens L.	12,24	1,55	15,73	29,53
Guazuma ulmifolia Lam.	16,93	8,32	4,15	29,39
Albizia saman (Jacq.) Merr.	21,92	6,23	0,72	28,87
Handroanthus chrysanthus (Jacq.) S.O.Grose	16,41	5,57	1,78	23,76
Spondias mombin L.	13,41	3,85	6,20	23,46
Maclura tinctoria (L.) D.Don ex Steud.	8,42	4,99	3,45	16,86
Bixa orellana L.	5,26	2,91	7,42	15,60
Sapium glandulosum (L.) Morong	9,06	3,33	1,19	13,58
Gliricidia sepium (Jacq.) Walp.	8,86	3,33	1,10	13,29
Sterculia apetala (Jacq.) H.Karst.	10,41	2,60	0,00	13,01
Ficus citrifolia Mill.	8,14	2,91	0,00	11,05
Calliandra magdalenae (DC.) Benth.	4,98	2,08	3,98	11,04
Tabebuia rosea (Bertol.) Bertero ex A.DC.	5,58	3,33	1,46	10,36
Coccoloba uvifera (L.) L.	6,14	1,44	2,16	9,73
Inga sp.	6,11	2,50	0,62	9,23
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	5,20	1,55	1,80	8,54
Melicoccus bijugatus Jacq.	3,07	1,25	3,67	7,99
Trichilia hirta L.	1,40	0,42	5,16	6,98
Aspidosperma sp.	4,18	2,50	0,00	6,68
Ceiba pentandra (L.) Gaertn.	4,76	0,83	1,03	6,63
Pachira quinata (Jacq.) W.S.Alverson	4,02	0,93	1,10	6,05
Inga macrophylla Willd.	4,02	1,66	0,00	5,69
Malouetia sp.	3,75	1,25	0,55	5,55
Zygia longifolia (Willd.) Britton & Rose	4,50	0,93	0,00	5,43
Ochroma pyramidale (Cav. ex Lam.) Urb.	3,50	1,66	0,00	5,17
Ochoterenaea colombiana F.A.Barkley	3,22	1,25	0,55	5,02
Ficus magdalenica Dugand	3,53	1,25	0,00	4,78
Cassia fistula L.	3,56	0,20	0,91	4,68
Brownea ariza Benth.	3,07	0,42	0,83	4,32
Swietenia macrophylla King	3,39	0,83	0,00	4,23
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2,94	0,83	0,00	3,77



Especie	IVI	PSr%	Emr	IVIA
Triplaris sp.	0,00	0,00	3,40	3,40
Cecropia peltata L.	1,60	0,83	0,91	3,34
Matayba sp.	1,20	0,42	1,40	3,02
Cordia collococca L.	1,64	0,83	0,00	2,48
Piptadenia sp.	0,00	0,00	2,47	2,47
Pseudobombax septenatum (Jacq.) Dugand	2,06	0,10	0,00	2,16
Schizolobium parahyba (Vell.) S.F.Blake	1,65	0,42	0,00	2,07
Triplaris americana L.	1,20	0,42	0,42	2,04
Xylopia sp.	0,00	0,00	1,95	1,95
Trichospermum galeottii (Turcz.) Kosterm.	1,36	0,42	0,00	1,78
Inga edulis	0,00	0,00	1,77	1,77
Muntingia calabura L.	1,26	0,42	0,00	1,67
Handroanthus impetiginosus (Mart. ex DC.) Mattos	1,22	0,42	0,00	1,63
Crescentia cujete L.	0,00	0,00	1,63	1,63
Macrolobium sp.	1,20	0,42	0,00	1,62
Senna spectabilis (DC.) H.S.Irwin & Barneby	0,00	0,00	1,61	1,61
Cedrela odorata L.	0,00	0,00	1,50	1,50
Ficus dugandii Standl.	0,00	0,00	1,33	1,33
Cochlospermum sp.	0,00	0,00	1,14	1,14
Bactris guineensis (L.) H.E.Moore	0,00	0,00	1,10	1,10
Miconia affinis DC.	0,00	0,00	1,06	1,06
Annona muricata L.	0,00	0,00	0,97	0,97
Miconia sp.	0,00	0,00	0,93	0,93
Ocotea sp.	0,00	0,00	0,83	0,83
Aspidosperma album (Vahl) Benoist ex Pichon	0,00	0,00	0,53	0,53
Bellucia grossularioides (L.) Triana	0,00	0,00	0,51	0,51
Guarea glabra Vahl	0,00	0,00	0,42	0,42
Cordia alliodora (Ruiz & Pav.) Oken	0,00	0,00	0,40	0,40

Figura 141. Distribución del IVIA para el bosque de galería

5.5.2.11.3. Indicadores de diversidad alfa del bosque de galería

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 232.

Tabla 232. Índices de biodiversidad alfa del bosque de galería

Parámetro	Valor	
Dmn	2,616	
Dsi	1/0,0477=20,94	
d	1-0,09= 0,90	
H′	3,33	
dmg	7,43	

El índice de Menhinick muestra una tendencia media a la diversidad, siendo poco heterogéneo en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra tendencia a la alta diversidad del bosque, teniendo en cuenta que la probabilidad de sacar individuos iguales es muy baja.

Para la cobertura de bosque de galería, el índice de Shannon establece que es típicamente diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es altamente biodiverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad media.

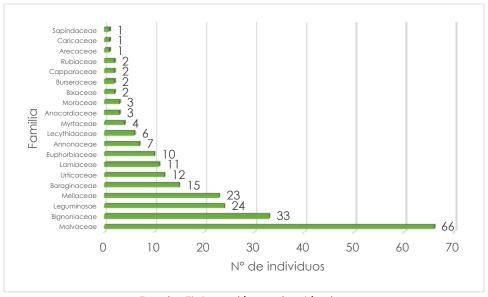
5.5.2.12. Cobertura de Vegetación Secundaria

La cobertura de vegetación secundaria se encuentra constituido por un total de 45 especies distribuidas en 20 familias registradas en el inventario forestal.

En la Tabla 233, se identifica la familia Malvaceae y Bignoniaceae las que presentan la mayor representación. A su vez se identifica que la familia Bignoniaceae se encuentra representada en 2 generos y 2 especies, resaltando la especie *Tabebuia ros*ea (Bertol.) Bertero ex A.DC.con 31 individuos (Figura 142).

Tabla 233. Composición florística del bosque de vegetación secundaria

Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
		Anacardium excelsum (Bertero ex Kunth) Skeels	1
Anacardiacea		Spondias mombin L.	1
e	3	Spondias purpurea L.	1
Annonaceae	7	Annona muricata L.	7
Arecaceae	1	Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1
		Handroanthus chrysanthus (Jacq.) S.O.Grose	2
Bignoniaceae	33	Tabebuia rosea (Bertol.) Bertero ex A.DC.	31
Bixaceae	2	Cochlospermum vitifolium (Willd.) Spreng.	2
		Cordia alba (Jacq.) Roem. & Schult.	1
		Cordia alliodora (Ruiz & Pav.) Oken	10
Boraginaceae	15	Cordia collococca L.	4
Burseraceae	2	Bursera simaruba (L.) Sarg.	2
Capparaceae	2	Cynophalla verrucosa (Jacq.) J.Presl	2
Caricaceae	1	Jacaratia digitata (Poepp. & Endl.) Solms	1
Euphorbiacea e	10	Sapium glandulosum (L.) Morong	10
		Vitex cymosa Bertero ex Spreng	1
		Nectandra cuspidata Nees & Mart.	1
Lamiaceae	11	Nectandra sp.	3



Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
		Persea americana Mill.	6
		Eschweilera caudiculata R.Knuth	3
		Gustavia superba (Kunth) O.Berg	2
Lecythidaceae	6	Lecythis ampla Miers	1
		Albizia saman (Jacq.) Merr.	4
		Calliandra magdalenae (DC.) Benth.	1
		Dussia lehmannii Harms	1
		Enterolobium cyclocarpum (Jacq.) Griseb.	1
		Gliricidia sepium (Jacq.) Walp.	10
		Piptadenia sp.	1
Leguminosae	24	Senna occidentalis (L.) Link	6
		Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	1
		Guazuma ulmifolia Lam.	6
		Ochroma pyramidale (Cav. ex Lam.) Urb.	48
		Pachira aquatica Aubl.	1
		Pseudobombax septenatum (Jacq.) Dugand	4
		Sterculia apetala (Jacq.) H.Karst.	2
Malvaceae	66	Trichospermum galeottii (Turcz.) Kosterm.	4
		Azadirachta indica A.Juss.	1
		Cedrela odorata L.	19
Meliaceae	23	Swietenia macrophylla King	3
Moraceae	3	Ficus citrifolia Mill.	3
		Psidium guajava L.	1
Myrtaceae	4	Syzygium malaccense (L.) Merr. & L.M.Perry	3
Rubiaceae	2	Genipa americana L.	2
Sapindaceae	1	Melicoccus bijugatus Jacq.	1
Urticaceae	12	Cecropia peltata L.	12

Figura 142. Distribución florística de las familias identificadas en la cobertura de vegetación secundaria

5.5.2.12.1. Indicadores dasométricos de la cobertura de vegetación secundaria

La cobertura de vegetación secundaria presenta un total de 228 individuos / ha en 45 especies; siendo la de mayor número la especie *Ochroma pyramidale* (Cav. ex Lam.) Urb. con 48 individuos, seguido de la especie *Tabebuia rosea* (Bertol.) Bertero ex A.DC. con 31 individuos por Ha. En la Tabla 234, se presenta el N° de individuos de cada una de las especies por ha (Figura 143¡Error! No se encuentra el origen de la referencia.).

Tabla 234. Nº de individuos/especie/ha de la cobertura de vegetación secundaria

Especie	N° de Ind / sp/ ha
Ochroma pyramidale (Cav. ex Lam.) Urb.	48
Tabebuia rosea (Bertol.) Bertero ex A.DC.	31
Cedrela odorata L.	19
Cecropia peltata L.	12
Cordia alliodora (Ruiz & Pav.) Oken	10
Sapium glandulosum (L.) Morong	10
Gliricidia sepium (Jacq.) Walp.	10
Annona muricata L.	7
Persea americana Mill.	6
Senna occidentalis (L.) Link	6
Guazuma ulmifolia Lam.	6
Cordia collococca L.	4
Albizia saman (Jacq.) Merr.	4

Especie	N° de Ind / sp/ ha
Pseudobombax septenatum (Jacq.) Dugand	4
Trichospermum galeottii (Turcz.) Kosterm.	4
Nectandra sp.	3
Eschweilera caudiculata R.Knuth	3
Swietenia macrophylla King	3
Ficus citrifolia Mill.	3
Syzygium malaccense (L.) Merr. & L.M.Perry	3
Handroanthus chrysanthus (Jacq.) S.O.Grose	2
Cochlospermum vitifolium (Willd.) Spreng.	2
Bursera simaruba (L.) Sarg.	2
Cynophalla verrucosa (Jacq.) J.Presl	2
Gustavia superba (Kunth) O.Berg	2
Sterculia apetala (Jacq.) H.Karst.	2
Genipa americana L.	2
Spondias mombin L.	1
Anacardium excelsum (Bertero ex Kunth) Skeels	1
Spondias purpurea L.	1
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1
Cordia alba (Jacq.) Roem. & Schult.	1
Jacaratia digitata (Poepp. & Endl.) Solms	1
Vitex cymosa Bertero ex Spreng	1
Nectandra cuspidata Nees & Mart.	1
Lecythis ampla Miers	1
Calliandra magdalenae (DC.) Benth.	1
Dussia lehmannii Harms	1
Enterolobium cyclocarpum (Jacq.) Griseb.	1
Piptadenia sp.	1
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	1
Pachira aquatica Aubl.	1
Azadirachta indica A.Juss.	1
Psidium guajava L.	1
Melicoccus bijugatus Jacq.	1

Figura 143. Distribución de N° de individuos por especie

La cobertura vegetación secundaria presenta un área basal por ha de 14,6478 m² en las 45 especies, obteniendo un área basal promedio/individuo/especie de 0,0667 m² y área basal promedio/especie /hectárea de 0,3255 m²; en la Tabla 235 se presenta los indicadores detallados por especie.

Tabla 235. Indicadores por especie de área basal

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Albizia saman (Jacq.) Merr.	0,9037	0,2066
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0349	0,0279
Annona muricata L.	0,2090	0,0279
Azadirachta indica A.Juss.	0,0287	0,0460
Bursera simaruba (L.) Sarg.	0,3962	0,1585
Calliandra magdalenae (DC.) Benth.	0,0203	0,0162
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0080	0,0127
Cecropia peltata L.	0,3543	0,0283
Cedrela odorata L.	1,1358	0,0606
Cochlospermum vitifolium (Willd.) Spreng.	0,0507	0,0270
Cordia alba (Jacq.) Roem. & Schult.	0,0140	0,0224
Cordia alliodora (Ruiz & Pav.) Oken	0,1517	0,0152
Cordia collococca L.	0,1438	0,0383
Cynophalla verrucosa (Jacq.) J.Presl	0,3532	0,1884
Dussia lehmannii Harms	0,0272	0,0436
Enterolobium cyclocarpum (Jacq.) Griseb.	0,0669	0,1071

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Eschweilera caudiculata R.Knuth	0,0426	0,0136
Ficus citrifolia Mill.	0,5622	0,1799
Genipa americana L.	0,0671	0,0358
Gliricidia sepium (Jacq.) Walp.	0,3156	0,0316
Guazuma ulmifolia Lam.	0,1959	0,0348
Gustavia superba (Kunth) O.Berg	0,1267	0,0676
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0594	0,0237
Jacaratia digitata (Poepp. & Endl.) Solms	0,0162	0,0259
Lecythis ampla Miers	0,0054	0,0087
Melicoccus bijugatus Jacq.	0,0508	0,0406
Nectandra cuspidata Nees & Mart.	0,1721	0,2753
Nectandra sp.	0,1381	0,0442
Ochroma pyramidale (Cav. ex Lam.) Urb.	4,5912	0,0942
Pachira aquatica Aubl.	0,2683	0,2146
Persea americana Mill.	0,3221	0,0573
Piptadenia sp.	0,0389	0,0311
Pseudobombax septenatum (Jacq.) Dugand	0,2966	0,0678
Psidium guajava L.	0,0191	0,0306
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,0359	0,0575
Sapium glandulosum (L.) Morong	1,0648	0,1065
Senna occidentalis (L.) Link	0,4193	0,0671
Spondias mombin L.	0,1075	0,0860
Spondias purpurea L.	0,0894	0,0715
Sterculia apetala (Jacq.) H.Karst.	0,2576	0,1374
Swietenia macrophylla King	0,0904	0,0289
Syzygium malaccense (L.) Merr. & L.M.Perry	0,1754	0,0468
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,0676	0,0349
Trichospermum galeottii (Turcz.) Kosterm.	0,1384	0,0369
Vitex cymosa Bertero ex Spreng	0,0150	0,0241

En cuanto a los indicadores de volumen se encuentra distribuido en 8 clases diamétricas, siendo la clase III que presenta los mayores volúmenes. Para el caso del volumen total se obtiene 132,639 m³; en la Figura 144 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de vegetación secundaria, encontrándose la clase III con un volumen de 29,1985 m³ seguido de la clase II con 25,5429 m³.

29,1985 30 25,5429 25 Volumen total (m3) 20 17,4061 14,8081 14,2409 15 12,8882 11,9524 10 6,6027 5 0 |||||IV VIIVIIIClase diamétrica

Figura 144. Distribución del volumen total por clase diamétrica

De igual manera, el volumen total por especie se calcula un promedio de 2,94 m³ y un volumen promedio por especie por individuo de 0,58 m³; en la Tabla 236 se evidencia el volumen de cada una de las especies por hectárea y en la Tabla 237 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 236. Indicadores por especie de volumen total

Especie	VT/sp /ha	VT ind/sp/ha
Albizia saman (Jacq.) Merr.	10,0197	2,2902
Anacardium excelsum (Bertero ex Kunth) Skeels	0,2267	0,1813
Annona muricata L.	1,0324	0,1377
Azadirachta indica A.Juss.	0,2241	0,3585
Bursera simaruba (L.) Sarg.	4,0054	1,6022
Calliandra magdalenae (DC.) Benth.	0,1133	0,0907
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0621	0,0993
Cecropia peltata L.	2,7256	0,2181
Cedrela odorata L.	9,7160	0,5182
Cochlospermum vitifolium (Willd.) Spreng.	0,4198	0,2239
Cordia alba (Jacq.) Roem. & Schult.	0,1181	0,1889
Cordia alliodora (Ruiz & Pav.) Oken	1,3195	0,1320
Cordia collococca L.	1,0980	0,2928
Cynophalla verrucosa (Jacq.) J.Presl	3,2346	1,7251
Dussia lehmannii Harms	0,1770	0,2832
Enterolobium cyclocarpum (Jacq.) Griseb.	0,5655	0,9048

Especie	VT/sp /ha	VT ind/sp/ha
Eschweilera caudiculata R.Knuth	0,3383	0,1082
Ficus citrifolia Mill.	5,4059	1,7299
Genipa americana L.	0,5021	0,2678
Gliricidia sepium (Jacq.) Walp.	1,6985	0,1698
Guazuma ulmifolia Lam.	1,1806	0,2099
Gustavia superba (Kunth) O.Berg	1,0948	0,5839
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,3690	0,1476
Jacaratia digitata (Poepp. & Endl.) Solms	0,0840	0,1344
Lecythis ampla Miers	0,0282	0,0451
Melicoccus bijugatus Jacq.	0,3166	0,2533
Nectandra cuspidata Nees & Mart.	2,0132	3,2211
Nectandra sp.	1,0625	0,3400
Ochroma pyramidale (Cav. ex Lam.) Urb.	46,6666	0,9573
Pachira aquatica Aubl.	2,0925	1,6740
Persea americana Mill.	2,1319	0,3790
Piptadenia sp.	0,2149	0,1719
Pseudobombax septenatum (Jacq.) Dugand	2,8172	0,6439
Psidium guajava L.	0,0994	0,1591
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2803	0,4485
Sapium glandulosum (L.) Morong	8,3803	0,8380
Senna occidentalis (L.) Link	4,5338	0,7254
Spondias mombin L.	0,8848	0,7078
Spondias purpurea L.	0,4649	0,3719
Sterculia apetala (Jacq.) H.Karst.	3,1193	1,6637
Swietenia macrophylla King	0,4980	0,1594
Syzygium malaccense (L.) Merr. & L.M.Perry	1,4410	0,3843
Tabebuia rosea (Bertol.) Bertero ex A.DC.	8,4335	0,2754
Trichospermum galeottii (Turcz.) Kosterm.	1,3224	0,3526
Vitex cymosa Bertero ex Spreng	0,1076	0,1721

Tabla 237. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /ha /Ct diam.
1	12,8882
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0943
Annona muricata L.	0,5046
Bursera simaruba (L.) Sarg.	0,1786
Calliandra magdalenae (DC.) Benth.	0,1133
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0621
Cecropia peltata L.	1,1887

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Cedrela odorata L.	0,3973
Cochlospermum vitifolium (Willd.) Spreng.	0,2367
Cordia alba (Jacq.) Roem. & Schult.	0,1181
Cordia alliodora (Ruiz & Pav.) Oken	1,3195
Cordia collococca L.	0,2123
Eschweilera caudiculata R.Knuth	0,3383
Genipa americana L.	0,0621
Gliricidia sepium (Jacq.) Walp.	0,6750
Guazuma ulmifolia Lam.	0,3165
Gustavia superba (Kunth) O.Berg	0,1047
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0991
Jacaratia digitata (Poepp. & Endl.) Solms	0,0840
Lecythis ampla Miers	0,0282
Melicoccus bijugatus Jacq.	0,0547
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,6087
Piptadenia sp.	0,0994
Pseudobombax septenatum (Jacq.) Dugand	0,3629
Psidium guajava L.	0,0994
Sapium glandulosum (L.) Morong	0,3098
Senna occidentalis (L.) Link	0,1491
Spondias mombin L.	0,0373
Spondias purpurea L.	0,0673
Sterculia apetala (Jacq.) H.Karst.	0,0354
Swietenia macrophylla King	0,2289
Syzygium malaccense (L.) Merr. & L.M.Perry	0,0870
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,2477
Trichospermum galeottii (Turcz.) Kosterm.	0,2594
Vitex cymosa Bertero ex Spreng	0,1076
II	25,5429
Albizia saman (Jacq.) Merr.	0,2869
Anacardium excelsum (Bertero ex Kunth) Skeels	0,1324
Annona muricata L.	0,5278
Azadirachta indica A.Juss.	0,2241
Cecropia peltata L.	1,1092
Cedrela odorata L.	5,0707
Cochlospermum vitifolium (Willd.) Spreng.	0,1831
Cordia collococca L.	0,2566
Cynophalla verrucosa (Jacq.) J.Presl	0,4181
Dussia lehmannii Harms	0,1770
Ficus citrifolia Mill.	0,2936

Clase diamétrica / Especie	VTsp /ha /Ct diam.	
Genipa americana L.	0,4401	
Gliricidia sepium (Jacq.) Walp.	0,7851	
Guazuma ulmifolia Lam.	0,6107	
Gustavia superba (Kunth) O.Berg	0,3915	
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,2698	
Melicoccus bijugatus Jacq.	0,2619	
Nectandra sp.	1,0625	
Ochroma pyramidale (Cav. ex Lam.) Urb.	3,7620	
Persea americana Mill.	1,5216	
Piptadenia sp.	0,1155	
Pseudobombax septenatum (Jacq.) Dugand	0,1895	
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2803	
Sapium glandulosum (L.) Morong	0,8515	
Senna occidentalis (L.) Link	1,1753	
Syzygium malaccense (L.) Merr. & L.M.Perry	1,3540	
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,7292	
Trichospermum galeottii (Turcz.) Kosterm.	1,0630	
III	29,1985	
Albizia saman (Jacq.) Merr.	2,0191	
Cecropia peltata L.	0,4277	
Cedrela odorata L.	3,6223	
Enterolobium cyclocarpum (Jacq.) Griseb.	0,5655	
Ficus citrifolia Mill.	0,4753	
Gliricidia sepium (Jacq.) Walp.	0,2384	
Guazuma ulmifolia Lam.	0,2535	
Gustavia superba (Kunth) O.Berg	0,5986	
Ochroma pyramidale (Cav. ex Lam.) Urb.	13,4796	
Pachira aquatica Aubl.	0,5869	
Sapium glandulosum (L.) Morong	2,5566	
Senna occidentalis (L.) Link	3,2094	
Spondias purpurea L.	0,3977	
Swietenia macrophylla King	0,2691	
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,4990	
IV	11,9524	
Cedrela odorata L.	0,6257	
Cordia collococca L.	0,6290	
Ochroma pyramidale (Cav. ex Lam.) Urb.	8,1634	
Persea americana Mill.	0,6103	
Spondias mombin L.	0,8474	
Sterculia apetala (Jacq.) H.Karst.	1,0766	

Clase diamétrica / Especie	VTsp /ha /Ct diam.
V	14,8081
Ficus citrifolia Mill.	2,8362
Nectandra cuspidata Nees & Mart.	2,0132
Ochroma pyramidale (Cav. ex Lam.) Urb.	5,9939
Sterculia apetala (Jacq.) H.Karst.	2,0074
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,9575
VI	17,4061
Albizia saman (Jacq.) Merr.	4,3878
Ficus citrifolia Mill.	1,8008
Ochroma pyramidale (Cav. ex Lam.) Urb.	7,4472
Pachira aquatica Aubl.	1,5056
Pseudobombax septenatum (Jacq.) Dugand	2,2648
VII	14,2409
Albizia saman (Jacq.) Merr.	3,3258
Cynophalla verrucosa (Jacq.) J.Presl	2,8165
Ochroma pyramidale (Cav. ex Lam.) Urb.	3,4361
Sapium glandulosum (L.) Morong	4,6624
VIII	6,6027
Bursera simaruba (L.) Sarg.	3,8268
Ochroma pyramidale (Cav. ex Lam.) Urb.	2,7758

La cobertura de vegetación secundaria presenta un volumen de fuste por ha de 77,61 m³, distribuido en 8 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 7,76 m³ (Figura 145).

17,9927 16,8272 18 16 Volumen fuste (m3) 14 11,1583 12 8,5123 10 7,3344 6,4359 8 5,6682 6 3,6899 4 2 0 \parallel |||VII $\forall |||$ IV Clase diamétrica

Figura 145. Distribución del volumen del fuste por clase diamétrica

De igual forma, el volumen de fuste por especie promedio es de 1,72 m³ y un volumen promedio por especie por individuo de 0,36 m³ de volumen de fuste por individuo por especie. En la Tabla 238 se evidencia el volumen de cada una de las especies y en la Tabla 239 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 238. Indicadores por especie de volumen de fuste

Especie	VF/sp /ha	VF ind/sp/ha
Albizia saman (Jacq.) Merr.	5,0805	1,1613
Anacardium excelsum (Bertero ex Kunth) Skeels	0,1842	0,1473
Annona muricata L.	0,6557	0,0874
Azadirachta indica A.Juss.	0,1120	0,1793
Bursera simaruba (L.) Sarg.	1,7112	0,6845
Calliandra magdalenae (DC.) Benth.	0,0609	0,0487
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0440	0,0703
Cecropia peltata L.	1,9173	0,1534
Cedrela odorata L.	9,0269	0,4814
Cochlospermum vitifolium (Willd.) Spreng.	0,2306	0,1230
Cordia alba (Jacq.) Roem. & Schult.	0,0499	0,0799
Cordia alliodora (Ruiz & Pav.) Oken	0,7270	0,0727
Cordia collococca L.	0,6563	0,1750
Cynophalla verrucosa (Jacq.) J.Presl	1,8585	0,9912
Dussia lehmannii Harms	0,1682	0,2691
Enterolobium cyclocarpum (Jacq.) Griseb.	0,2610	0,4176
Eschweilera caudiculata R.Knuth	0,1944	0,0622

Especie	VF/sp /ha	VF ind/sp/ha
Ficus citrifolia Mill.	4,6587	1,4908
Genipa americana L.	0,2964	0,1581
Gliricidia sepium (Jacq.) Walp.	1,1759	0,1176
Guazuma ulmifolia Lam.	0,6677	0,1187
Gustavia superba (Kunth) O.Berg	0,7421	0,3958
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,2336	0,0934
Jacaratia digitata (Poepp. & Endl.) Solms	0,0368	0,0588
Lecythis ampla Miers	0,0176	0,0282
Melicoccus bijugatus Jacq.	0,1982	0,1585
Nectandra cuspidata Nees & Mart.	1,0625	1,7000
Nectandra sp.	0,5935	0,1899
Ochroma pyramidale (Cav. ex Lam.) Urb.	23,3032	0,4780
Pachira aquatica Aubl.	2,3785	1,9028
Persea americana Mill.	1,4551	0,2587
Piptadenia sp.	0,0976	0,0781
Pseudobombax septenatum (Jacq.) Dugand	1,9497	0,4456
Psidium guajava L.	0,0373	0,0596
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2803	0,4485
Sapium glandulosum (L.) Morong	4,6914	0,4691
Senna occidentalis (L.) Link	1,7038	0,2726
Spondias mombin L.	0,5472	0,4377
Spondias purpurea L.	0,1786	0,1428
Sterculia apetala (Jacq.) H.Karst.	1,2483	0,6658
Swietenia macrophylla King	0,4719	0,1510
Syzygium malaccense (L.) Merr. & L.M.Perry	0,8213	0,2190
Tabebuia rosea (Bertol.) Bertero ex A.DC.	5,0488	0,1649
Trichospermum galeottii (Turcz.) Kosterm.	0,7061	0,1883
Vitex cymosa Bertero ex Spreng	0,0782	0,1252

Tabla 239. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /ha/Ct diam.
1	8,5123
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0848
Annona muricata L.	0,3597
Bursera simaruba (L.) Sarg.	0,1566
Calliandra magdalenae (DC.) Benth.	0,0609
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0440
Cecropia peltata L.	0,8149
Cedrela odorata L.	0,2903

Clase diamétrica / Especie	VFsp /ha/Ct diam.	
Cochlospermum vitifolium (Willd.) Spreng.	0,1461	
Cordia alba (Jacq.) Roem. & Schult.	0,0499	
Cordia alliodora (Ruiz & Pav.) Oken	0,7270	
Cordia collococca L.	0,1592	
Eschweilera caudiculata R.Knuth	0,1944	
Genipa americana L.	0,0466	
Gliricidia sepium (Jacq.) Walp.	0,4434	
Guazuma ulmifolia Lam.	0,2424	
Gustavia superba (Kunth) O.Berg	0,0349	
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0581	
Jacaratia digitata (Poepp. & Endl.) Solms	0,0368	
Lecythis ampla Miers	0,0176	
Melicoccus bijugatus Jacq.	0,0410	
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,2613	
Piptadenia sp.	0,0373	
Pseudobombax septenatum (Jacq.) Dugand	0,2454	
Psidium guajava L.	0,0373	
Sapium glandulosum (L.) Morong	0,2711	
Senna occidentalis (L.) Link	0,0497	
Spondias mombin L.	0,0257	
Spondias purpurea L.	0,0294	
Sterculia apetala (Jacq.) H.Karst.	0,0288	
Swietenia macrophylla King	0,1523	
Syzygium malaccense (L.) Merr. & L.M.Perry	0,0381	
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,1218	
Trichospermum galeottii (Turcz.) Kosterm.	0,1272	
Vitex cymosa Bertero ex Spreng	0,0782	
, <u> </u>	16,8272	
Albizia saman (Jacq.) Merr.	0,1076	
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0993	
Annona muricata L.	0,2960	
Azadirachta indica A.Juss.	0,1120	
Cecropia peltata L.	0,8351	
Cedrela odorata L.	4,6094	
Cochlospermum vitifolium (Willd.) Spreng.	0,0845	
Cordia collococca L.	0,1540	
Cynophalla verrucosa (Jacq.) J.Presl	0,3564	
Dussia lehmannii Harms	0,1682	
Ficus citrifolia Mill.	0,1468	
Genipa americana L.	0,2498	

Clase diamétrica / Especie	VFsp /ha/Ct diam.	
Gliricidia sepium (Jacq.) Walp.	0,4048	
Guazuma ulmifolia Lam.	0,2986	
Gustavia superba (Kunth) O.Berg	0,2796	
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1755	
Melicoccus bijugatus Jacq.	0,1571	
Nectandra sp.	0,5935	
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,9892	
Persea americana Mill.	0,9281	
Piptadenia sp.	0,0603	
Pseudobombax septenatum (Jacq.) Dugand	0,1723	
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2803	
Sapium glandulosum (L.) Morong	0,7690	
Senna occidentalis (L.) Link	0,5152	
Syzygium malaccense (L.) Merr. & L.M.Perry	0,7832	
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,6226	
Trichospermum galeottii (Turcz.) Kosterm.	0,5789	
III	17,9927	
Albizia saman (Jacq.) Merr.	0,5832	
Cecropia peltata L.	0,2673	
Cedrela odorata L.	3,4233	
Enterolobium cyclocarpum (Jacq.) Griseb.	0,2610	
Ficus citrifolia Mill.	0,2218	
Gliricidia sepium (Jacq.) Walp.	0,3277	
Guazuma ulmifolia Lam.	0,1267	
Gustavia superba (Kunth) O.Berg	0,4275	
Ochroma pyramidale (Cav. ex Lam.) Urb.	7,4961	
Pachira aquatica Aubl.	0,6847	
Sapium glandulosum (L.) Morong	1,9954	
Senna occidentalis (L.) Link	1,1389	
Spondias purpurea L.	0,1491	
Swietenia macrophylla King	0,3195	
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,5703	
IV	6,4359	
Cedrela odorata L.	0,7039	
Cordia collococca L.	0,3431	
Ochroma pyramidale (Cav. ex Lam.) Urb.	3,6226	
Persea americana Mill.	0,5270	
Spondias mombin L.	0,5215	
Sterculia apetala (Jacq.) H.Karst.	0,7177	
V	7,3344	

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Ficus citrifolia Mill.	2,2122
Nectandra cuspidata Nees & Mart.	1,0625
Ochroma pyramidale (Cav. ex Lam.) Urb.	2,8237
Sterculia apetala (Jacq.) H.Karst.	0,5018
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,7341
VI	11,1583
Albizia saman (Jacq.) Merr.	3,2159
Ficus citrifolia Mill.	2,0779
Ochroma pyramidale (Cav. ex Lam.) Urb.	2,6387
Pachira aquatica Aubl.	1,6938
Pseudobombax septenatum (Jacq.) Dugand	1,5321
VII	5,6682
Albizia saman (Jacq.) Merr.	1,1738
Cynophalla verrucosa (Jacq.) J.Presl	1,5021
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,3363
Sapium glandulosum (L.) Morong	1,6560
VIII	3,6899
Bursera simaruba (L.) Sarg.	1,5547
Ochroma pyramidale (Cav. ex Lam.) Urb.	2,1353

En el caso del volumen comercial se obtiene un volumen de 58,73 m³ por hectárea distribuido en las 8 clases diamétricas, con un volumen promedio por clase diamétrica de 5,87 m³. En la Figura 146 se presenta la distribución del volumen comercial por clase diamétrica.

13,8472 14 12,4697 Volumen comercial (m3) 12 8,9771 10 8 6,0795 6,0329 4,8850 6 3,5390 2,9041 4 2 0 |||||IV VI $\forall \parallel$ VIIIClase diamétrica

Figura 146. Distribución del volumen comercial por clase diamétrica

De igual manera, el volumen comercial por especie un promedio de 1,30 m³ y un volumen promedio por especie por individuo de 0,27 m³. En la Tabla 240 se evidencia el volumen de cada una de las especies y en la Tabla 240 se observa la distribución del volumen por especie y clase diamétrica.

 Tabla 240.
 Indicadores por especie de volumen comercial

Especie	VC/sp /ha	VC ind/sp/ha
Albizia saman (Jacq.) Merr.	3,7831	0,8647
Anacardium excelsum (Bertero ex Kunth) Skeels	0,1360	0,1088
Annona muricata L.	0,4056	0,0541
Azadirachta indica A.Juss.	0,0747	0,1195
Bursera simaruba (L.) Sarg.	1,3138	0,5255
Calliandra magdalenae (DC.) Benth.	0,0411	0,0329
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0362	0,0579
Cecropia peltata L.	1,4536	0,1163
Cedrela odorata L.	7,4437	0,3970
Cochlospermum vitifolium (Willd.) Spreng.	0,1601	0,0854
Cordia alba (Jacq.) Roem. & Schult.	0,0363	0,0581
Cordia alliodora (Ruiz & Pav.) Oken	0,5412	0,0541
Cordia collococca L.	0,4812	0,1283
Cynophalla verrucosa (Jacq.) J.Presl	1,1897	0,6345
Dussia lehmannii Harms	0,1416	0,2266
Enterolobium cyclocarpum (Jacq.) Griseb.	0,1305	0,2088
Eschweilera caudiculata R.Knuth	0,1392	0,0445
Ficus citrifolia Mill.	4,0131	1,2842
Genipa americana L.	0,2232	0,1191
Gliricidia sepium (Jacq.) Walp.	0,7065	0,0706
Guazuma ulmifolia Lam.	0,4431	0,0788
Gustavia superba (Kunth) O.Berg	0,6687	0,3566
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1537	0,0615
Jacaratia digitata (Poepp. & Endl.) Solms	0,0210	0,0336
Lecythis ampla Miers	0,0123	0,0197
Melicoccus bijugatus Jacq.	0,1059	0,0847
Nectandra cuspidata Nees & Mart.	0,8947	1,4316
Nectandra sp.	0,4263	0,1364
Ochroma pyramidale (Cav. ex Lam.) Urb.	17,2938	0,3547
Pachira aquatica Aubl.	2,0925	1,6740
Persea americana Mill.	1,0831	0,1926
Piptadenia sp.	0,0405	0,0324

Especie	VC/sp /ha	VC ind/sp/ha
Pseudobombax septenatum (Jacq.) Dugand	1,6295	0,3725
Psidium guajava L.	0,0186	0,0298
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2336	0,3737
Sapium glandulosum (L.) Morong	3,2592	0,3259
Senna occidentalis (L.) Link	1,1953	0,1912
Spondias mombin L.	0,4098	0,3278
Spondias purpurea L.	0,0665	0,0532
Sterculia apetala (Jacq.) H.Karst.	0,9613	0,5127
Swietenia macrophylla King	0,3696	0,1183
Syzygium malaccense (L.) Merr. & L.M.Perry	0,5889	0,1570
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,7246	0,1216
Trichospermum galeottii (Turcz.) Kosterm.	0,5326	0,1420
Vitex cymosa Bertero ex Spreng	0,0587	0,0939

Tabla 241. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
I	6,0795
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0566
Annona muricata L.	0,2413
Bursera simaruba (L.) Sarg.	0,1179
Calliandra magdalenae (DC.) Benth.	0,0411
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0362
Cecropia peltata L.	0,5860
Cedrela odorata L.	0,2360
Cochlospermum vitifolium (Willd.) Spreng.	0,1178
Cordia alba (Jacq.) Roem. & Schult.	0,0363
Cordia alliodora (Ruiz & Pav.) Oken	0,5412
Cordia collococca L.	0,1241
Eschweilera caudiculata R.Knuth	0,1392
Genipa americana L.	0,0310
Gliricidia sepium (Jacq.) Walp.	0,2744
Guazuma ulmifolia Lam.	0,1747
Gustavia superba (Kunth) O.Berg	0,0175
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0321
Jacaratia digitata (Poepp. & Endl.) Solms	0,0210
Lecythis ampla Miers	0,0123
Melicoccus bijugatus Jacq.	0,0274
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,9501
Piptadenia sp.	0,0186

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Pseudobombax septenatum (Jacq.) Dugand	0,1595
Psidium guajava L.	0,0186
Sapium glandulosum (L.) Morong	0,2070
Senna occidentalis (L.) Link	0,0249
Spondias mombin L.	0,0187
Spondias purpurea L.	0,0168
Sterculia apetala (Jacq.) H.Karst.	0,0221
Swietenia macrophylla King	0,1006
Syzygium malaccense (L.) Merr. & L.M.Perry	0,0218
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,5055
Trichospermum galeottii (Turcz.) Kosterm.	0,0923
Vitex cymosa Bertero ex Spreng	0,0587
ll .	12,4697
Albizia saman (Jacq.) Merr.	0,0717
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0795
Annona muricata L.	0,1643
Azadirachta indica A.Juss.	0,0747
Cecropia peltata L.	0,6537
Cedrela odorata L.	3,7599
Cochlospermum vitifolium (Willd.) Spreng.	0,0422
Cordia collococca L.	0,1283
Cynophalla verrucosa (Jacq.) J.Presl	0,2508
Dussia lehmannii Harms	0,1416
Ficus citrifolia Mill.	0,0979
Genipa americana L.	0,1922
Gliricidia sepium (Jacq.) Walp.	0,1937
Guazuma ulmifolia Lam.	0,2050
Gustavia superba (Kunth) O.Berg	0,2237
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1217
Melicoccus bijugatus Jacq.	0,0786
Nectandra sp.	0,4263
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,4429
Persea americana Mill.	0,6393
Piptadenia sp.	0,0218
Pseudobombax septenatum (Jacq.) Dugand	0,1378
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2336
Sapium glandulosum (L.) Morong	0,5903
Senna occidentalis (L.) Link	0,3580
Syzygium malaccense (L.) Merr. & L.M.Perry	0,5671
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,1328

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Trichospermum galeottii (Turcz.) Kosterm.	0,4403
III	13,8472
Albizia saman (Jacq.) Merr.	0,3499
Cecropia peltata L.	0,2139
Cedrela odorata L.	2,8220
Enterolobium cyclocarpum (Jacq.) Griseb.	0,1305
Ficus citrifolia Mill.	0,1584
Gliricidia sepium (Jacq.) Walp.	0,2384
Guazuma ulmifolia Lam.	0,0634
Gustavia superba (Kunth) O.Berg	0,4275
Ochroma pyramidale (Cav. ex Lam.) Urb.	5,6272
Pachira aquatica Aubl.	0,5869
Sapium glandulosum (L.) Morong	1,5988
Senna occidentalis (L.) Link	0,8125
Spondias purpurea L.	0,0497
Swietenia macrophylla King	0,2691
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,4990
IV	4,8850
Cedrela odorata L.	0,6257
Cordia collococca L.	0,2287
Ochroma pyramidale (Cav. ex Lam.) Urb.	2,6215
Persea americana Mill.	0,4438
Spondias mombin L.	0,3911
Sterculia apetala (Jacq.) H.Karst.	0,5742
V	6,0329
Ficus citrifolia Mill.	1,9560
Nectandra cuspidata Nees & Mart.	0,8947
Ochroma pyramidale (Cav. ex Lam.) Urb.	2,2299
Sterculia apetala (Jacq.) H.Karst.	0,3650
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,5873
VI	8,9771
Albizia saman (Jacq.) Merr.	2,5789
Ficus citrifolia Mill.	1,8008
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,7596
Pachira aquatica Aubl.	1,5056
Pseudobombax septenatum (Jacq.) Dugand	1,3322
VII	3,5390
Albizia saman (Jacq.) Merr.	0,7826
Cynophalla verrucosa (Jacq.) J.Presl	0,9388
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,9545

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Sapium glandulosum (L.) Morong	0,8631
VIII	2,9041
Bursera simaruba (L.) Sarg.	1,1959
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,7082

El volumen cosechable calculado para la cobertura de vegetación secundaria es de 49,69 m³ con un promedio por especie de 4,969 m³. En la Tabla 242 se evidencia el volumen de cada una de las especies y en la Tabla 243 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 242. Indicadores por especie de volumen cosechable

Especie	VCs/sp /ha
Albizia saman (Jacq.) Merr.	3,2011
Anacardium excelsum (Bertero ex Kunth) Skeels	0,1151
Annona muricata L.	0,3432
Azadirachta indica A.Juss.	0,0632
Bursera simaruba (L.) Sarg.	1,1117
Calliandra magdalenae (DC.) Benth.	0,0348
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0306
Cecropia peltata L.	1,2299
Cedrela odorata L.	6,2985
Cochlospermum vitifolium (Willd.) Spreng.	0,1354
Cordia alba (Jacq.) Roem. & Schult.	0,0307
Cordia alliodora (Ruiz & Pav.) Oken	0,4580
Cordia collococca L.	0,4071
Cynophalla verrucosa (Jacq.) J.Presl	1,0066
Dussia lehmannii Harms	0,1198
Enterolobium cyclocarpum (Jacq.) Griseb.	0,1104
Eschweilera caudiculata R.Knuth	0,1178
Ficus citrifolia Mill.	3,3957
Genipa americana L.	0,1889
Gliricidia sepium (Jacq.) Walp.	0,5978
Guazuma ulmifolia Lam.	0,3749
Gustavia superba (Kunth) O.Berg	0,5658
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1301
Jacaratia digitata (Poepp. & Endl.) Solms	0,0178
Lecythis ampla Miers	0,0104
Melicoccus bijugatus Jacq.	0,0896
Nectandra cuspidata Nees & Mart.	0,7571

Especie	VCs/sp /ha
Nectandra sp.	0,3607
Ochroma pyramidale (Cav. ex Lam.) Urb.	14,6332
Pachira aquatica Aubl.	1,7706
Persea americana Mill.	0,9165
Piptadenia sp.	0,0342
Pseudobombax septenatum (Jacq.) Dugand	1,3788
Psidium guajava L.	0,0158
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,1976
Sapium glandulosum (L.) Morong	2,7578
Senna occidentalis (L.) Link	1,0114
Spondias mombin L.	0,3467
Spondias purpurea L.	0,0563
Sterculia apetala (Jacq.) H.Karst.	0,8134
Swietenia macrophylla King	0,3128
Syzygium malaccense (L.) Merr. & L.M.Perry	0,4983
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,1516
Trichospermum galeottii (Turcz.) Kosterm.	0,4507
Vitex cymosa Bertero ex Spreng	0,0496

Tabla 243. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Ī	5,1442
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0479
Annona muricata L.	0,2042
Bursera simaruba (L.) Sarg.	0,0998
Calliandra magdalenae (DC.) Benth.	0,0348
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0306
Cecropia peltata L.	0,4958
Cedrela odorata L.	0,1997
Cochlospermum vitifolium (Willd.) Spreng.	0,0997
Cordia alba (Jacq.) Roem. & Schult.	0,0307
Cordia alliodora (Ruiz & Pav.) Oken	0,4580
Cordia collococca L.	0,1050
Eschweilera caudiculata R.Knuth	0,1178
Genipa americana L.	0,0263
Gliricidia sepium (Jacq.) Walp.	0,2322
Guazuma ulmifolia Lam.	0,1478
Gustavia superba (Kunth) O.Berg	0,0148
Handroanthus chrysanthus (Jaca.) S.O.Grose	0.0271

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Jacaratia digitata (Poepp. & Endl.) Solms	0,0178
Lecythis ampla Miers	0,0104
Melicoccus bijugatus Jacq.	0,0232
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,8040
Piptadenia sp.	0,0158
Pseudobombax septenatum (Jacq.) Dugand	0,1350
Psidium guajava L.	0,0158
Sapium glandulosum (L.) Morong	0,1752
Senna occidentalis (L.) Link	0,0210
Spondias mombin L.	0,0158
Spondias purpurea L.	0,0142
Sterculia apetala (Jacq.) H.Karst.	0,0187
Swietenia macrophylla King	0,0851
Syzygium malaccense (L.) Merr. & L.M.Perry	0,0184
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,2739
Trichospermum galeottii (Turcz.) Kosterm.	0,0781
Vitex cymosa Bertero ex Spreng	0,0496
II	10,5513
Albizia saman (Jacq.) Merr.	0,0607
Anacardium excelsum (Bertero ex Kunth) Skeels	0,0672
Annona muricata L.	0,1390
Azadirachta indica A.Juss.	0,0632
Cecropia peltata L.	0,5531
Cedrela odorata L.	3,1815
Cochlospermum vitifolium (Willd.) Spreng.	0,0357
Cordia collococca L.	0,1086
Cynophalla verrucosa (Jacq.) J.Presl	0,2123
Dussia lehmannii Harms	0,1198
Ficus citrifolia Mill.	0,0828
Genipa americana L.	0,1626
Gliricidia sepium (Jacq.) Walp.	0,1639
Guazuma ulmifolia Lam.	0,1735
Gustavia superba (Kunth) O.Berg	0,1893
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1030
Melicoccus bijugatus Jacq.	0,0665
Nectandra sp.	0,3607
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,2209
Persea americana Mill.	0,5409
Piptadenia sp.	0,0185
Pseudobombax septenatum (Jacq.) Dugand	0,1166

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,1976
Sapium glandulosum (L.) Morong	0,4995
Senna occidentalis (L.) Link	0,3029
Syzygium malaccense (L.) Merr. & L.M.Perry	0,4799
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,9585
Trichospermum galeottii (Turcz.) Kosterm.	0,3726
III	11,7168
Albizia saman (Jacq.) Merr.	0,2961
Cecropia peltata L.	0,1810
Cedrela odorata L.	2,3879
Enterolobium cyclocarpum (Jacq.) Griseb.	0,1104
Ficus citrifolia Mill.	0,1341
Gliricidia sepium (Jacq.) Walp.	0,2017
Guazuma ulmifolia Lam.	0,0536
Gustavia superba (Kunth) O.Berg	0,3618
Ochroma pyramidale (Cav. ex Lam.) Urb.	4,7615
Pachira aquatica Aubl.	0,4966
Sapium glandulosum (L.) Morong	1,3528
Senna occidentalis (L.) Link	0,6875
Spondias purpurea L.	0,0421
Swietenia macrophylla King	0,2277
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,4222
IV	4,1335
Cedrela odorata L.	0,5294
Cordia collococca L.	0,1936
Ochroma pyramidale (Cav. ex Lam.) Urb.	2,2182
Persea americana Mill.	0,3755
Spondias mombin L.	0,3309
Sterculia apetala (Jacq.) H.Karst.	0,4858
V	5,1048
Ficus citrifolia Mill.	1,6551
Nectandra cuspidata Nees & Mart.	0,7571
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,8868
Sterculia apetala (Jacq.) H.Karst.	0,3088
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,4969
VI	7,5960
Albizia saman (Jacq.) Merr.	2,1821
Ficus citrifolia Mill.	1,5238
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,4889
Pachira aquatica Aubl.	1,2739

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Pseudobombax septenatum (Jacq.) Dugand	1,1273
VII	2,9945
Albizia saman (Jacq.) Merr.	0,6622
Cynophalla verrucosa (Jacq.) J.Presl	0,7944
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,8076
Sapium glandulosum (L.) Morong	0,7303
VIII	2,4573
Bursera simaruba (L.) Sarg.	1,0119
Ochroma pyramidale (Cav. ex Lam.) Urb.	1,4454

5.5.2.12.2. Indicadores estructurales de la cobertura de vegetación secundaria

5.5.2.12.2.1. Estructura horizontal

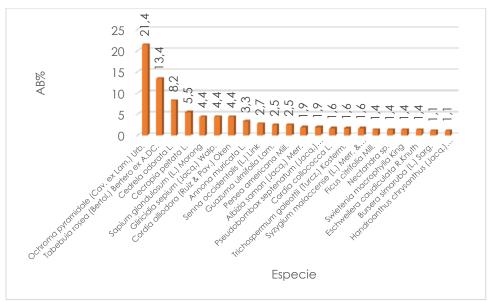
En la Tabla 244 se observa los datos obtenidos del análisis de la estructura horizontal la cobertura de vegetación secundaria.

Tabla 244. Estructura horizontal para el bosque de vegetación secundaria

	N° de	e Abundancia		Dominancia		Frecuencia		
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Ochroma pyramidale (Cav. ex Lam.) Urb.	78	0,214	21,370	0,313	31,344	0,688	7,190	59,903
Tabebuia rosea (Bertol.) Bertero ex A.DC.	49	0,134	13,425	0,073	7,289	0,813	8,497	29,210
Cedrela odorata L.	30	0,082	8,219	0,078	7,754	0,563	5,882	21,856
Sapium glandulosum (L.) Morong	16	0,044	4,384	0,073	7,269	0,375	3,922	15,574
Cecropia peltata L.	20	0,055	5,479	0,024	2,419	0,625	6,536	14,434
Gliricidia sepium (Jacq.) Walp.	16	0,044	4,384	0,022	2,155	0,500	5,229	11,767
Albizia saman (Jacq.) Merr.	7	0,019	1,918	0,062	6,170	0,250	2,614	10,702
Cordia alliodora (Ruiz & Pav.) Oken	16	0,044	4,384	0,010	1,035	0,250	2,614	8,033
Annona muricata L.	12	0,033	3,288	0,014	1,427	0,313	3,268	7,982
Pseudobombax septenatum (Jacq.) Dugand	7	0,019	1,918	0,020	2,025	0,375	3,922	7,864
Ficus citrifolia Mill.	5	0,014	1,370	0,038	3,838	0,250	2,614	7,823
Guazuma ulmifolia Lam.	9	0,025	2,466	0,013	1,338	0,313	3,268	7,071
Persea americana Mill.	9	0,025	2,466	0,022	2,199	0,188	1,961	6,625
Cordia collococca L.	6	0,016	1,644	0,010	0,981	0,375	3,922	6,547
Senna occidentalis (L.) Link	10	0,027	2,740	0,029	2,863	0,063	0,654	6,256
Bursera simaruba (L.) Sarg.	4	0,011	1,096	0,027	2,705	0,188	1,961	5,761
Trichospermum galeottii (Turcz.) Kosterm.	6	0,016	1,644	0,009	0,945	0,250	2,614	5,203

	N° de	Abunda	Abundancia		Dominancia		Frecuencia	
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Cynophalla verrucosa (Jacq.) J.Presl	3	0,008	0,822	0,024	2,411	0,188	1,961	5,194
Nectandra sp.	5	0,014	1,370	0,009	0,943	0,250	2,614	4,927
Swietenia macrophylla King	5	0,014	1,370	0,006	0,617	0,250	2,614	4,602
Eschweilera caudiculata R.Knuth	5	0,014	1,370	0,003	0,291	0,250	2,614	4,275
Syzygium malaccense (L.) Merr. & L.M.Perry	6	0,016	1,644	0,012	1,198	0,125	1,307	4,149
Handroanthus chrysanthus (Jacq.) S.O.Grose	4	0,011	1,096	0,004	0,405	0,250	2,614	4,115
Sterculia apetala (Jacq.) H.Karst.	3	0,008	0,822	0,018	1,759	0,125	1,307	3,888
Pachira aquatica Aubl.	2	0,005	0,548	0,018	1,831	0,063	0,654	3,033
Spondias mombin L.	2	0,005	0,548	0,007	0,734	0,125	1,307	2,589
Genipa americana L.	3	0,008	0,822	0,005	0,458	0,125	1,307	2,587
Cochlospermum vitifolium (Willd.) Spreng.	3	0,008	0,822	0,003	0,346	0,125	1,307	2,475
Spondias purpurea L.	2	0,005	0,548	0,006	0,610	0,125	1,307	2,466
Gustavia superba (Kunth) O.Berg	3	0,008	0,822	0,009	0,865	0,063	0,654	2,340
Melicoccus bijugatus Jacq.	2	0,005	0,548	0,003	0,347	0,125	1,307	2,202
Nectandra cuspidata Nees & Mart.	1	0,003	0,274	0,012	1,175	0,063	0,654	2,102
Anacardium excelsum (Bertero ex Kunth) Skeels	2	0,005	0,548	0,002	0,238	0,125	1,307	2,093
Calliandra magdalenae (DC.) Benth.	2	0,005	0,548	0,001	0,139	0,125	1,307	1,994
Piptadenia sp.	2	0,005	0,548	0,003	0,265	0,063	0,654	1,467
Enterolobium cyclocarpum (Jacq.) Griseb.	1	0,003	0,274	0,005	0,457	0,063	0,654	1,384
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1	0,003	0,274	0,002	0,245	0,063	0,654	1,173
Azadirachta indica A.Juss.	1	0,003	0,274	0,002	0,196	0,063	0,654	1,124
Dussia lehmannii Harms	1	0,003	0,274	0,002	0,186	0,063	0,654	1,114
Psidium guajava L.	1	0,003	0,274	0,001	0,131	0,063	0,654	1,058
Jacaratia digitata (Poepp. & Endl.) Solms	1	0,003	0,274	0,001	0,110	0,063	0,654	1,038
Vitex cymosa Bertero ex Spreng	1	0,003	0,274	0,001	0,103	0,063	0,654	1,030
Cordia alba (Jacq.) Roem. & Schult.	1	0,003	0,274	0,001	0,095	0,063	0,654	1,023
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	1	0,003	0,274	0,001	0,054	0,063	0,654	0,982
Lecythis ampla Miers	1	0,003	0,274	0,000	0,037	0,063	0,654	0,965
Totales generales	365	1	100	1	100	9,5625	100	300

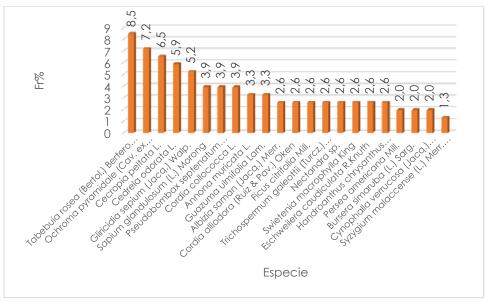
<u>Abundancia</u>


La abundancia absoluta y relativa presente en la cobertura de vegetación secundaria muestra que la especie más abundante es *Ochroma pyramidale (Cav. ex Lam.) Urb.* con 48 individuos en una hectárea y de abundancia relativa 21,4 %. Igualmente, la especie

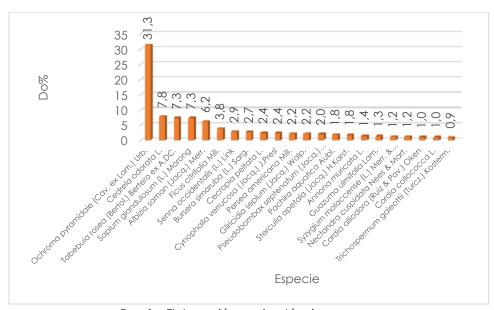
Tabebuia rosea (Bertol.) Bertero ex A.DC presenta la segunda mayor abundancia con 31 individuos por hectárea y una abundancia realtiva de 13,4 % (Figura 147).

Figura 147. Distribución de la abundancia relativa para la cobertura de vegetación secundaria

Fuente: Elaboración equipo técnico


<u>Frecuencia</u>

La especie *Tabebuia rosea* (Bertol.) Bertero ex A.DC. es la mas frecuente con una presencia en 13 parcelas de las 16 realizadas, seguida de *Ochroma pyramidale* (Cav. ex Lam.) Urb. con una presencia en 11 parcelas de las 36 realizadas con una frecuencia realtiva de 7,18 % (Figura 148).


Figura 148. Distribución de frecuencia relativa para la cobertura de vegetación secundaria

Dominancia

La especie de mayor dominancia es *Ochroma pyramidale* (Cav. ex Lam.) Urb. con 7,3458 % y área basal de 0,7944 m², seguida de la especie *Cedrela odorata* L. 7,75 % y un área basal de 1,8173 m² (Figura 149).

Figura 149. Distribución de la dominancia relativa para la cobertura de vegetación secundaria

Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es *Ochroma pyramidale* (Cav. ex Lam.) Urbcon un IVI de 59,9, seguida de la especie *Tabebuia rosea* (Bertol.) Bertero ex A.DC con un peso ecológico de 29,2, evidenciando el comportamiento de J invertida de bosque natural (Figura 150).

Especie

Especie

Figura 150. Distribución del IVI para la cobertura de vegetación secundaria

Fuente: Elaboración equipo técnico

Coefiente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1 / \frac{45}{365}$$

$$CM = 1 / 0,123$$

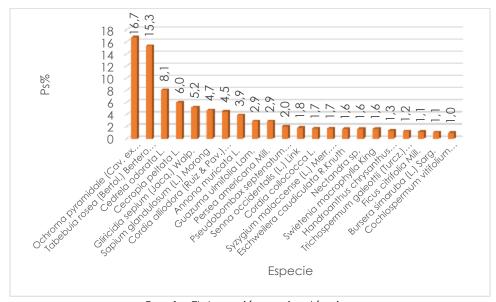
$$CM = 8.13$$

El coeficiente de mezcla obtenido implica que por cada 8,13 individuos estudiados hay una especie nueva para la cobertura de vegetación secundaria.

Posición sociólogica

La posición sociológica muestra que la especie con mayor peso es *Ochroma pyramidale* (Cav. ex Lam.) Urb.con 16,71 % debido a la presencia de la totalidad de sus individuos en el estrato dominante, el detallado de cada una de las especies se muestra en la Tabla 245 y Figura 151.

Tabla 245. Posición sociológica de las especies del bosque de vegetación secundaria


Especie	Suprimido	Codominante	Dominante	Ps	Ps%
Ochroma pyramidale (Cav. ex Lam.)	зоринис	Codominant	Dominanic	1.5	13/0
Urb.	0	42	36	14832	16,718
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1	47	1	13613	15,344
Cedrela odorata L.	0	23	7	7156	8,066
Cecropia peltata L.	0	18	2	5336	6,014
Gliricidia sepium (Jacq.) Walp.	0	16	0	4608	5,194
Sapium glandulosum (L.) Morong	0	14	2	4184	4,716
Cordia alliodora (Ruiz & Pav.) Oken	0	13	3	3972	4,477
Annona muricata L.	0	12	0	3456	3,895
Guazuma ulmifolia Lam.	0	9	0	2592	2,922
Persea americana Mill.	0	9	0	2592	2,922
Pseudobombax septenatum (Jacq.) Dugand	0	6	1	1804	2,033
Senna occidentalis (L.) Link	0	4	6	1608	1,812
Cordia collococca L.	0	5	1	1516	1,709
Syzygium malaccense (L.) Merr. & L.M.Perry	0	5	1	1516	1,709
Eschweilera caudiculata R.Knuth	0	5	0	1440	1,623
Nectandra sp.	0	5	0	1440	1,623
Swietenia macrophylla King	0	5	0	1440	1,623
Handroanthus chrysanthus (Jacq.) S.O.Grose	0	4	0	1152	1,298
Trichospermum galeottii (Turcz.) Kosterm.	0	3	3	1092	1,231
Ficus citrifolia Mill.	0	3	2	1016	1,145
Bursera simaruba (L.) Sarg.	0	3	1	940	1,060
Cochlospermum vitifolium (Willd.) Spreng.	0	3	0	864	0,974
Genipa americana L.	0	3	0	864	0,974
Gustavia superba (Kunth) O.Berg	0	3	0	864	0,974
Albizia saman (Jacq.) Merr.	0	1	6	744	0,839
Cynophalla verrucosa (Jacq.) J.Presl	0	2	1	652	0,735
Anacardium excelsum (Bertero ex Kunth) Skeels	0	2	0	576	0,649
Calliandra magdalenae (DC.) Benth.	0	2	0	576	0,649
Melicoccus bijugatus Jacq.	0	2	0	576	0,649

Especie	Suprimido	Codominante	Dominante	Ps	Ps%
Pachira aquatica Aubl.	0	2	0	576	0,649
Piptadenia sp.	0	2	0	576	0,649
Spondias mombin L.	0	2	0	576	0,649
Spondias purpurea L.	0	2	0	576	0,649
Sterculia apetala (Jacq.) H.Karst.	0	1	2	440	0,496
Azadirachta indica A.Juss.	0	1	0	288	0,325
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0	1	0	288	0,325
Cordia alba (Jacq.) Roem. & Schult.	0	1	0	288	0,325
Dussia lehmannii Harms	0	1	0	288	0,325
Enterolobium cyclocarpum (Jacq.) Griseb.	0	1	0	288	0,325
Jacaratia digitata (Poepp. & Endl.) Solms	0	1	0	288	0,325
Lecythis ampla Miers	0	1	0	288	0,325
Psidium guajava L.	0	1	0	288	0,325
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0	1	0	288	0,325
Vitex cymosa Bertero ex Spreng	0	1	0	288	0,325
Nectandra cuspidata Nees & Mart.	0	0	1	76	0,086

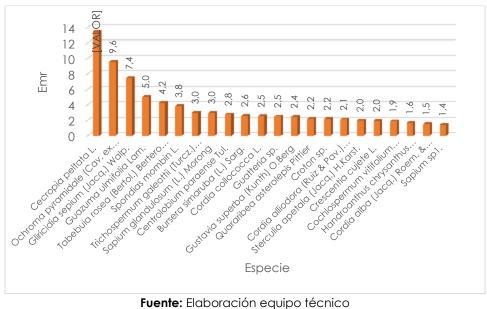
Figura 151. Distribución de la posición sociológica de las especies de la cobertura de vegetación secundaria

5.5.2.12.2.2. Analisis del sotobosque

Categoria de tamaño absoluta

El análisis de regeneración natural muestra que la especie que presenta mayor representación es *Cecropia peltata* L. con una categoría de tamaño de 16,807 %, seguido de *Ochroma pyramidale* (Cav. ex Lam.) Urb. con una categoría de tamaño de 11,603 % (Figura 152) (Tabla 246).

Tabla 246. Cálculo de la estructura de sotobosque en el bosque de vetagetación secundaria


Especie	AB%	FA%	СТаЕМ%	Emr
Cecropia peltata L.	14,985	8,553	16,807	13,448
Ochroma pyramidale (Cav. ex Lam.) Urb.	11,162	5,921	11,603	9,562
Gliricidia sepium (Jacq.) Walp.	7,187	6,579	8,544	7,437
Guazuma ulmifolia Lam.	4,893	4,605	5,561	5,020
Tabebuia rosea (Bertol.) Bertero ex A.DC.	4,128	4,605	4,008	4,247
Spondias mombin L.	3,823	3,947	3,775	3,848
Trichospermum galeottii (Turcz.) Kosterm.	3,823	1,974	3,104	2,967
Sapium glandulosum (L.) Morong	2,599	3,947	2,331	2,959
Centrolobium paraense Tul.	2,752	3,289	2,213	2,751
Bursera simaruba (L.) Sarg.	1,988	3,289	2,472	2,583
Cordia collococca L.	2,599	2,632	2,354	2,528
Guatteria sp.	3,364	0,658	3,482	2,501
Gustavia superba (Kunth) O.Berg	3,976	0,658	2,648	2,427
Quararibea asterolepis Pittier	2,294	2,632	1,742	2,222
Croton sp.	2,141	1,974	2,376	2,164
Cordia alliodora (Ruiz & Pav.) Oken	1,988	2,632	1,755	2,125
Sterculia apetala (Jacq.) H.Karst.	1,529	3,289	1,084	1,967
Crescentia cujete L.	1,376	3,289	1,202	1,956
Cochlospermum vitifolium (Willd.) Spreng.	2,141	1,316	2,153	1,870
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,835	1,316	1,796	1,649
Cordia alba (Jacq.) Roem. & Schult.	1,376	1,974	1,157	1,502
Sapium sp1.	1,223	1,974	0,997	1,398
Calliandra magdalenae (DC.) Benth.	1,223	1,316	1,421	1,320
Bauhinia aculeata L.	0,917	1,974	0,987	1,293
Cedrela odorata L.	1,070	1,974	0,823	1,289
Triplaris sp.	1,223	1,316	1,220	1,253
Ceiba pentandra (L.) Gaertn.	1,070	1,316	1,339	1,242
Pseudobombax septenatum (Jacq.) Dugand	0,917	1,316	1,033	1,089
Acacia mangium Willd.	0,765	1,316	1,028	1,036
Malvaviscus sp.	1,223	0,658	1,143	1,008
Thevetia ahouai (L.) A.DC.	0,917	1,316	0,786	1,006

Especie	AB%	FA%	СТаЕМ%	Emr
Carica goudotiana (Triana & Planch.) Solms	0,459	1,974	0,516	0,983
Pachira quinata (Jacq.) W.S.Alverson	0,917	0,658	1,233	0,936
Trichilia hirta L.	0,459	1,316	0,516	0,764
Inga sp.	0,459	1,316	0,494	0,756
Zanthoxylum panamense P.Wilson	0,459	1,316	0,416	0,730
Xylopia aromatica (Lam.) Mart.	0,306	1,316	0,411	0,678
Persea americana Mill.	0,765	0,658	0,480	0,634
Tectona grandis L.f.	0,612	0,658	0,498	0,589
Bertiera guianensis Aubl.	0,306	0,658	0,411	0,458
Nectandra cuspidata Nees & Mart.	0,306	0,658	0,411	0,458
Myrospermum frutescens Jacq.	0,459	0,658	0,247	0,455
Ocotea sp.	0,306	0,658	0,311	0,425
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,306	0,658	0,210	0,391
Cynophalla verrucosa (Jacq.) J.Presl	0,306	0,658	0,210	0,391
Spondias purpurea L.	0,306	0,658	0,210	0,391
Eschweilera caudiculata R.Knuth	0,306	0,658	0,188	0,384
Inga edulis	0,153	0,658	0,105	0,305
Maclura tinctoria (L.) D.Don ex Steud.	0,153	0,658	0,105	0,305
Myrcia popayanensis Hieron.	0,153	0,658	0,082	0,298
Totales Generales	100	100	100	100

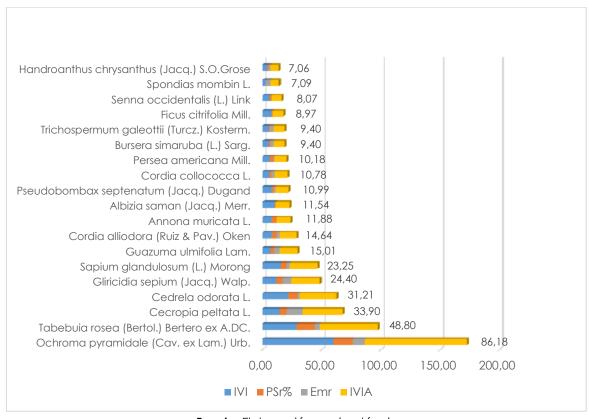
Figura 152. Distribución del sotobosque la cobertura de vegetación secundaria

Índice de valor de importancia ampliado (IVIA)

La especie con el mayor valor de importancia en la cobertura es *Ochroma pyramidale* (Cav. ex Lam.) Urb., la cual obtuvo un valor de 86,18 de IVIA con la mayor significancia asociado al IVI y PS. La especie *Tabebuia rosea* (Bertol.) Bertero ex A.DC.presenta un valor de 48,80, también asociado al peso de IVI y Ps (Tabla 247) (Figura 153).

Tabla 247. Índice de valor de importancia ampliado para la cobertura de vegetación secundaria

Especie	IVI	PSr%	Emr	IVIA
Ochroma pyramidale (Cav. ex Lam.) Urb.	59,90	16,72	9,56	86,18
Tabebuia rosea (Bertol.) Bertero ex A.DC.	29,21	15,34	4,25	48,80
Cecropia peltata L.	14,43	6,01	13,45	33,90
Cedrela odorata L.	21,86	8,07	1,29	31,21
Gliricidia sepium (Jacq.) Walp.	11,77	5,19	7,44	24,40
Sapium glandulosum (L.) Morong	15,57	4,72	2,96	23,25
Guazuma ulmifolia Lam.	7,07	2,92	5,02	15,01
Cordia alliodora (Ruiz & Pav.) Oken	8,03	4,48	2,12	14,64
Annona muricata L.	7,98	3,90	0,00	11,88
Albizia saman (Jacq.) Merr.	10,70	0,84	0,00	11,54
Pseudobombax septenatum (Jacq.) Dugand	7,86	2,03	1,09	10,99
Cordia collococca L.	6,55	1,71	2,53	10,78
Persea americana Mill.	6,63	2,92	0,63	10,18
Bursera simaruba (L.) Sarg.	5,76	1,06	2,58	9,40
Trichospermum galeottii (Turcz.) Kosterm.	5,20	1,23	2,97	9,40
Ficus citrifolia Mill.	7,82	1,15	0,00	8,97
Senna occidentalis (L.) Link	6,26	1,81	0,00	8,07
Spondias mombin L.	2,59	0,65	3,85	7,09
Handroanthus chrysanthus (Jacq.) S.O.Grose	4,12	1,30	1,65	7,06
Nectandra sp.	4,93	1,62	0,00	6,55
Sterculia apetala (Jacq.) H.Karst.	3,89	0,50	1,97	6,35
Cynophalla verrucosa (Jacq.) J.Presl	5,19	0,73	0,39	6,32
Eschweilera caudiculata R.Knuth	4,27	1,62	0,38	6,28
Swietenia macrophylla King	4,60	1,62	0,00	6,22
Syzygium malaccense (L.) Merr. & L.M.Perry	4,15	1,71	0,00	5,86
Gustavia superba (Kunth) O.Berg	2,34	0,97	2,43	5,74
Cochlospermum vitifolium (Willd.) Spreng.	2,48	0,97	1,87	5,32
Calliandra magdalenae (DC.) Benth.	1,99	0,65	1,32	3,96
Pachira aquatica Aubl.	3,03	0,65	0,00	3,68
Genipa americana L.	2,59	0,97	0,00	3,56
Spondias purpurea L.	2,47	0,65	0,39	3,51
Melicoccus bijugatus Jacq.	2,20	0,65	0,00	2,85
Cordia alba (Jacq.) Roem. & Schult.	1,02	0,32	1,50	2,85



Especie	IVI	PSr%	Emr	IVIA
Centrolobium paraense Tul.	0,00	0,00	2,75	2,75
Anacardium excelsum (Bertero ex Kunth) Skeels	2,09	0,65	0,00	2,74
Nectandra cuspidata Nees & Mart.	2,10	0,09	0,46	2,65
Guatteria sp.	0,00	0,00	2,50	2,50
Quararibea asterolepis Pittier	0,00	0,00	2,22	2,22
Croton sp.	0,00	0,00	2,16	2,16
Piptadenia sp.	1,47	0,65	0,00	2,12
Crescentia cujete L.	0,00	0,00	1,96	1,96
Enterolobium cyclocarpum (Jacq.) Griseb.	1,38	0,32	0,00	1,71
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,17	0,32	0,00	1,50
Azadirachta indica A.Juss.	1,12	0,32	0,00	1,45
Dussia lehmannii Harms	1,11	0,32	0,00	1,44
Sapium sp1.	0,00	0,00	1,40	1,40
Psidium guajava L.	1,06	0,32	0,00	1,38
Jacaratia digitata (Poepp. & Endl.) Solms	1,04	0,32	0,00	1,36
Vitex cymosa Bertero ex Spreng	1,03	0,32	0,00	1,35
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,98	0,32	0,00	1,31
Bauhinia aculeata L.	0,00	0,00	1,29	1,29
Lecythis ampla Miers	0,96	0,32	0,00	1,29
Triplaris sp.	0,00	0,00	1,25	1,25
Ceiba pentandra (L.) Gaertn.	0,00	0,00	1,24	1,24
Acacia mangium Willd.	0,00	0,00	1,04	1,04
Malvaviscus sp.	0,00	0,00	1,01	1,01
Thevetia ahouai (L.) A.DC.	0,00	0,00	1,01	1,01
Carica goudotiana (Triana & Planch.) Solms	0,00	0,00	0,98	0,98
Pachira quinata (Jacq.) W.S.Alverson	0,00	0,00	0,94	0,94
Trichilia hirta L.	0,00	0,00	0,76	0,76
Inga sp.	0,00	0,00	0,76	0,76
Zanthoxylum panamense P.Wilson	0,00	0,00	0,73	0,73
Xylopia aromatica (Lam.) Mart.	0,00	0,00	0,68	0,68
Tectona grandis L.f.	0,00	0,00	0,59	0,59
Bertiera guianensis Aubl.	0,00	0,00	0,46	0,46
Myrospermum frutescens Jacq.	0,00	0,00	0,45	0,45
Ocotea sp.	0,00	0,00	0,42	0,42
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,00	0,00	0,39	0,39
Inga edulis	0,00	0,00	0,31	0,31
Maclura tinctoria (L.) D.Don ex Steud.	0,00	0,00	0,31	0,31
Myrcia popayanensis Hieron.	0,00	0,00	0,30	0,30

Figura 153. Distribución del IVIA para la cobertura de vegetación secundaria

5.5.2.12.3. Indicadores de diversidad alfa de la cobertura de vegetación secundaria

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 248.

Tabla 248. Indices de biodiversidad alfa de la cobertura de vegetación secundaria

Parámetro	Valor		
Dmn	2,355		
Dsi	1/0,0854= 11,70		
d	1-0,213= 0,78		
H′	3,03		
dmg	7,45		

Fuente: Elaboración equipo técnico

El índice de Menhinick muestra una tendencia media a la diversidad, siendo poco heterogéneo en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra tendencia a la media diversidad del bosque, teniendo en cuenta que la probabilidad de sacar individuos iguales es muy baja.

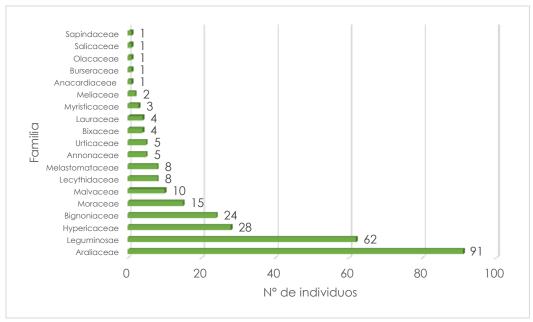
Para la cobertura de bosque de vegetación secundaria, el índice de Shannon establece que es medianamente diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es biodiverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad media.

5.5.2.13. Cobertura de Vegetación Secundaria Alta

La cobertura de vegetación secundaria alta se encuentra constituido por un total de 34 especies distribuidas en 19 familias regisatradas en el inventario forestal.

En la Tabla 249, se identifica la familia Araliaceae y Leguminosae las que presentan la mayor representación. A su vez se identifica que la familia Araliaceae se encuentra representada en 3 generos y 3 especies, resaltando la especie *Schefflera morototoni* (Aubl.) Maguire, Steyerm. & Frodin con 54 individuos (Figura 154).

Tabla 249. Composición florística de la cobertura vegetación secundaria alta


Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
Anacardiaceae	1	Mangifera sp.	1
Annonaceae	5	Xylopia sp.	5
		Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	54
Araliaceae	Oreopanay incisus (Willd ex Schult) Decne 8		36
			1
Bignoniaceae	24	Jacaranda copaia (Aubl.) D.Don	11
ыдполіасеае	24	Tabebuia rosea (Bertol.) Bertero ex A.DC.	13
Bixaceae	4	Cochlospermum vitifolium (Willd.) Spreng.	4
Burseraceae	1	Bursera simaruba (L.) Sarg.	1
		Vismia baccifera (L.) Planch. & Triana	3
Hypericaceae 28 Vismia billbergiana Beurl.		21	
		Vismia tomentosa Ruiz & Pav.	4
Leurence	4	Ocotea sp.	1
Lauraceae	4	Persea americana Mill.	3
Lecythidaceae	8	Gustavia superba (Kunth) O.Berg	8
		Andira inermis (Wright) DC.	2
		Inga edulis Mart.	18
La su vesia a ser-	/0	Inga oerstediana Benth.	1
Leguminosae 62 Pentaclethra macroloba (Willd.) Kuntze Schizolobium parahyba (Vell.) S.F.Blake		Pentaclethra macroloba (Willd.) Kuntze	2
		14	
		Vatairea sp	25
Malvaceae	10	Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	1

Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
		Guazuma ulmifolia Lam.	4
		Heliocarpus americanus L.	4
		Ochroma pyramidale (Cav. ex Lam.) Urb.	1
Melastomatace ae	8	Bellucia grossularioides (L.) Triana	8
Meliaceae	2	Cedrela odorata L.	2
Margana	1.5	Ficus tonduzii Standl.	12
Moraceae	15	Trophis caucana (Pittier) C.C. Berg	3
Myristicaceae	3	Virola sp.	3
Olacaceae	1	Heisteria acuminata (Humb. & Bonpl.) Engl.	1
Salicaceae	1	Casearia arborea (Rich.) Urb.	1
Sapindaceae	1	Melicoccus bijugatus Jacq.	1
Urticaceae	5	Cecropia peltata L.	5

Figura 154. Distribución florística de las familias identificadas de cobertura de vegetación secundaria alta

Fuente: Elaboración equipo técnico

5.5.2.13.1. Indicadores dasométricos de la cobertura de vegetación secundaria alta

La cobertura de veetación secundaria alta presenta un total de 274 individuos / ha en 34 especies; siendo la de mayor número la especie *Schefflera morototoni* (Aubl.) Maguire.

Steyerm. & Frodin con 54 individuos, seguido de la especie *Oreopanax incisus* (Willd. ex Schult.) Decne. & Planch. con 36 individuos por Ha. En la Tabla 250, se presenta el N° de individuos de cada una de las especies por ha (Figura 155).

Tabla 250. N° de individuos/especie/ha de la cobertura de vegetación secundaria alta

Especie	N° de Ind / sp/ ha
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	54
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	36
Vatairea sp	25
Vismia billbergiana Beurl.	21
Inga edulis Mart.	18
Schizolobium parahyba (Vell.) S.F.Blake	14
Tabebuia rosea (Bertol.) Bertero ex A.DC.	13
Ficus tonduzii Standl.	12
Jacaranda copaia (Aubl.) D.Don	11
Bellucia grossularioides (L.) Triana	8
Gustavia superba (Kunth) O.Berg	8
Cecropia peltata L.	5
Xylopia sp.	5
Cochlospermum vitifolium (Willd.) Spreng.	4
Guazuma ulmifolia Lam.	4
Heliocarpus americanus L.	4
Vismia tomentosa Ruiz & Pav.	4
Persea americana Mill.	3
Trophis caucana (Pittier) C.C. Berg	3
Virola sp.	3
Vismia baccifera (L.) Planch. & Triana	3
Andira inermis (Wright) DC.	2
Cedrela odorata L.	2
Pentaclethra macroloba (Willd.) Kuntze	2
Bursera simaruba (L.) Sarg.	1
Casearia arborea (Rich.) Urb.	1
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	1
Heisteria acuminata (Humb. & Bonpl.) Engl.	1
Inga oerstediana Benth.	1
Mangifera sp.	1
Melicoccus bijugatus Jacq.	1
Ochroma pyramidale (Cav. ex Lam.) Urb.	1
Ocotea sp.	1
Schefflera trianae (Planch. & Linden ex Marchal) Harms	1

Figura 155. Distribución de N° de individuos por especie

La cobertura de vegetación secundaria alta presenta un área basal por ha de 11,5798 m^2 en las 34 especies, obteniendo un área basal promedio/individuo/especie de 0,0449 m^2 y área basal promedio/especie /hectárea de 0,3406 m^2 ; en la Tabla 251 se presenta los indicadores detallados por especie.

Tabla 251. Indicadores por especie de área basal

Especie	AB/sp /ha	AB/ ind/ sp/ha
Andira inermis (Wright) DC.	0,2132	0,0853
Bellucia grossularioides (L.) Triana	0,0969	0,0129
Bursera simaruba (L.) Sarg.	0,0129	0,0103
Casearia arborea (Rich.) Urb.	0,0115	0,0092
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0879	0,0703
Cecropia peltata L.	0,1391	0,0278
Cedrela odorata L.	0,2847	0,1139
Cochlospermum vitifolium (Willd.) Spreng.	0,0934	0,0249
Ficus tonduzii Standl.	0,8183	0,0655
Guazuma ulmifolia Lam.	0,1345	0,0359
Gustavia superba (Kunth) O.Berg	0,3054	0,0407
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,0144	0,0115
Heliocarpus americanus L.	0,0439	0,0117
Inga edulis Mart.	0,5683	0,0325
Inga oerstediana Benth.	0,0955	0,0764

Especie	AB/sp /ha	AB/ ind/ sp/ha
Jacaranda copaia (Aubl.) D.Don	0,4593	0,0408
Mangifera sp.	0,0736	0,0589
Melicoccus bijugatus Jacq.	0,0719	0,0575
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,0685	0,0548
Ocotea sp.	0,1035	0,0828
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,9889	0,0273
Pentaclethra macroloba (Willd.) Kuntze	0,1376	0,0550
Persea americana Mill.	0,0802	0,0321
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	1,6688	0,0310
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,0447	0,0357
Schizolobium parahyba (Vell.) S.F.Blake	2,8220	0,2052
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,4868	0,0389
Trophis caucana (Pittier) C.C. Berg	0,0290	0,0116
Vatairea sp	0,7080	0,0283
Virola sp.	0,0507	0,0203
Vismia baccifera (L.) Planch. & Triana	0,0460	0,0184
Vismia billbergiana Beurl.	0,4694	0,0221
Vismia tomentosa Ruiz & Pav.	0,1123	0,0299
Xylopia sp.	0,2387	0,0477

En cuanto a los indicadores de volumen se encuentra distribuido en 8 clases diamétricas, siendo la clase II que presenta los mayores volúmenes.

Para el caso del volumen total se obtiene 106,429 m³; en la Figura 127 se evidencia la distribución volumétrica por clase diamétrica en la cobertura la cobertura de vegetación secundaria alta, encontrándose la clase II con un volumen de 31,1708 m³ seguido de la clase I con 20,5184 m³ (Figura 156).

35 31,1708 30 Volumen total (m3) 20,5184 20,1666 20 15 9,6235 11,1520 10 6,6890 3,5341 3,5753 5 0 |||||IV VII $\forall |||$ Clase diamétrica

Figura 156. Distribución del volumen total por clase diamétrica

De igual manera, el volumen total por especie se calcula un promedio de 3,13 m³ y un volumen promedio por especie por individuo de 0,39 m³; en la Tabla 252 se evidencia el volumen de cada una de las especies por hectárea y en la Tabla 253 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 252. Indicadores por especie de volumen total

Especie	VT/sp / ha	VT ind/sp/ha
Andira inermis (Wright) DC.	2,6947	1,0779
Bellucia grossularioides (L.) Triana	0,5557	0,0741
Bursera simaruba (L.) Sarg.	0,0754	0,0603
Casearia arborea (Rich.) Urb.	0,1046	0,0837
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,5713	0,4570
Cecropia peltata L.	0,6801	0,1360
Cedrela odorata L.	3,1620	1,2648
Cochlospermum vitifolium (Willd.) Spreng.	0,4768	0,1271
Ficus tonduzii Standl.	6,8117	0,5449
Guazuma ulmifolia Lam.	0,7623	0,2033
Gustavia superba (Kunth) O.Berg	2,4417	0,3256
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,0747	0,0598
Heliocarpus americanus L.	0,2416	0,0644
Inga edulis Mart.	5,3315	0,3047
Inga oerstediana Benth.	1,1177	0,8942

Especie	VT/sp / ha	VT ind/sp/ha
Jacaranda copaia (Aubl.) D.Don	4,0571	0,3606
Mangifera sp.	0,3826	0,3060
Melicoccus bijugatus Jacq.	0,2803	0,2242
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,4900	0,3920
Ocotea sp.	1,0090	0,8072
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	8,2328	0,2271
Pentaclethra macroloba (Willd.) Kuntze	1,3767	0,5507
Persea americana Mill.	0,4436	0,1775
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	12,1131	0,2254
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,2902	0,2322
Schizolobium parahyba (Vell.) S.F.Blake	36,8278	2,6784
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,4997	0,2800
Trophis caucana (Pittier) C.C. Berg	0,1247	0,0499
Vatairea sp	5,6215	0,2249
Virola sp.	0,2517	0,1007
Vismia baccifera (L.) Planch. & Triana	0,2131	0,0852
Vismia billbergiana Beurl.	3,4331	0,1616
Vismia tomentosa Ruiz & Pav.	0,6313	0,1683
Xylopia sp.	2,0495	0,4099

Tabla 253. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /ha /Ct diam.
1	20,5184
Bellucia grossularioides (L.) Triana	0,5557
Bursera simaruba (L.) Sarg.	0,0754
Casearia arborea (Rich.) Urb.	0,1046
Cecropia peltata L.	0,3758
Cochlospermum vitifolium (Willd.) Spreng.	0,1290
Ficus tonduzii Standl.	0,1090
Guazuma ulmifolia Lam.	0,0523
Gustavia superba (Kunth) O.Berg	0,1368
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,0747
Heliocarpus americanus L.	0,2416
Inga edulis Mart.	2,0805
Jacaranda copaia (Aubl.) D.Don	0,6044
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	4,8521
Pentaclethra macroloba (Willd.) Kuntze	0,2361
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	4,7056

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Schizolobium parahyba (Vell.) S.F.Blake	0,5062
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,2560
Trophis caucana (Pittier) C.C. Berg	0,1247
Vatairea sp	2,1908
Virola sp.	0,2517
Vismia baccifera (L.) Planch. & Triana	0,2131
Vismia billbergiana Beurl.	2,0683
Vismia tomentosa Ruiz & Pav.	0,2772
Xylopia sp.	0,2967
II	31,1708
Andira inermis (Wright) DC.	1,1015
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,5713
Cecropia peltata L.	0,3043
Cochlospermum vitifolium (Willd.) Spreng.	0,3478
Ficus tonduzii Standl.	3,1953
Guazuma ulmifolia Lam.	0,7100
Gustavia superba (Kunth) O.Berg	2,3049
Inga edulis Mart.	1,7119
Jacaranda copaia (Aubl.) D.Don	3,4527
Mangifera sp.	0,3826
Melicoccus bijugatus Jacq.	0,2803
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,4900
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2,6355
Persea americana Mill.	0,4436
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	6,0173
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,2902
Tabebuia rosea (Bertol.) Bertero ex A.DC.	2,3511
Vatairea sp	2,0788
Vismia billbergiana Beurl.	1,3648
Vismia tomentosa Ruiz & Pav.	0,3541
Xylopia sp.	0,7829
III	20,1666
Andira inermis (Wright) DC.	1,5932
Cedrela odorata L.	3,1620
Ficus tonduzii Standl.	1,3253
Inga edulis Mart.	1,5392
Inga oerstediana Benth.	1,1177
Ocotea sp.	1,0090
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,7452
Pentaclethra macroloba (Willd.) Kuntze	1,1405

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	1,3902
Schizolobium parahyba (Vell.) S.F.Blake	5,2819
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,8926
Xylopia sp.	0,9699
IV	3,5341
Ficus tonduzii Standl.	2,1822
Vatairea sp	1,3519
V	6,6890
Schizolobium parahyba (Vell.) S.F.Blake	6,6890
VI	3,5753
Schizolobium parahyba (Vell.) S.F.Blake	3,5753
VII	9,6235
Schizolobium parahyba (Vell.) S.F.Blake	9,6235
VIII	11,1520
Schizolobium parahyba (Vell.) S.F.Blake	11,1520

La cobertura de vegetación secundaria alta presenta un volumen de fuste por ha de 73,81 m³, distribuido en 8 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 7,38 m³ (Figura 157).

23,4233 25 Volumen del fuste (m3) 20 16,6411 13,4942 15 10 5,8294 4,6193 4,3667 2,7410 5 2,7033 \parallel Ш IV VII VIIIClase diamétrica

Figura 157. Distribución del volumen del fuste por clase diamétrica

Fuente: Elaboración equipo técnico

De igual forma, el volumen de fuste por especie promedio es de 2,17 m³ y un volumen promedio por especie por individuo de 0,26 m³ de volumen de fuste por individuo por

especie. En la Tabla 254 se evidencia el volumen de cada una de las especies y en la Tabla 255 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 254. Indicadores por especie de volumen de fuste

Andira inermis (Wright) DC. 2,0961 0,8385	Especie	VF/sp /ha	VF ind/sp/ha
Bursera simaruba (L.) Sarg. 0.0838 0.0670 Casearia arborea (Rich.) Urb. 0,0710 0.0568 Cavanillesia platanifolia (Humb. & Bonpl.) Kunth 0.4285 0.3428 Cecropia peltata L. 0.6748 0.1350 Cedrela odorata L. 1.6570 0.6628 Cochlospermum vitifolium (Willd.) Spreng. 0.3857 0.1028 Ficus tonduzii Standl. 5,7822 0.4626 Guazuma ulmifolia Lam. 0.4637 0.1237 Gustavia superba (Kunth) O.Berg 1.6449 0.2193 Heisteria acuminata (Humb. & Bonpl.) Engl. 0.0514 0.0411 Heliocarpus americanus L. 0.1988 0.0530 Inga edulis Mart. 3.3388 0.1908 Inga oerstediana Benth. 0.7762 0.6210 Jacaranda copaia (Aubl.) D.Don 3,5609 0.3165 Mangifera sp. 0.1674 0.1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0.3786 0.3029 Ocotea sp. 0.6054 0.4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0.1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0.3326 Persea americana Mill. 0,1855 0.0742 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp. 0,2682 0,1073 Vismia biellbergiana Beurl. 0,3784 0,0974 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Andira inermis (Wright) DC.	2,0961	0,8385
Casearia arborea (Rich.) Urb. 0,0710 0,0568 Cavanillesia platanifolia (Humb. & Bonpl.) Kunth 0,4285 0,3428 Cecropia peltafa L. 0,6748 0,1350 Cedrela odorata L. 1,6570 0,6628 Cochlospermum vitifolium (Willd.) Spreng. 0,3857 0,1028 Ficus tonduzii Standl. 5,7822 0,4626 Guzuma ulmifolia Lam. 0,4637 0,1237 Gustavia superba (Kunth) O.Berg 1,6449 0,2193 Heisteria acuminata (Humb. & Bonpl.) Engl. 0,0514 0,0411 Heliocarpus americanus L. 0,1988 0,0530 Inga edulis Mart. 3,3388 0,1908 Inga estediana Benth. 0,7762 0,6210 Jacaranda copaia (Aubl.) D.Don 3,5609 0,3165 Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreo	Bellucia grossularioides (L.) Triana	0,4854	0,0647
Cavanillesia platanifolia (Humb, & Bonpl.) Kunth 0,4285 0,3428 Cecropia peltafa L. 0,6748 0,1350 Cedrela odorata L. 1,6570 0,6628 Cochlospermum vitifolium (Willd.) Spreng. 0,3857 0,1028 Ficus tonduzii Standl. 5,7822 0,4626 Guazuma ulmifolia Lam. 0,4637 0,1237 Gustavia superba (Kunth) O.Berg 1,6449 0,2193 Heisteria acuminata (Humb. & Bonpl.) Engl. 0,0514 0,0411 Heliocarpus americanus L. 0,1988 0,0530 Inga edulis Mart. 3,3388 0,1908 Inga oerstediana Benth. 0,7762 0,6210 Jacaranda copaia (Aubl.) D.Don 3,5609 0,3165 Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.), Kuntze 0,8316	Bursera simaruba (L.) Sarg.	0,0838	0,0670
Cecropia peltata L. 0,6748 0,1350 Cedrela odorata L. 1,6570 0,6628 Cochlospermum vitifolium (Willal.) Spreng. 0,3857 0,1028 Ficus tonduzii Standl. 5,7822 0,4626 Guazuma ulmiifolia Lam. 0,4637 0,1237 Gustavia superba (Kunth) O.Berg 1,6449 0,2193 Heisteria acuminata (Humb. & Bonpl.) Engl. 0,0514 0,0411 Heliocarpus americanus L. 0,1988 0,0530 Inga edulis Mart. 3,3388 0,1908 Inga oerstediana Benth. 0,7762 0,6210 Jacaranda copaia (Aubl.) D.Don 3,5609 0,3165 Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742	Casearia arborea (Rich.) Urb.	0,0710	0,0568
Cedrela odorata L. 1,6570 0,6628 Cochlospermum vitifolium (Willd.) Spreng. 0,3857 0,1028 Ficus tonduzii Standl. 5,7822 0,4626 Guazuma ulmifolia Lam. 0,4637 0,1237 Gustavia superba (Kunth) O.Berg 1,6449 0,2193 Heisteria acuminata (Humb. & Bonpl.) Engl. 0,0514 0,0411 Heliocarpus americanus L. 0,1988 0,0530 Inga edulis Mart. 3,3388 0,1908 Inga erstediana Benth. 0,7762 0,6210 Jacaranda copaia (Aubl.) D.Don 3,5609 0,3165 Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741	Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,4285	0,3428
Cochlospermum vitifolium (Willd.) Spreng. 0,3857 0,1028 Ficus tonduzii Standl. 5,7822 0,4626 Guazuma ulmifolia Lam. 0,4637 0,1237 Gustavia superba (Kunth) O.Berg 1,6449 0,2193 Heisteria acuminata (Humb. & Bonpl.) Engl. 0,0514 0,0411 Inga edulis Mart. 3,3388 0,1908 Jacaranda egaliti. 0,7762 0,6210 Jacaranda Egalia. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682	Cecropia peltata L.	0,6748	0,1350
Ficus tonduzii Standl. 5,7822 0,4626 Guazuma ulmifolia Lam. 0,4637 0,1237 Gustavia superba (Kunth) O.Berg 1,6449 0,2193 Heisteria acuminata (Humb. & Bonpl.) Engl. 0,0514 0,0411 Inga earlis (Humb. & Bonpl.) Engl. 0,1988 0,0530 Inga earlis (Humb. & Bonpl.) Engl. 0,0772 0,6210 Jacaranda capaia (Aubl.) Doon 3,5809 0,3165 Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3286 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 <t< td=""><td>Cedrela odorata L.</td><td>1,6570</td><td>0,6628</td></t<>	Cedrela odorata L.	1,6570	0,6628
Guazuma ulmifolia Lam. 0,4637 0,1237 Gustavia superba (Kunth) O.Berg 1,6449 0,2193 Heisteria acuminata (Humb. & Bonpl.) Engl. 0,0514 0,0411 Heliocarpus americanus L. 0,1988 0,0530 Inga edulis Mart. 3,3388 0,1908 Inga oerstediana Benth. 0,7762 0,6210 Jacaranda copaia (Aubl.) D.Don 3,5609 0,3165 Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex	Cochlospermum vitifolium (Willd.) Spreng.	0,3857	0,1028
Gustavia superba (Kunth) O.Berg 1,6449 0,2193 Heisteria acuminata (Humb. & Bonpl.) Engl. 0,0514 0,0411 Heliocarpus americanus L. 0,1988 0,0530 Inga edulis Mart. 3,3388 0,1908 Inga oerstediana Benth. 0,7762 0,6210 Jacaranda copaia (Aubl.) D.Don 3,5609 0,3165 Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Ficus tonduzii Standl.	5,7822	0,4626
Heisteria acuminata (Humb. & Bonpl.) Engl. 0,0514 0,0411 Heliocarpus americanus L. 0,1988 0,0530 Inga edulis Mart. 3,3388 0,1908 Inga oerstediana Benth. 0,7762 0,6210 Jacaranda copaia (Aubl.) D.Don 3,5609 0,3165 Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Guazuma ulmifolia Lam.	0,4637	0,1237
Heliocarpus americanus L.	Gustavia superba (Kunth) O.Berg	1,6449	0,2193
Inga edulis Mart. 3,3388 0,1908 Inga oerstediana Benth. 0,7762 0,6210 Jacaranda copaia (Aubl.) D.Don 3,5609 0,3165 Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0	Heisteria acuminata (Humb. & Bonpl.) Engl.	0,0514	0,0411
Inga oerstediana Benth. 0,7762 0,6210 Jacaranda copaia (Aubl.) D.Don 3,5609 0,3165 Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia tomentosa Ruiz & Pav.	Heliocarpus americanus L.	0,1988	0,0530
Jacaranda copaia (Aubl.) D.Don 3,5609 0,3165 Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Inga edulis Mart.	3,3388	0,1908
Mangifera sp. 0,1674 0,1339 Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Inga oerstediana Benth.	0,7762	0,6210
Melicoccus bijugatus Jacq. 0,2102 0,1682 Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Jacaranda copaia (Aubl.) D.Don	3,5609	0,3165
Ochroma pyramidale (Cav. ex Lam.) Urb. 0,3786 0,3029 Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Mangifera sp.	0,1674	0,1339
Ocotea sp. 0,6054 0,4843 Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. 6,2877 0,1735 Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Melicoccus bijugatus Jacq.	0,2102	0,1682
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. Pentaclethra macroloba (Willd.) Kuntze O,8316 O,3326 Persea americana Mill. O,1855 O,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin Schefflera trianae (Planch. & Linden ex Marchal) Harms O,2177 Schizolobium parahyba (Vell.) S.F.Blake Z2,0826 Tabebuia rosea (Bertol.) Bertero ex A.DC. Trophis caucana (Pittier) C.C. Berg Vatairea sp Vatairea sp Virola sp. Vismia baccifera (L.) Planch. & Triana O,0944 O,0378 Vismia billbergiana Beurl. Vismia tomentosa Ruiz & Pav. O,1735 O,1735 O,2682 O,1073 O,1736 O,1090 Vismia tomentosa Ruiz & Pav.	Ochroma pyramidale (Cav. ex Lam.) Urb.	0,3786	0,3029
Pentaclethra macroloba (Willd.) Kuntze 0,8316 0,3326 Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Ocotea sp.	0,6054	0,4843
Persea americana Mill. 0,1855 0,0742 Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	6,2877	0,1735
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin 11,0200 0,2050 Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Pentaclethra macroloba (Willd.) Kuntze	0,8316	0,3326
Schefflera trianae (Planch. & Linden ex Marchal) Harms 0,2177 0,1741 Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Persea americana Mill.	0,1855	0,0742
Schizolobium parahyba (Vell.) S.F.Blake 22,0826 1,6060 Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	11,0200	0,2050
Tabebuia rosea (Bertol.) Bertero ex A.DC. 1,5868 0,1269 Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,2177	0,1741
Trophis caucana (Pittier) C.C. Berg 0,1172 0,0469 Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Schizolobium parahyba (Vell.) S.F.Blake	22,0826	1,6060
Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,5868	0,1269
Vatairea sp 3,6034 0,1441 Virola sp. 0,2682 0,1073 Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256	Trophis caucana (Pittier) C.C. Berg	0,1172	0,0469
Vismia baccifera (L.) Planch. & Triana 0,0944 0,0378 Vismia billbergiana Beurl. 2,3154 0,1090 Vismia tomentosa Ruiz & Pav. 0,4711 0,1256		3,6034	0,1441
Vismia billbergiana Beurl.2,31540,1090Vismia tomentosa Ruiz & Pav.0,47110,1256	Virola sp.	0,2682	0,1073
Vismia billbergiana Beurl.2,31540,1090Vismia tomentosa Ruiz & Pav.0,47110,1256	Vismia baccifera (L.) Planch. & Triana	0,0944	0,0378
		2,3154	0,1090
Xylopia sp. 1,6759 0,3352	Vismia tomentosa Ruiz & Pav.	0,4711	0,1256
	Xylopia sp.	1,6759	0,3352

Tabla 255. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /ha/Ct diam.
I	16,6411
Bellucia grossularioides (L.) Triana	0,4854
Bursera simaruba (L.) Sarg.	0,0838
Casearia arborea (Rich.) Urb.	0,0710
Cecropia peltata L.	0,3705
Cochlospermum vitifolium (Willd.) Spreng.	0,1248
Ficus tonduzii Standl.	0,1181
Guazuma ulmifolia Lam.	0,0187
Gustavia superba (Kunth) O.Berg	0,1300
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,0514
Heliocarpus americanus L.	0,1988
Inga edulis Mart.	1,2882
Jacaranda copaia (Aubl.) D.Don	0,5038
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	4,2203
Pentaclethra macroloba (Willd.) Kuntze	0,1544
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	4,4722
Schizolobium parahyba (Vell.) S.F.Blake	0,4572
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,1427
Trophis caucana (Pittier) C.C. Berg	0,1172
Vatairea sp	1,4422
Virola sp.	0,2682
Vismia baccifera (L.) Planch. & Triana	0,0944
Vismia billbergiana Beurl.	1,4686
Vismia tomentosa Ruiz & Pav.	0,1347
Xylopia sp.	0,2246
II	23,4233
Andira inermis (Wright) DC.	0,9013
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,4285
Cecropia peltata L.	0,3043
Cochlospermum vitifolium (Willd.) Spreng.	0,2609
Ficus tonduzii Standl.	2,9244
Guazuma ulmifolia Lam.	0,4450
Gustavia superba (Kunth) O.Berg	1,5150
Inga edulis Mart.	1,0673
Jacaranda copaia (Aubl.) D.Don	3,0571
Mangifera sp.	0,1674
Melicoccus bijugatus Jacq.	0,2102
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,3786
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,8811

Clase diamétrica / Especie	VFsp /ha/Ct diam.
Persea americana Mill.	0,1855
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	5,3556
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,2177
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,0934
Vatairea sp	1,2037
Vismia billbergiana Beurl.	0,8469
Vismia tomentosa Ruiz & Pav.	0,3364
Xylopia sp.	0,6431
III	13,4942
Andira inermis (Wright) DC.	1,1949
Cedrela odorata L.	1,6570
Ficus tonduzii Standl.	0,9940
Inga edulis Mart.	0,9833
Inga oerstediana Benth.	0,7762
Ocotea sp.	0,6054
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,1863
Pentaclethra macroloba (Willd.) Kuntze	0,6772
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	1,1922
Schizolobium parahyba (Vell.) S.F.Blake	4,0689
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,3507
Xylopia sp.	0,8082
IV	2,7033
Ficus tonduzii Standl.	1,7457
Vatairea sp	0,9576
V	4,3667
Schizolobium parahyba (Vell.) S.F.Blake	4,3667
VI	2,7410
Schizolobium parahyba (Vell.) S.F.Blake	2,7410
VII	4,6193
Schizolobium parahyba (Vell.) S.F.Blake	4,6193
VIII	5,8294
Schizolobium parahyba (Vell.) S.F.Blake	5,8294

En el caso del volumen comercial se obtiene un volumen de 59,95 m³ por hectárea distribuido en las 8 clases diamétricas, con un volumen promedio por clase diamétrica de 5,99 m³. En la Figura 158 se presenta la distribución del volumen comercial por clase diamétrica.

18,8098 20 18 Volumen comercial (m3) 16 13,1614 14 11,2947 12 10 8 4,5622 6 3,8494 2,3835 2,2434 0 \parallel |||IV VII $\forall |||$ Clase diamétrica

Figura 158. Distribución del volumen comercial por clase diamétrica

De igual manera, el volumen comercial por especie un promedio de 1,76 m³ y un volumen promedio por especie por individuo de 0,21 m³. En la Tabla 256 se evidencia el volumen de cada una de las especies y en la Tabla 257 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 256. Indicadores por especie de volumen comercial

Especie	VC/sp /ha	VC ind/sp/ha
Andira inermis (Wright) DC.	1,8632	0,7453
Bellucia grossularioides (L.) Triana	0,3777	0,0504
Bursera simaruba (L.) Sarg.	0,0670	0,0536
Casearia arborea (Rich.) Urb.	0,0598	0,0478
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,3428	0,2742
Cecropia peltata L.	0,4992	0,0998
Cedrela odorata L.	1,3794	0,5518
Cochlospermum vitifolium (Willd.) Spreng.	0,2902	0,0774
Ficus tonduzii Standl.	4,8284	0,3863
Guazuma ulmifolia Lam.	0,3027	0,0807
Gustavia superba (Kunth) O.Berg	1,2741	0,1699
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,0373	0,0299
Heliocarpus americanus L.	0,1471	0,0392
Inga edulis Mart.	2,7285	0,1559
Inga oerstediana Benth.	0,6210	0,4968
Jacaranda copaia (Aubl.) D.Don	2,9467	0,2619
Mangifera sp.	0,0478	0,0383
Melicoccus bijugatus Jacq.	0,1401	0,1121

Especie	VC/sp /ha	VC ind/sp/ha
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,3118	0,2494
Ocotea sp.	0,4709	0,3767
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	5,1253	0,1414
Pentaclethra macroloba (Willd.) Kuntze	0,6792	0,2717
Persea americana Mill.	0,1073	0,0429
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	9,0679	0,1687
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,1741	0,1393
Schizolobium parahyba (Vell.) S.F.Blake	18,3200	1,3324
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,0229	0,0818
Trophis caucana (Pittier) C.C. Berg	0,0832	0,0333
Vatairea sp	2,8110	0,1124
Virola sp.	0,2188	0,0875
Vismia baccifera (L.) Planch. & Triana	0,0495	0,0198
Vismia billbergiana Beurl.	1,7795	0,0837
Vismia tomentosa Ruiz & Pav.	0,3474	0,0926
Xylopia sp.	1,4290	0,2858

Tabla 257. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
l	13,1614
Bellucia grossularioides (L.) Triana	0,3777
Bursera simaruba (L.) Sarg.	0,0670
Casearia arborea (Rich.) Urb.	0,0598
Cecropia peltata L.	0,2819
Cochlospermum vitifolium (Willd.) Spreng.	0,0945
Ficus tonduzii Standl.	0,0908
Guazuma ulmifolia Lam.	0,0075
Gustavia superba (Kunth) O.Berg	0,1095
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,0373
Heliocarpus americanus L.	0,1471
Inga edulis Mart.	0,9816
Jacaranda copaia (Aubl.) D.Don	0,3922
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	3,5154
Pentaclethra macroloba (Willd.) Kuntze	0,1090
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	3,6528
Schizolobium parahyba (Vell.) S.F.Blake	0,3850
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,0840
Trophis caucana (Pittier) C.C. Berg	0,0832
Vatairea sp	1,0889

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Virola sp.	0,2188
Vismia baccifera (L.) Planch. & Triana	0,0495
Vismia billbergiana Beurl.	1,1052
Vismia tomentosa Ruiz & Pav.	0,0641
Xylopia sp.	0,1585
II	18,8098
Andira inermis (Wright) DC.	0,8011
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,3428
Cecropia peltata L.	0,2174
Cochlospermum vitifolium (Willd.) Spreng.	0,1956
Ficus tonduzii Standl.	2,4308
Guazuma ulmifolia Lam.	0,2952
Gustavia superba (Kunth) O.Berg	1,1647
Inga edulis Mart.	0,8918
Jacaranda copaia (Aubl.) D.Don	2,5546
Mangifera sp.	0,0478
Melicoccus bijugatus Jacq.	0,1401
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,3118
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,5478
Persea americana Mill.	0,1073
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	4,4210
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,1741
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,7158
Vatairea sp	0,9334
Vismia billbergiana Beurl.	0,6742
Vismia tomentosa Ruiz & Pav.	0,2832
Xylopia sp.	0,5592
III	11,2947
Andira inermis (Wright) DC.	1,0621
Cedrela odorata L.	1,3794
Ficus tonduzii Standl.	0,8520
Inga edulis Mart.	0,8551
Inga oerstediana Benth.	0,6210
Ocotea sp.	0,4709
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,0621
Pentaclethra macroloba (Willd.) Kuntze	0,5703
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,9941
Schizolobium parahyba (Vell.) S.F.Blake	3,4935
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,2231
Xylopia sp.	0,7112

Clase diamétrica / Especie	VCsp /ha/Ct diam.
IV	2,2434
Ficus tonduzii Standl.	1,4548
Vatairea sp	0,7886
V	3,6464
Schizolobium parahyba (Vell.) S.F.Blake	3,6464
VI	2,3835
Schizolobium parahyba (Vell.) S.F.Blake	2,3835
VII	3,8494
Schizolobium parahyba (Vell.) S.F.Blake	3,8494
VIII	4,5622
Schizolobium parahyba (Vell.) S.F.Blake	4,5622

El volumen cosechable calculado para la cobertura de vegetación secundaria alta es de 50,72 m³ con un promedio por especie de 1,4920 m³. En la Tabla 258 se evidencia el volumen de cada una de las especies y en la Tabla 259 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 258. Indicadores por especie de volumen cosechable

Especie	VCs/sp /ha
Andira inermis (Wright) DC.	1,5766
Bellucia grossularioides (L.) Triana	0,3196
Bursera simaruba (L.) Sarg.	0,0567
Casearia arborea (Rich.) Urb.	0,0506
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,2900
Cecropia peltata L.	0,4224
Cedrela odorata L.	1,1672
Cochlospermum vitifolium (Willd.) Spreng.	0,2455
Ficus tonduzii Standl.	4,0855
Guazuma ulmifolia Lam.	0,2561
Gustavia superba (Kunth) O.Berg	1,0781
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,0316
Heliocarpus americanus L.	0,1244
Inga edulis Mart.	2,3087
Inga oerstediana Benth.	0,5254
Jacaranda copaia (Aubl.) D.Don	2,4934
Mangifera sp.	0,0405
Melicoccus bijugatus Jacq.	0,1186
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,2638

Especie	VCs/sp /ha
Ocotea sp.	0,3984
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	4,3368
Pentaclethra macroloba (Willd.) Kuntze	0,5747
Persea americana Mill.	0,0908
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	7,6729
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,1474
Schizolobium parahyba (Vell.) S.F.Blake	15,5015
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,8656
Trophis caucana (Pittier) C.C. Berg	0,0704
Vatairea sp	2,3785
Virola sp.	0,1851
Vismia baccifera (L.) Planch. & Triana	0,0419
Vismia billbergiana Beurl.	1,5057
Vismia tomentosa Ruiz & Pav.	0,2939
Xylopia sp.	1,2091

Tabla 259. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
I	11,1366
Bellucia grossularioides (L.) Triana	0,3196
Bursera simaruba (L.) Sarg.	0,0567
Casearia arborea (Rich.) Urb.	0,0506
Cecropia peltata L.	0,2385
Cochlospermum vitifolium (Willd.) Spreng.	0,0800
Ficus tonduzii Standl.	0,0768
Guazuma ulmifolia Lam.	0,0063
Gustavia superba (Kunth) O.Berg	0,0926
Heisteria acuminata (Humb. & Bonpl.) Engl.	0,0316
Heliocarpus americanus L.	0,1244
Inga edulis Mart.	0,8306
Jacaranda copaia (Aubl.) D.Don	0,3318
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	2,9746
Pentaclethra macroloba (Willd.) Kuntze	0,0922
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	3,0908
Schizolobium parahyba (Vell.) S.F.Blake	0,3258
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,0711
Trophis caucana (Pittier) C.C. Berg	0,0704

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Vatairea sp	0,9214
Virola sp.	0,1851
Vismia baccifera (L.) Planch. & Triana	0,0419
Vismia billbergiana Beurl.	0,9352
Vismia tomentosa Ruiz & Pav.	0,0542
Xylopia sp.	0,1341
II	15,9160
Andira inermis (Wright) DC.	0,6779
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,2900
Cecropia peltata L.	0,1839
Cochlospermum vitifolium (Willd.) Spreng.	0,1655
Ficus tonduzii Standl.	2,0568
Guazuma ulmifolia Lam.	0,2498
Gustavia superba (Kunth) O.Berg	0,9855
Inga edulis Mart.	0,7546
Jacaranda copaia (Aubl.) D.Don	2,1616
Mangifera sp.	0,0405
Melicoccus bijugatus Jacq.	0,1186
Ochroma pyramidale (Cav. ex Lam.) Urb.	0,2638
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	1,3096
Persea americana Mill.	0,0908
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	3,7409
Schefflera trianae (Planch. & Linden ex Marchal) Harms	0,1474
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,6057
Vatairea sp	0,7898
Vismia billbergiana Beurl.	0,5705
Vismia tomentosa Ruiz & Pav.	0,2397
Xylopia sp.	0,4732
III	9,5571
Andira inermis (Wright) DC.	0,8987
Cedrela odorata L.	1,1672
Ficus tonduzii Standl.	0,7209
Inga edulis Mart.	0,7235
Inga oerstediana Benth.	0,5254
Ocotea sp.	0,3984
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	0,0525
Pentaclethra macroloba (Willd.) Kuntze	0,4825
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,8412

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Schizolobium parahyba (Vell.) S.F.Blake	2,9560
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,1888
Xylopia sp.	0,6018
IV	1,8982
Ficus tonduzii Standl.	1,2310
Vatairea sp	0,6673
V	3,0854
Schizolobium parahyba (Vell.) S.F.Blake	3,0854
VI	2,0168
Schizolobium parahyba (Vell.) S.F.Blake	2,0168
VII	3,2572
Schizolobium parahyba (Vell.) S.F.Blake	3,2572
VIII	3,8603
Schizolobium parahyba (Vell.) S.F.Blake	3,8603

5.5.2.13.2. Indicadores estructurales de la cobertura de vegetación secundaria alta

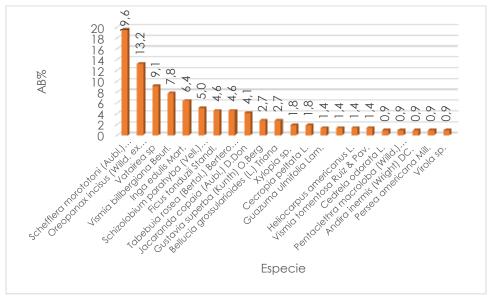
5.5.2.13.2.1. Estructura horizontal

En la Tabla 260 se observa los datos obtenidos del análisis de la estructura horizontal de la cobertura de vegetación secundaria alta.

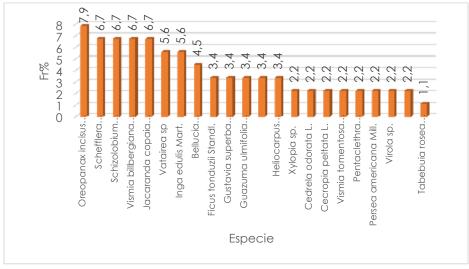
Tabla 260. Estructura horizontal para la cobertura de vegetación secundaria alta

	N° de	Abundo	ancia	Domino	ancia	Frecuer	ncia	
Especies	ind	Ab absoluta AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI	
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	43	0,196	19,635	0,144	14,412	0,750	6,742	40,788
Schizolobium parahyba (Vell.) S.F.Blake	11	0,050	5,023	0,244	24,369	0,750	6,742	36,134
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	29	0,132	13,242	0,085	8,540	0,875	7,865	29,647
Vatairea sp	20	0,091	9,132	0,061	6,114	0,625	5,618	20,864
Vismia billbergiana Beurl.	17	0,078	7,763	0,041	4,054	0,750	6,742	18,558
Inga edulis Mart.	14	0,064	6,393	0,049	4,908	0,625	5,618	16,919
Ficus tonduzii Standl.	10	0,046	4,566	0,071	7,067	0,375	3,371	15,004
Jacaranda copaia (Aubl.) D.Don	9	0,041	4,110	0,040	3,966	0,750	6,742	14,817
Tabebuia rosea (Bertol.) Bertero ex A.DC.	10	0,046	4,566	0,042	4,204	0,125	1,124	9,894
Gustavia superba (Kunth) O.Berg	6	0,027	2,740	0,026	2,637	0,375	3,371	8,748
Bellucia grossularioides (L.) Triana	6	0,027	2,740	0,008	0,837	0,500	4,494	8,071
Xylopia sp.	4	0,018	1,826	0,021	2,061	0,250	2,247	6,135

	N° de	Abundo	ancia	Domino	ıncia	Frecuer	ncia	
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Guazuma ulmifolia Lam.	3	0,014	1,370	0,012	1,162	0,375	3,371	5,902
Cedrela odorata L.	2	0,009	0,913	0,025	2,459	0,250	2,247	5,619
Cochlospermum vitifolium (Willd.) Spreng.	3	0,014	1,370	0,008	0,807	0,375	3,371	5,547
Cecropia peltata L.	4	0,018	1,826	0,012	1,201	0,250	2,247	5,275
Heliocarpus americanus L.	3	0,014	1,370	0,004	0,380	0,375	3,371	5,120
Vismia tomentosa Ruiz & Pav.	3	0,014	1,370	0,010	0,969	0,250	2,247	4,586
Pentaclethra macroloba (Willd.) Kuntze	2	0,009	0,913	0,012	1,188	0,250	2,247	4,349
Andira inermis (Wright) DC.	2	0,009	0,913	0,018	1,841	0,125	1,124	3,878
Persea americana Mill.	2	0,009	0,913	0,007	0,693	0,250	2,247	3,853
Virola sp.	2	0,009	0,913	0,004	0,438	0,250	2,247	3,598
Trophis caucana (Pittier) C.C. Berg	2	0,009	0,913	0,003	0,251	0,250	2,247	3,411
Ocotea sp.	1	0,005	0,457	0,009	0,894	0,125	1,124	2,474
Vismia baccifera (L.) Planch. & Triana	2	0,009	0,913	0,004	0,397	0,125	1,124	2,434
Inga oerstediana Benth.	1	0,005	0,457	0,008	0,825	0,125	1,124	2,405
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	1	0,005	0,457	0,008	0,759	0,125	1,124	2,339
Mangifera sp.	1	0,005	0,457	0,006	0,635	0,125	1,124	2,216
Melicoccus bijugatus Jacq.	1	0,005	0,457	0,006	0,621	0,125	1,124	2,201
Ochroma pyramidale (Cav. ex Lam.) Urb.	1	0,005	0,457	0,006	0,592	0,125	1,124	2,172
Schefflera trianae (Planch. & Linden ex Marchal) Harms	1	0,005	0,457	0,004	0,386	0,125	1,124	1,966
Heisteria acuminata (Humb. & Bonpl.) Engl.	1	0,005	0,457	0,001	0,124	0,125	1,124	1,704
Bursera simaruba (L.) Sarg.	1	0,005	0,457	0,001	0,111	0,125	1,124	1,692
Casearia arborea (Rich.) Urb.	1	0,005	0,457	0,001	0,099	0,125	1,124	1,680
Totales		1	100	1	100	11,125	100	300


<u>Abundancia</u>

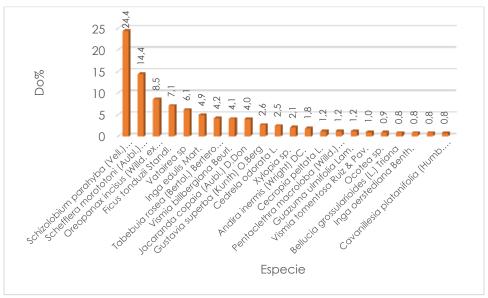
La abundancia absoluta y relativa presente en la cobertura de bosque de vegetación secundaria alta muestra que la especie más abundante es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con 54 individuos en una hectárea y de abundancia relativa 19,6 %. Igualmente, la especie *Oreopanax incisus* (Willd. ex Schult.) Decne. & Planch. presenta la segunda mayor abundancia con 36 individuos por hectárea y una abundancia realtiva de 13,2 % (Figura 159).


Figura 159. Distribución de la abundancia relativa para de la cobertura de vegetación secundaria alta

<u>Frecuencia</u>

La especie Oreopanax incisus (Willd. ex Schult.) Decne. & Planch. es la mas frecuente con una presencia en 7 parcelas de las 8 realizadas, seguida de *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con una presencia en 6 parcelas de las 8 realizadas y *Schizolobium parahyba* (Vell.) S.F.Blake con una frecuencia relativa de 6,74 % (Figura 160).

Figura 160. Distribución de frecuencia relativa para de la cobertura de vegetación secundaria alta

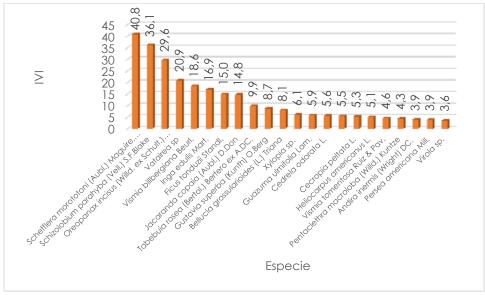


Dominancia

La especie de mayor dominancia es *Schizolobium parahyba* (Vell.) S.F.Blake con 24,36 % y área basal de 2,2575 m², seguida de la especie *Schefflera morototoni* (Aubl.) Maguire, Steyerm. & Frodincon 14,41 % y un área basal de 1,3350 m² (Figura 161).

Figura 161. Distribución de la dominancia relativa para la cobertura de vegetación secundaria alta

Fuente: Elaboración equipo técnico


Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con un IVI de 40,8, seguida de la especie *Schizolobium parahyba* (Vell.) S.F. Blakecon un peso ecológico de 36,1, evidenciando el comportamiento de J invertida de bosque natural (Figura 162).

Figura 162. Distribución del IVI para la cobertura de vegetación secundaria alta

Coefiente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1 / \frac{34}{219}$$

$$CM = 1 / 0,155$$

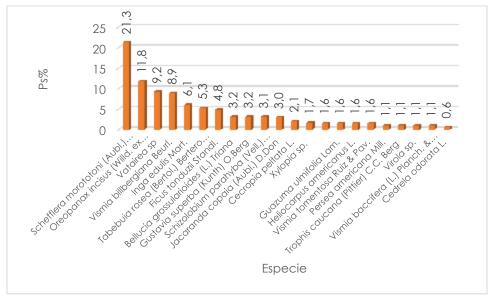
$$CM = 6,45$$

El coeficiente de mezcla obtenido implica que por cada 6,45 individuos estudiados hay una especie nueva para la cobertura de vegetación secundaria alta.

5.5.2.13.2.2. <u>Estructura vertical</u>

Posición sociólogica

La posición sociológica muestra que la especie con mayor peso es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin con 21,31 % debido a la presencia de la totalidad de sus individuos en el estrato dominante, el detallado de cada una de las especies se muestra en la Tabla 261 y Figura 163.


Tabla 261. Posición sociológica de las especies de la cobertura de vegetación secundaria alta

				Ι.	. ~
Nombre científico Schefflera morototoni (Aubl.) Maguire,	Suprimido	Codominante	Dominante	Ps	Ps%
Steyerm. & Frodin	40	3	0	7462	21,312
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	21	8	0	4136	11,813
Vatairea sp	17	3	0	3230	9,225
Varairea sp Vismia billbergiana Beurl.	17	0	0	3128	8,934
		-	0		
Inga edulis Mart. Tabebuia rosea (Bertol.) Bertero ex	11	3	0	2126	6,072
A.DC.	10	0	0	1840	5,255
Ficus tonduzii Standl.	9	1	0	1690	4,827
Bellucia grossularioides (L.) Triana	6	0	0	1104	3,153
Gustavia superba (Kunth) O.Berg	6	0	0	1104	3,153
Schizolobium parahyba (Vell.) S.F.Blake	5	5	1	1091	3,116
Jacaranda copaia (Aubl.) D.Don	5	4	0	1056	3,016
Cecropia peltata L.	4	0	0	736	2,102
Xylopia sp.	3	1	0	586	1,674
Cochlospermum vitifolium (Willd.)	2	0	0	550	1 577
Spreng.	3	0	0	552	1,577
Guazuma ulmifolia Lam.		0		552	1,577
Heliocarpus americanus L.	3	0	0	552	1,577
Vismia tomentosa Ruiz & Pav.	3	0	0	552	1,577
Persea americana Mill.	2	0	0	368	1,051
Trophis caucana (Pittier) C.C. Berg	2	0	0	368	1,051
Virola sp.	2	0	0	368	1,051
Vismia baccifera (L.) Planch. & Triana	2	0	0	368	1,051
Cedrela odorata L.	1	1	0	218	0,623
Pentaclethra macroloba (Willd.) Kuntze	1	1	0	218	0,623
Bursera simaruba (L.) Sarg.	1	0	0	184	0,526
Casearia arborea (Rich.) Urb.	1	0	0	184	0,526
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	1	0	0	184	0,526
Heisteria acuminata (Humb. & Bonpl.)			Ŭ.	101	0,020
Engl.	1	0	0	184	0,526
Mangifera sp.	1	0	0	184	0,526
Melicoccus bijugatus Jacq.	1	0	0	184	0,526
Ochroma pyramidale (Cav. ex Lam.) Urb.	1	0	0	184	0,526
Schefflera trianae (Planch. & Linden ex Marchal) Harms	1	0	0	184	0,526
Andira inermis (Wright) DC.	0	2	0	68	0,194
Inga oerstediana Benth.	0	1	0	34	0,097
Ocotea sp.	0	1	0	34	0,097

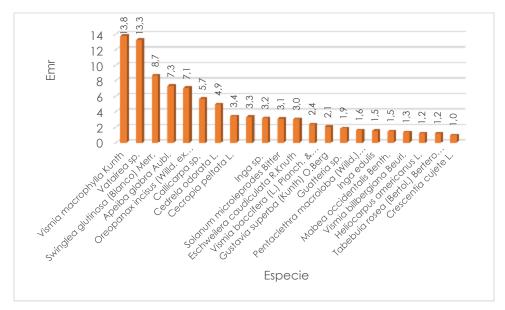
Figura 163. Distribución de la posición sociológica de las especies de la cobertura de vegetación secundaria alta

5.5.2.13.2.3. Analasis del sotobosque

Categoría de tamaño absoluta

El análisis de regeneración natural muestra que la especie que presenta mayor representación es *Vismia macrophylla* Kunth.con una categoría de tamaño de 14,219 %, seguido de *Vatairea sp.*con una categoría de tamaño de 15,670 % (Figura 164) (Tabla 262).

Tabla 262. Cálculo de la estructura de sotobosque en el bosque de vegetación secundaria alta


Especies	AB%	FA%	CTaEM%	Emr
Vismia macrophylla Kunth	16,568	10,606	14,219	13,798
Vatairea sp.	16,568	7,576	15,670	13,271
Swinglea glutinosa (Blanco) Merr.	11,243	1,515	13,285	8,681
Apeiba glabra Aubl.	7,692	4,545	9,759	7,332
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	5,917	7,576	7,687	7,060
Callicarpa sp.	6,805	3,030	7,117	5,651
Cedrela odorata L.	4,438	7,576	2,819	4,944
Cecropia peltata L.	2,663	4,545	3,069	3,426
Cochlospermum vitifolium (Willd.) Spreng.	1,775	6,061	2,130	3,322
Inga sp.	2,663	4,545	2,314	3,174
Solanum microleprodes Bitter	3,550	3,030	2,713	3,098

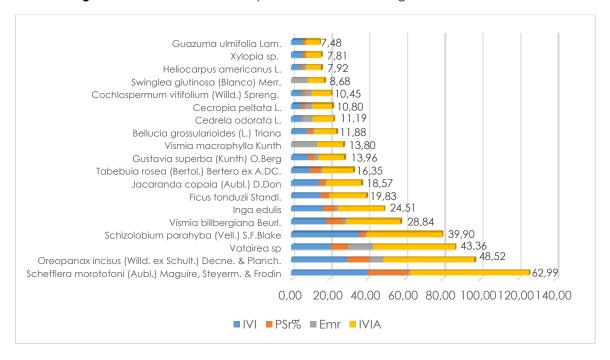
Especies	AB%	FA%	СТаЕМ%	Emr
Eschweilera caudiculata R.Knuth	3,254	1,515	4,366	3,045
Vismia baccifera (L.) Planch. & Triana	1,479	4,545	1,057	2,360
Gustavia superba (Kunth) O.Berg	1,479	3,030	1,675	2,062
Guatteria sp.	2,071	1,515	1,966	1,851
Pentaclethra macroloba (Willd.) Kuntze	2,367	1,515	0,932	1,605
Inga edulis	0,888	3,030	0,630	1,516
Mabea occidentalis Benth.	0,592	3,030	0,794	1,472
Vismia billbergiana Beurl.	1,183	1,515	1,336	1,345
Heliocarpus americanus L.	1,183	1,515	0,969	1,223
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,888	1,515	1,191	1,198
Crescentia cujete L.	0,592	1,515	0,794	0,967
Luehea seemannii Triana & Planch	0,592	1,515	0,794	0,967
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	0,888	1,515	0,263	0,888
Casearia arborea (Rich.) Urb.	0,592	1,515	0,175	0,761
Bellucia pentamera Naudin	0,296	1,515	0,397	0,736
Coccoloba uvifera (L.) L.	0,296	1,515	0,397	0,736
Guarea glabra Vahl	0,296	1,515	0,397	0,736
Jacaranda copaia (Aubl.) D.Don	0,296	1,515	0,397	0,736
Talisia sp.	0,296	1,515	0,397	0,736
Bellucia grossularioides (L.) Triana	0,296	1,515	0,145	0,652
Schizolobium parahyba (Vell.) S.F.Blake	0,296	1,515	0,145	0,652
Totales	100	100	100	100

Figura 164. Distribución del sotobosque de la cobertura de vegetación secundaria alta

<u>Índice de valor de importancia ampliado (IVIA)</u>

La especie con el mayor valor de importancia en la cobertura es *Schefflera morototoni* (Aubl.) Maguire. Steyerm. & Frodin, la cual obtuvo un valor de 62,99 de IVIA con la mayor significancia asociado al IVI y PS. La especie *Oreopanax incisus* (Willd. ex Schult.) Decne. & Planch. presenta un valor de 48,52, también asociado al peso de IVI y Ps (Tabla 263) (Figura 165).

Tabla 263. Índice de valor de importancia ampliado para la cobertura de vegetación secundaria alta


especie	IVI	PSr%	Emr	IVIA
Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	40,79	21,31	0,89	62,99
Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	29,65	11,81	7,06	48,52
Vatairea sp	20,86	9,23	13,27	43,36
Schizolobium parahyba (Vell.) S.F.Blake	36,13	3,12	0,65	39,90
Vismia billbergiana Beurl.	18,56	8,93	1,34	28,84
Inga edulis	16,92	6,07	1,52	24,51
Ficus tonduzii Standl.	15,00	4,83	0,00	19,83
Jacaranda copaia (Aubl.) D.Don	14,82	3,02	0,74	18,57
Tabebuia rosea (Bertol.) Bertero ex A.DC.	9,89	5,26	1,20	16,35
Gustavia superba (Kunth) O.Berg	8,75	3,15	2,06	13,96
Vismia macrophylla Kunth	0,00	0,00	13,80	13,80
Bellucia grossularioides (L.) Triana	8,07	3,15	0,65	11,88
Cedrela odorata L.	5,62	0,62	4,94	11,19
Cecropia peltata L.	5,28	2,10	3,43	10,80
Cochlospermum vitifolium (Willd.) Spreng.	5,55	1,58	3,32	10,45
Swinglea glutinosa (Blanco) Merr.	0,00	0,00	8,68	8,68
Heliocarpus americanus L.	5,12	1,58	1,22	7,92
Xylopia sp.	6,13	1,67	0,00	7,81
Guazuma ulmifolia Lam.	5,90	1,58	0,00	7,48
Apeiba glabra Aubl.	0,00	0,00	7,33	7,33
Pentaclethra macroloba (Willd.) Kuntze	4,35	0,62	1,60	6,58
Vismia tomentosa Ruiz & Pav.	4,59	1,58	0,00	6,16
Vismia baccifera (L.) Planch. & Triana	2,43	1,05	2,36	5,85
Callicarpa sp.	0,00	0,00	5,65	5,65
Persea americana Mill.	3,85	1,05	0,00	4,90
Virola sp.	3,60	1,05	0,00	4,65
Trophis caucana (Pittier) C.C. Berg	3,41	1,05	0,00	4,46
Andira inermis (Wright) DC.	3,88	0,19	0,00	4,07
Inga sp.	0,00	0,00	3,17	3,17

especie	IVI	PSr%	Emr	IVIA
Solanum microleprodes Bitter	0,00	0,00	3,10	3,10
Eschweilera caudiculata R.Knuth	0,00	0,00	3,05	3,05
Casearia arborea (Rich.) Urb.	1,68	0,53	0,76	2,97
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	2,34	0,53	0,00	2,86
Mangifera sp.	2,22	0,53	0,00	2,74
Melicoccus bijugatus Jacq.	2,20	0,53	0,00	2,73
Ochroma pyramidale (Cav. ex Lam.) Urb.	2,17	0,53	0,00	2,70
Ocotea sp.	2,47	0,10	0,00	2,57
Inga oerstediana Benth.	2,41	0,10	0,00	2,50
Schefflera trianae (Planch. & Linden ex Marchal) Harms	1,97	0,53	0,00	2,49
Heisteria acuminata (Humb. & Bonpl.) Engl.	1,70	0,53	0,00	2,23
Bursera simaruba (L.) Sarg.	1,69	0,53	0,00	2,22
Guatteria sp.	0,00	0,00	1,85	1,85
Mabea occidentalis Benth.	0,00	0,00	1,47	1,47
Crescentia cujete L.	0,00	0,00	0,97	0,97
Luehea seemannii Triana & Planch	0,00	0,00	0,97	0,97
Bellucia pentamera Naudin	0,00	0,00	0,74	0,74
Coccoloba uvifera (L.) L.	0,00	0,00	0,74	0,74
Guarea glabra Vahl	0,00	0,00	0,74	0,74
Talisia sp.	0,00	0,00	0,74	0,74

Figura 165. Distribución del IVIA para la cobertura de vegetación secundaria alta

5.5.2.13.3. Indicadores de diversidad alfa de la cobertura de vegetación secundaria alta

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 264.

Tabla 264. Índices de biodiversidad alfa del bosque vegetación secundaria alta

Parámetro	Valor
Dmn	2,298
Dsi	1/0,0866= 11,54
d	1-0,196= 0,80
H′	2,86
dmg	6,12

Fuente: Elaboración equipo técnico

El índice de Menhinick muestra una tendencia media a la diversidad, siendo poco equitativo en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra tendencia a la media diversidad del bosque, teniendo en cuenta que la probabilidad de sacar individuos iguales es muy baja.

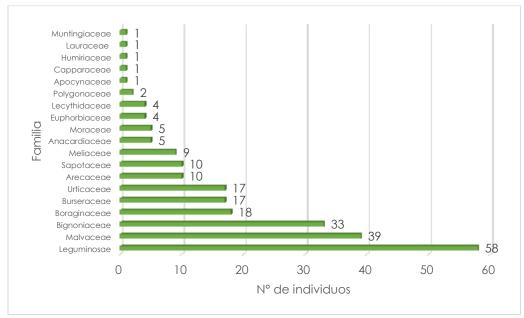
Para la cobertura de bosque de vegetación secundaria alta, el índice de Shannon establece que es típicamente diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es medianamente biodiverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad alta – media.

5.5.2.14. Cobertura de Vegetación Secundaria Baja

La cobertura de vegetación secundaria baja se encuentra constituido por un total de 51 especies distribuidas en 19 familias registradas en el inventario forestal. En la Tabla 265, se identifica la familia Leguminosae y Malvaceae las que presentan la mayor representación. A su vez se identifica que la familia Malvaceae se encuentra representada en 7 generos y 8 especies, resaltando la especie Guazuma ulmifolia Lam. con 27 individuos (Figura 166).

Tabla 265. Composición florística de la cobertura de vegetación secundaria baja

Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
Anacardiace	Е	Anacardium excelsum (Bertero ex Kunth) Skeels	2
ae 5		Spondias mombin L.	3
Apocynacea e	1	Malouetia sp.	1
Arecaceae	10	Cocos nucifera L.	1


Familia	nilia N° de ind / Familia Especie		N° de Ind / sp/ ha
		Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	9
		Crescentia cujete L.	4
Bignoniacea	22	Handroanthus chrysanthus (Jacq.) S.O.Grose	9
е	33	Handroanthus impetiginosus (Mart. ex DC.) Mattos	1
		Tabebuia rosea (Bertol.) Bertero ex A.DC.	19
Boraginacea	e Cordia collococca L. Bursera simaruba (L.) Sarg.		17
е			1
Pursargaaga	rseraceae 17		2
Burseracede	17	Protium apiculatum Swart	15
Capparacea e	1	Quadrella odoratissima (Jacq.) Hutch.	1
		Croton sp.	2
Euphorbiace ae	4	Sapium glandulosum (L.) Morong	1
GC		Sapium sp.	1
Humiriaceae	1	Humiriastrum sp.	1
Lauraceae	1	Nectandra sp.	1
Lecythidace ae	4	Lecythis ampla Miers	4
		Acacia mangium Willd.	1
		Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	5
		Albizia saman (Jacq.) Merr.	5
		Caesalpinia ebano H.Karst.	1
		Caesalpinia pluviosa DC.	1
Leguminosae	58	Calliandra magdalenae (DC.) Benth.	4
		Gliricidia sepium (Jacq.) Walp.	7
		Heterostemon sp.	1
		Macrosamanea sp.	16
		Senna occidentalis (L.) Link	16
		Zygia longifolia (Willd.) Britton & Rose	1
		Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	1
		Ceiba pentandra (L.) Gaertn.	1
		Guazuma ulmifolia Lam.	27
A 4 culturar = = = = =	20	Pachira aquatica Aubl.	1
Malvaceae	39	Pachira quinata (Jacq.) W.S.Alverson	2
		Pseudobombax septenatum (Jacq.) Dugand	3
		Sterculia apetala (Jacq.) H.Karst.	3
		Theobroma sp.	1
A 4 - 15 -	6	Guarea glabra Vahl	7
Meliaceae	9	Trichilia hirta L.	2

Familia	N° de ind / Familia	Especie	N° de Ind / sp/ ha
		Ficus citrifolia Mill.	2
Moraceae	5	Ficus dugandii Standl.	1
		Maclura tinctoria (L.) D.Don ex Steud.	2
Muntingiace ae	1	Muntingia calabura L.	1
Polygonacea	2	Coccoloba sp.	1
е	2	Coccoloba uvifera (L.) L.	1
		Chrysophyllum argenteum Jacq.	6
Sapotaceae	10	Chrysophyllum cainito L.	1
		Ecclinusa sp.	3
Urticaceae	17	Cecropia peltata L.	17

Figura 166. Distribución florística de las familias identificada para la cobertura de vegetación secundaria baja

Fuente: Elaboración equipo técnico

5.5.2.14.1. Indicadores dasométricos de la cobertura de vegetación secundaria baja

La cobertura de vegetación secundaria baja presenta un total de 236 individuos / ha en 51 especies; siendo la de mayor número la especie *Guazuma ulmifolia* Lam. con 27 individuos, seguido de la especie *Tabebuia rosea* (Bertol.) Bertero ex A.DC. con 19 individuos por Ha. En la Tabla 266, se presenta el N° de individuos de cada una de las especies por ha (Figura 167).

Tabla 266. Nº de individuos/especie/ha de la cobertura de vegetación secundaria baja

Especie	N° de Ind / sp/ ha
Guazuma ulmifolia Lam.	27
Tabebuia rosea (Bertol.) Bertero ex A.DC.	19
Cordia alliodora (Ruiz & Pav.) Oken	17
Cecropia peltata L.	17
Macrosamanea sp.	16
Senna occidentalis (L.) Link	16
Protium apiculatum Swart	15
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	9
Handroanthus chrysanthus (Jacq.) S.O.Grose	9
Gliricidia sepium (Jacq.) Walp.	7
Guarea glabra Vahl	7
Chrysophyllum argenteum Jacq.	6
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	5
Albizia saman (Jacq.) Merr.	5
Crescentia cujete L.	4
Lecythis ampla Miers	4
Calliandra magdalenae (DC.) Benth.	4
Spondias mombin L.	3
Pseudobombax septenatum (Jacq.) Dugand	3
Sterculia apetala (Jacq.) H.Karst.	3
Ecclinusa sp.	3
Anacardium excelsum (Bertero ex Kunth) Skeels	2
Bursera simaruba (L.) Sarg.	2
Croton sp.	2
Pachira quinata (Jacq.) W.S.Alverson	2
Trichilia hirta L.	2
Ficus citrifolia Mill.	2
Maclura tinctoria (L.) D.Don ex Steud.	2
Malouetia sp.	1
Cocos nucifera L.	1
Handroanthus impetiginosus (Mart. ex DC.) Mattos	1
Cordia collococca L.	1
Quadrella odoratissima (Jacq.) Hutch.	1
Sapium glandulosum (L.) Morong	1
Sapium sp.	1
Humiriastrum sp.	1
Nectandra sp.	1
Acacia mangium Willd.	1
Caesalpinia ebano H.Karst.	1

Especie	N° de Ind / sp/ ha
Caesalpinia pluviosa DC.	1
Heterostemon sp.	1
Zygia longifolia (Willd.) Britton & Rose	1
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	1
Ceiba pentandra (L.) Gaertn.	1
Pachira aquatica Aubl.	1
Theobroma sp.	1
Ficus dugandii Standl.	1
Muntingia calabura L.	1
Coccoloba sp.	1
Coccoloba uvifera (L.) L.	1
Chrysophyllum cainito L.	1

27 30 N° de individuos 25 16 16 15 20 15 10 5 0 rollododiffus ether library whole Codid allodor Rate & Control of Codid allodor Rate & Codid a Sound of the last of the state Localeting Coldina Said Ludin de china de la constitución de la constitució Colland to the contract of the Trung Annia 10 February AUDIO SCHOOL COLLINGIA The different states of the state of the sta unidated dippo Adi in Cotolog de Hotor Chated Milling delighting un lostenid cipie Especie

Figura 167. Distribución de N° de individuos por especie

Fuente: Elaboración equipo técnico

La cobertura de vegetación secundaria baja presenta un área basal por ha de 10,9638 m² en las 51 especies, obteniendo un área basal promedio/individuo/especie de 0,0645 m² y área basal promedio/especie /hectárea de 0,2150 m²; en la Tabla 267 se presenta los indicadores detallados por especie.

Tabla 267. Indicadores por especie de área basal

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Acacia mangium Willd.	0,0517	0,0828
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,9304	0,1654

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Albizia saman (Jacq.) Merr.	0,2447	0,0435
Anacardium excelsum (Bertero ex Kunth) Skeels	0,1681	0,0896
Bursera simaruba (L.) Sarg.	0,0382	0,0204
Caesalpinia ebano H.Karst.	0,0115	0,0183
Caesalpinia pluviosa DC.	0,0101	0,0161
Calliandra magdalenae (DC.) Benth.	0,1044	0,0239
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0247	0,0198
Cecropia peltata L.	0,3666	0,0209
Ceiba pentandra (L.) Gaertn.	0,0129	0,0207
Chrysophyllum argenteum Jacq.	0,2122	0,0377
Chrysophyllum cainito L.	0,0096	0,0154
Coccoloba sp.	0,0659	0,0527
Coccoloba uvifera (L.) L.	0,0140	0,0224
Cocos nucifera L.	0,0403	0,0645
Cordia alliodora (Ruiz & Pav.) Oken	0,3537	0,0210
Cordia collococca L.	0,0368	0,0589
Crescentia cujete L.	0,0411	0,0110
Croton sp.	0,0275	0,0146
Ecclinusa sp.	0,2136	0,0683
Ficus citrifolia Mill.	0,2097	0,1118
Ficus dugandii Standl.	0,4010	0,3208
Gliricidia sepium (Jacq.) Walp.	0,2522	0,0336
Guarea glabra Vahl	0,1294	0,0173
Guazuma ulmifolia Lam.	0,6590	0,0240
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,6432	0,0735
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,3055	0,2444
Heterostemon sp.	0,2181	0,1745
Humiriastrum sp.	0,0532	0,0426
Lecythis ampla Miers	0,0908	0,0207
Maclura tinctoria (L.) D.Don ex Steud.	0,2370	0,0948
Macrosamanea sp.	0,3559	0,0219
Malouetia sp.	0,0110	0,0088
Muntingia calabura L.	0,0210	0,0336
Nectandra sp.	0,0559	0,0894
Pachira aquatica Aubl.	0,0580	0,0928
Pachira quinata (Jacq.) W.S.Alverson	0,1068	0,0570
Protium apiculatum Swart	1,2422	0,0864
Pseudobombax septenatum (Jacq.) Dugand	0,0481	0,0154
Quadrella odoratissima (Jacq.) Hutch.	0,0179	0,0286
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,2751	0,0314

Especie	AB/sp /ha	AB/ ind/ sp/ ha
Sapium glandulosum (L.) Morong	0,0112	0,0089
Sapium sp.	0,0158	0,0127
Senna occidentalis (L.) Link	0,6518	0,0401
Spondias mombin L.	0,3540	0,1416
Sterculia apetala (Jacq.) H.Karst.	0,7972	0,2551
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,4794	0,0247
Theobroma sp.	0,0088	0,0140
Trichilia hirta L.	0,1492	0,0796
Zygia longifolia (Willd.) Britton & Rose	0,1273	0,2037

En cuanto a los indicadores de volumen se encuentra distribuido en 9 clases diamétricas, siendo la clase I que presenta los mayores volúmenes. Para el caso del volumen total se obtiene 85,544 m³; en la Figura 168 se evidencia la distribución volumétrica por clase diamétrica en la cobertura de vegetación secundaria baja, encontrándose la clase I con un volumen de 16,0754 m³ seguido de la clase II con 14,0453 m³.

Figura 168. Distribución del volumen total por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen total por especie se calcula un promedio de 1,67 m³ y un volumen promedio por especie por individuo de 0,49 m³; en la Tabla 268 se evidencia el volumen de cada una de las especies por hectárea y en la Tabla 269 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 268. Indicadores por especie de volumen total

Especie	VT/sp /ha	VT ind/sp/ha
Acacia mangium Willd.	0,4036	0,6458
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	9,9955	1,7770
Albizia saman (Jacq.) Merr.	0,9110	0,1619
Anacardium excelsum (Bertero ex Kunth) Skeels	2,0526	1,0947
Bursera simaruba (L.) Sarg.	0,1668	0,0890
Caesalpinia ebano H.Karst.	0,0521	0,0834
Caesalpinia pluviosa DC.	0,0458	0,0733
Calliandra magdalenae (DC.) Benth.	0,5422	0,1239
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,1657	0,1325
Cecropia peltata L.	2,6000	0,1486
Ceiba pentandra (L.) Gaertn.	0,0841	0,1345
Chrysophyllum argenteum Jacq.	1,0926	0,1942
Chrysophyllum cainito L.	0,0438	0,0701
Coccoloba sp.	0,5068	0,4054
Coccoloba uvifera (L.) L.	0,0999	0,1598
Cocos nucifera L.	0,3928	0,6285
Cordia alliodora (Ruiz & Pav.) Oken	2,8830	0,1708
Cordia collococca L.	0,2869	0,4591
Crescentia cujete L.	0,1857	0,0495
Croton sp.	0,1473	0,0786
Ecclinusa sp.	1,2364	0,3956
Ficus citrifolia Mill.	2,3371	1,2465
Ficus dugandii Standl.	2,4002	1,9201
Gliricidia sepium (Jacq.) Walp.	1,4976	0,1997
Guarea glabra Vahl	0,7549	0,1007
Guazuma ulmifolia Lam.	3,7519	0,1364
Handroanthus chrysanthus (Jacq.) S.O.Grose	4,8364	0,5527
Handroanthus impetiginosus (Mart. ex DC.) Mattos	1,7178	1,3742
Heterostemon sp.	1,9189	1,5351
Humiriastrum sp.	0,2769	0,2215
Lecythis ampla Miers	0,5367	0,1227
Maclura tinctoria (L.) D.Don ex Steud.	1,5613	0,6245
Macrosamanea sp.	2,3518	0,1447
Malouetia sp.	0,0462	0,0370
Muntingia calabura L.	0,1093	0,1748
Nectandra sp.	0,5085	0,8137
Pachira aquatica Aubl.	0,4148	0,6637

Especie	VT/sp /ha	VT ind/sp/ha
Pachira quinata (Jacq.) W.S.Alverson	0,6861	0,3659
Protium apiculatum Swart	10,3152	0,7176
Pseudobombax septenatum (Jacq.) Dugand	0,2727	0,0873
Quadrella odoratissima (Jacq.) Hutch.	0,1164	0,1862
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,7823	0,2037
Sapium glandulosum (L.) Morong	0,0628	0,0502
Sapium sp.	0,1010	0,0808
Senna occidentalis (L.) Link	5,4911	0,3379
Spondias mombin L.	2,3978	0,9591
Sterculia apetala (Jacq.) H.Karst.	9,9722	3,1911
Tabebuia rosea (Bertol.) Bertero ex A.DC.	3,2817	0,1694
Theobroma sp.	0,0570	0,0912
Trichilia hirta L.	1,1637	0,6206
Zygia longifolia (Willd.) Britton & Rose	0,8276	1,3242

Tabla 269. Distribución de volumen total por especie y por clase diamétrica

Clase diamétrica / Especie	VTsp /ha /Ct diam.
I	16,0754
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2385
Albizia saman (Jacq.) Merr.	0,0748
Bursera simaruba (L.) Sarg.	0,1668
Caesalpinia ebano H.Karst.	0,0521
Caesalpinia pluviosa DC.	0,0458
Calliandra magdalenae (DC.) Benth.	0,2292
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,1657
Cecropia peltata L.	1,7662
Ceiba pentandra (L.) Gaertn.	0,0841
Chrysophyllum argenteum Jacq.	0,4520
Chrysophyllum cainito L.	0,0438
Coccoloba sp.	0,0374
Coccoloba uvifera (L.) L.	0,0999
Cordia alliodora (Ruiz & Pav.) Oken	1,6915
Crescentia cujete L.	0,1857
Croton sp.	0,1473
Ecclinusa sp.	0,0912
Ficus citrifolia Mill.	0,1414
Gliricidia sepium (Jacq.) Walp.	0,4502

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Guarea glabra Vahl	0,7549
Guazuma ulmifolia Lam.	1,7793
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,2353
Humiriastrum sp.	0,0335
Lecythis ampla Miers	0,5367
Maclura tinctoria (L.) D.Don ex Steud.	0,0398
Macrosamanea sp.	1,2935
Malouetia sp.	0,0462
Pachira quinata (Jacq.) W.S.Alverson	0,1056
Protium apiculatum Swart	0,1861
Pseudobombax septenatum (Jacq.) Dugand	0,2727
Quadrella odoratissima (Jacq.) Hutch.	0,1164
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,9551
Sapium glandulosum (L.) Morong	0,0628
Sapium sp.	0,1010
Senna occidentalis (L.) Link	1,3475
Spondias mombin L.	0,0299
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,8574
Theobroma sp.	0,0570
Trichilia hirta L.	0,1009
II	14,0453
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,6374
Albizia saman (Jacq.) Merr.	0,8362
Anacardium excelsum (Bertero ex Kunth) Skeels	0,3973
Cecropia peltata L.	0,8338
Chrysophyllum argenteum Jacq.	0,1723
Cocos nucifera L.	0,3928
Cordia alliodora (Ruiz & Pav.) Oken	0,2875
Cordia collococca L.	0,2869
Ficus citrifolia Mill.	0,3104
Guazuma ulmifolia Lam.	1,1572
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,7109
Macrosamanea sp.	1,0583
Muntingia calabura L.	0,1093
Protium apiculatum Swart	1,9451
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,8272
Senna occidentalis (L.) Link	2,2233
Sterculia apetala (Jacq.) H.Karst.	0,4353

Clase diamétrica / Especie	VTsp /ha /Ct dian
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,4242
III	12,4974
Acacia mangium Willd.	0,4036
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,4036
Calliandra magdalenae (DC.) Benth.	0,3129
Chrysophyllum argenteum Jacq.	0,4683
Coccoloba sp.	0,4694
Cordia alliodora (Ruiz & Pav.) Oken	0,9040
Guazuma ulmifolia Lam.	0,2691
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,7067
Humiriastrum sp.	0,2433
Maclura tinctoria (L.) D.Don ex Steud.	0,9512
Nectandra sp.	0,5085
Pachira aquatica Aubl.	0,4148
Protium apiculatum Swart	4,3790
Trichilia hirta L.	1,0628
IV	12,2800
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,1569
Ecclinusa sp.	1,1452
Guazuma ulmifolia Lam.	0,5463
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,0183
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,7103
Heterostemon sp.	1,9189
Maclura tinctoria (L.) D.Don ex Steud.	0,5703
Pachira quinata (Jacq.) W.S.Alverson	0,5805
Protium apiculatum Swart	2,5636
Spondias mombin L.	1,4878
Sterculia apetala (Jacq.) H.Karst.	0,5819
V	12,6059
Anacardium excelsum (Bertero ex Kunth) Skeels	1,6552
Ficus citrifolia Mill.	1,8854
Gliricidia sepium (Jacq.) Walp.	1,0474
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,1650
Protium apiculatum Swart	1,2414
Spondias mombin L.	0,8801
Sterculia apetala (Jacq.) H.Karst.	3,9037
Zygia longifolia (Willd.) Britton & Rose	0,8276
VI	7,2949

Clase diamétrica / Especie	VTsp /ha /Ct diam.
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,9669
Ficus dugandii Standl.	2,4002
Handroanthus impetiginosus (Mart. ex DC.) Mattos	1,0075
Senna occidentalis (L.) Link	1,9204
VII	5,0513
Sterculia apetala (Jacq.) H.Karst.	5,0513
IX	5,5922
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	5,5922

La cobertura de vegetación secundaria baja presenta un volumen de fuste por ha de 46,69 m³, distribuido en 9 clases diamétricas presentando un volumen de fuste promedio por clase diamétrica de 4,66 m³ (Figura 169).

12 10,6745 10 8,5759 Volumen fuste (m3) 7,4351 8 6,6201 6,2171 6 2,9348 4 2,5257 1,7087 2 0 \parallel |||IV \forall VIIIX Clase diamétrica

Figura 169. Distribución del volumen del fuste por clase diamétrica

Fuente: Elaboración equipo técnico

De igual forma, el volumen de fuste por especie promedio es de 0,91 m³ y un volumen promedio por especie por individuo de 0,26 m³ de volumen de fuste por individuo por especie. En la Tabla 270 se evidencia el volumen de cada una de las especies y en la Tabla 271 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 270. Indicadores por especie de volumen de fuste

Especie	VF/sp /ha	VF ind/sp/ha
Acacia mangium Willd.	0,3363	0,5382
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	3,9877	0,7089

Especie	VF/sp /ha	VF ind/sp/ha
Albizia saman (Jacq.) Merr.	0,5144	0,0914
Anacardium excelsum (Bertero ex Kunth) Skeels	0,8301	0,4427
Bursera simaruba (L.) Sarg.	0,1405	0,0749
Caesalpinia ebano H.Karst.	0,0410	0,0655
Caesalpinia pluviosa DC.	0,0164	0,0262
Calliandra magdalenae (DC.) Benth.	0,4845	0,1108
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,1115	0,0892
Cecropia peltata L.	2,1409	0,1223
Ceiba pentandra (L.) Gaertn.	0,0715	0,1144
Chrysophyllum argenteum Jacq.	0,4918	0,0874
Chrysophyllum cainito L.	0,0250	0,0401
Coccoloba sp.	0,2143	0,1714
Coccoloba uvifera (L.) L.	0,0499	0,0799
Cocos nucifera L.	0,2488	0,3980
Cordia alliodora (Ruiz & Pav.) Oken	1,8565	0,1100
Cordia collococca L.	0,1793	0,2869
Crescentia cujete L.	0,1121	0,0299
Croton sp.	0,0990	0,0528
Ecclinusa sp.	0,6487	0,2076
Ficus citrifolia Mill.	1,5523	0,8279
Ficus dugandii Standl.	1,1865	0,9492
Gliricidia sepium (Jacq.) Walp.	0,5770	0,0769
Guarea glabra Vahl	0,4867	0,0649
Guazuma ulmifolia Lam.	1,7074	0,0621
Handroanthus chrysanthus (Jacq.) S.O.Grose	2,9377	0,3357
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,9135	0,7308
Heterostemon sp.	0,7137	0,5710
Humiriastrum sp.	0,1972	0,1577
Lecythis ampla Miers	0,2795	0,0639
Maclura tinctoria (L.) D.Don ex Steud.	0,6492	0,2597
Macrosamanea sp.	1,2977	0,0799
Malouetia sp.	0,0309	0,0247
Muntingia calabura L.	0,0751	0,1202
Nectandra sp.	0,1998	0,3197
Pachira aquatica Aubl.	0,3205	0,5128
Pachira quinata (Jacq.) W.S.Alverson	0,3850	0,2053
Protium apiculatum Swart	4,6156	0,3211
Pseudobombax septenatum (Jacq.) Dugand	0,2070	0,0663
Quadrella odoratissima (Jacq.) Hutch.	0,0989	0,1583
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,7389	0,1987

Especie	VF/sp /ha	VF ind/sp/ha
Sapium glandulosum (L.) Morong	0,0284	0,0227
Sapium sp.	0,0672	0,0538
Senna occidentalis (L.) Link	3,0929	0,1903
Spondias mombin L.	1,5398	0,6159
Sterculia apetala (Jacq.) H.Karst.	6,8451	2,1904
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,6798	0,0867
Theobroma sp.	0,0171	0,0274
Trichilia hirta L.	0,4028	0,2148
Zygia longifolia (Willd.) Britton & Rose	0,2483	0,3973

Tabla 271. Distribución de volumen del fuste por especie y por clase diamétrica

Clase diamétrica / Especie	VFsp /ha/Ct diam.
1	10,6745
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,1693
Albizia saman (Jacq.) Merr.	0,0374
Bursera simaruba (L.) Sarg.	0,1405
Caesalpinia ebano H.Karst.	0,0410
Caesalpinia pluviosa DC.	0,0164
Calliandra magdalenae (DC.) Benth.	0,1520
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,1115
Cecropia peltata L.	1,4858
Ceiba pentandra (L.) Gaertn.	0,0715
Chrysophyllum argenteum Jacq.	0,1841
Chrysophyllum cainito L.	0,0250
Coccoloba sp.	0,0187
Coccoloba uvifera (L.) L.	0,0499
Cordia alliodora (Ruiz & Pav.) Oken	1,2950
Crescentia cujete L.	0,1121
Croton sp.	0,0990
Ecclinusa sp.	0,0457
Ficus citrifolia Mill.	0,1305
Gliricidia sepium (Jacq.) Walp.	0,2104
Guarea glabra Vahl	0,4867
Guazuma ulmifolia Lam.	1,1132
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1712
Humiriastrum sp.	0,0147
Lecythis ampla Miers	0,2795
Maclura tinctoria (L.) D.Don ex Steud.	0,0243
Macrosamanea sp.	0,6602

Clase diamétrica / Especie	VFsp /ha/Ct diam.	
Malouetia sp.	0,0309	
Pachira quinata (Jacq.) W.S.Alverson	0,0774	
Protium apiculatum Swart	0,1063	
Pseudobombax septenatum (Jacq.) Dugand	0,2070	
Quadrella odoratissima (Jacq.) Hutch.	0,0989	
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,9311	
Sapium glandulosum (L.) Morong	0,0284	
Sapium sp.	0,0672	
Senna occidentalis (L.) Link	0,9715	
Spondias mombin L.	0,0197	
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,9272	
Theobroma sp.	0,0171	
Trichilia hirta L.	0,0462	
II	8,5759	
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,3359	
Albizia saman (Jacq.) Merr.	0,4770	
Anacardium excelsum (Bertero ex Kunth) Skeels	0,2508	
Cecropia peltata L.	0,6551	
Chrysophyllum argenteum Jacq.	0,0517	
Cocos nucifera L.	0,2488	
Cordia alliodora (Ruiz & Pav.) Oken	0,1438	
Cordia collococca L.	0,1793	
Ficus citrifolia Mill.	0,2172	
Guazuma ulmifolia Lam.	0,3844	
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,3862	
Macrosamanea sp.	0,6375	
Muntingia calabura L.	0,0751	
Protium apiculatum Swart	0,9151	
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,8078	
Senna occidentalis (L.) Link	1,7373	
Sterculia apetala (Jacq.) H.Karst.	0,3201	
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,7526	
III	6,2171	
Acacia mangium Willd.	0,3363	
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,3027	
Calliandra magdalenae (DC.) Benth.	0,3325	
Chrysophyllum argenteum Jacq.	0,2560	
Coccoloba sp.	0,1956	
Cordia alliodora (Ruiz & Pav.) Oken	0,4177	
Guazuma ulmifolia Lam.	0,0841	

Clase diamétrica / Especie	VFsp /ha/Ct diam	
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,9614	
Humiriastrum sp.	0,1825	
Maclura tinctoria (L.) D.Don ex Steud.	0,3904	
Nectandra sp.	0,1998	
Pachira aquatica Aubl.	0,3205	
Protium apiculatum Swart	1,8809	
Trichilia hirta L.	0,3565	
IV	7,4351	
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,6106	
Ecclinusa sp.	0,6030	
Guazuma ulmifolia Lam.	0,1257	
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,8365	
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,4098	
Heterostemon sp.	0,7137	
Maclura tinctoria (L.) D.Don ex Steud.	0,2344	
Pachira quinata (Jacq.) W.S.Alverson	0,3077	
Protium apiculatum Swart	0,9270	
Spondias mombin L.	1,2120	
Sterculia apetala (Jacq.) H.Karst.	1,4548	
V	6,6201	
Anacardium excelsum (Bertero ex Kunth) Skeels	0,5793	
Ficus citrifolia Mill.	1,2046	
Gliricidia sepium (Jacq.) Walp.	0,3666	
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,5825	
Protium apiculatum Swart	0,7862	
Spondias mombin L.	0,3080	
Sterculia apetala (Jacq.) H.Karst.	2,5445	
Zygia longifolia (Willd.) Britton & Rose	0,2483	
VI	2,9348	
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,8605	
Ficus dugandii Standl.	1,1865	
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,5038	
Senna occidentalis (L.) Link	0,3841	
VII	2,5257	
Sterculia apetala (Jacq.) H.Karst.	2,5257	
IX	1,7087	
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,7087	

En el caso del volumen comercial se obtiene un volumen de 33,38 m³ por hectárea distribuido en las 9 clases diamétricas, con un volumen promedio por clase diamétrica de

3,33 m³. En la Figura 170 se presenta la distribución del volumen comercial por clase diamétrica.

7,6967 6,2065 Volumen comercial (m3) 5,5967 4,9891 5 4,0875 3 2,2226 2 1,3447 1,2427 ||V |||IV \forall VIIΙX Clase diamétrica

Figura 170. Distribución del volumen comercial por clase diamétrica

Fuente: Elaboración equipo técnico

De igual manera, el volumen comercial por especie un promedio de 0,65 m³ y un volumen promedio por especie por individuo de 0,18 m³. En la Tabla 272 se evidencia el volumen de cada una de las especies y en la Tabla 273 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 272. Indicadores por especie de volumen comercial

Especie	VC/sp /ha	VC ind/sp/ha
Acacia mangium Willd.	0,2691	0,4305
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	3,0497	0,5422
Albizia saman (Jacq.) Merr.	0,2150	0,0382
Anacardium excelsum (Bertero ex Kunth) Skeels	0,6249	0,3333
Bursera simaruba (L.) Sarg.	0,0955	0,0509
Caesalpinia ebano H.Karst.	0,0223	0,0358
Caesalpinia pluviosa DC.	0,0065	0,0105
Calliandra magdalenae (DC.) Benth.	0,3350	0,0766
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0849	0,0679
Cecropia peltata L.	1,7165	0,0981
Ceiba pentandra (L.) Gaertn.	0,0505	0,0807
Chrysophyllum argenteum Jacq.	0,2136	0,0380
Chrysophyllum cainito L.	0,0156	0,0250
Coccoloba sp.	0,1286	0,1029

Especie	VC/sp /ha	VC ind/sp/ha
Coccoloba uvifera (L.) L.	0,0272	0,0436
Cocos nucifera L.	0,1833	0,2933
Cordia alliodora (Ruiz & Pav.) Oken	1,4654	0,0868
Cordia collococca L.	0,1196	0,1913
Crescentia cujete L.	0,0698	0,0186
Croton sp.	0,0618	0,0330
Ecclinusa sp.	0,4379	0,1401
Ficus citrifolia Mill.	1,2170	0,6490
Ficus dugandii Standl.	0,2606	0,2085
Gliricidia sepium (Jacq.) Walp.	0,3206	0,0428
Guarea glabra Vahl	0,3285	0,0438
Guazuma ulmifolia Lam.	0,9337	0,0340
Handroanthus chrysanthus (Jacq.) S.O.Grose	2,2241	0,2542
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,5437	0,4350
Heterostemon sp.	0,5010	0,4008
Humiriastrum sp.	0,1148	0,0919
Lecythis ampla Miers	0,1729	0,0395
Maclura tinctoria (L.) D.Don ex Steud.	0,3223	0,1289
Macrosamanea sp.	0,8628	0,0531
Malouetia sp.	0,0201	0,0161
Muntingia calabura L.	0,0546	0,0874
Nectandra sp.	0,1090	0,1744
Pachira aquatica Aubl.	0,2640	0,4223
Pachira quinata (Jacq.) W.S.Alverson	0,2809	0,1498
Protium apiculatum Swart	3,0802	0,2143
Pseudobombax septenatum (Jacq.) Dugand	0,1514	0,0484
Quadrella odoratissima (Jacq.) Hutch.	0,0815	0,1303
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,4373	0,1643
Sapium glandulosum (L.) Morong	0,0155	0,0124
Sapium sp.	0,0453	0,0362
Senna occidentalis (L.) Link	2,4021	0,1478
Spondias mombin L.	1,0949	0,4380
Sterculia apetala (Jacq.) H.Karst.	5,9493	1,9038
Tabebuia rosea (Bertol.) Bertero ex A.DC.	1,1037	0,0570
Theobroma sp.	0,0086	0,0137
Trichilia hirta L.	0,2108	0,1124
Zygia longifolia (Willd.) Britton & Rose	0,0828	0,1324

Tabla 273. Distribución de volumen comercial por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam
Ţ	7,6967
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,1187
Albizia saman (Jacq.) Merr.	0,0150
Bursera simaruba (L.) Sarg.	0,0955
Caesalpinia ebano H.Karst.	0,0223
Caesalpinia pluviosa DC.	0,0065
Calliandra magdalenae (DC.) Benth.	0,1003
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0849
Cecropia peltata L.	1,1942
Ceiba pentandra (L.) Gaertn.	0,0505
Chrysophyllum argenteum Jacq.	0,0811
Chrysophyllum cainito L.	0,0156
Coccoloba sp.	0,0112
Coccoloba uvifera (L.) L.	0,0272
Cordia alliodora (Ruiz & Pav.) Oken	1,0425
Crescentia cujete L.	0,0698
Croton sp.	0,0618
Ecclinusa sp.	0,0231
Ficus citrifolia Mill.	0,1088
Gliricidia sepium (Jacq.) Walp.	0,1112
Guarea glabra Vahl	0,3285
Guazuma ulmifolia Lam.	0,7535
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,1180
Humiriastrum sp.	0,0084
Lecythis ampla Miers	0,1729
Maclura tinctoria (L.) D.Don ex Steud.	0,0177
Macrosamanea sp.	0,4141
Malouetia sp.	0,0201
Pachira quinata (Jacq.) W.S.Alverson	0,0603
Protium apiculatum Swart	0,0737
Pseudobombax septenatum (Jacq.) Dugand	0,1514
Quadrella odoratissima (Jacq.) Hutch.	0,0815
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,7760
Sapium glandulosum (L.) Morong	0,0155
Sapium sp.	0,0453
Senna occidentalis (L.) Link	0,7772
Spondias mombin L.	0,0108
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,5897
Theobroma sp.	0,0086

Clase diamétrica / Especie	VCsp /ha/Ct diam		
Trichilia hirta L.	0,0336		
II	6,2065		
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2625		
Albizia saman (Jacq.) Merr.	0,2001		
Anacardium excelsum (Bertero ex Kunth) Skeels	0,2111		
Cecropia peltata L.	0,5223		
Chrysophyllum argenteum Jacq.	0,0258		
Cocos nucifera L.	0,1833		
Cordia alliodora (Ruiz & Pav.) Oken	0,1150		
Cordia collococca L.	0,1196		
Ficus citrifolia Mill.	0,1655		
Guazuma ulmifolia Lam.	0,1302		
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,2753		
Macrosamanea sp.	0,4487		
Muntingia calabura L.	0,0546		
Protium apiculatum Swart	0,6282		
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,6613		
Senna occidentalis (L.) Link	1,4328		
Sterculia apetala (Jacq.) H.Karst.	0,2561		
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,5140		
III	4,0875		
Acacia mangium Willd.	0,2691		
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2354		
Calliandra magdalenae (DC.) Benth.	0,2347		
Chrysophyllum argenteum Jacq.	0,1066		
Coccoloba sp.	0,1174		
Cordia alliodora (Ruiz & Pav.) Oken	0,3079		
Guazuma ulmifolia Lam.	0,0336		
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,6798		
Humiriastrum sp.	0,1065		
Maclura tinctoria (L.) D.Don ex Steud.	0,1969		
Nectandra sp.	0,1090		
Pachira aquatica Aubl.	0,2640		
Protium apiculatum Swart	1,2496		
Trichilia hirta L.	0,1771		
IV	5,5967		
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,5142		
Ecclinusa sp.	0,4148		
Guazuma ulmifolia Lam.	0,0164		
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,7274		

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,3278
Heterostemon sp.	0,5010
Maclura tinctoria (L.) D.Don ex Steud.	0,1077
Pachira quinata (Jacq.) W.S.Alverson	0,2206
Protium apiculatum Swart	0,5494
Spondias mombin L.	0,9081
Sterculia apetala (Jacq.) H.Karst.	1,3093
V	4,9891
Anacardium excelsum (Bertero ex Kunth) Skeels	0,4138
Ficus citrifolia Mill.	0,9427
Gliricidia sepium (Jacq.) Walp.	0,2095
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,4236
Protium apiculatum Swart	0,5793
Spondias mombin L.	0,1760
Sterculia apetala (Jacq.) H.Karst.	2,1613
Zygia longifolia (Willd.) Britton & Rose	0,0828
VI	1,3447
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,6761
Ficus dugandii Standl.	0,2606
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,2159
Senna occidentalis (L.) Link	0,1920
VII	2,2226
Sterculia apetala (Jacq.) H.Karst.	2,2226
IX	1,2427
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,2427

El volumen cosechable calculado para el bosque de vegetación secundaria baja es de 28,25 m³ con un promedio por especie de 0,553 m³. En la Tabla 274 se evidencia el volumen de cada una de las especies y en la Tabla 275 se observa la distribución del volumen por especie y clase diamétrica.

Tabla 274. Indicadores por especie de volumen cosechable

Especie	VCs/sp /ha
Acacia mangium Willd.	0,2277
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	2,5805
Albizia saman (Jacq.) Merr.	0,1820
Anacardium excelsum (Bertero ex Kunth) Skeels	0,5288
Bursera simaruba (L.) Sarg.	0,0808
Caesalpinia ebano H.Karst.	0,0189

Especie	VCs/sp /ha
Caesalpinia pluviosa DC.	0,0055
Calliandra magdalenae (DC.) Benth.	0,2835
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0718
Cecropia peltata L.	1,4524
Ceiba pentandra (L.) Gaertn.	0,0427
Chrysophyllum argenteum Jacq.	0,1807
Chrysophyllum cainito L.	0,0132
Coccoloba sp.	0,1088
Coccoloba uvifera (L.) L.	0,0231
Cocos nucifera L.	0,1551
Cordia alliodora (Ruiz & Pav.) Oken	1,2399
Cordia collococca L.	0,1012
Crescentia cujete L.	0,0590
Croton sp.	0,0523
Ecclinusa sp.	0,3705
Ficus citrifolia Mill.	1,0297
Ficus dugandii Standl.	0,2205
Gliricidia sepium (Jacq.) Walp.	0,2713
Guarea glabra Vahl	0,2779
Guazuma ulmifolia Lam.	0,7901
Handroanthus chrysanthus (Jacq.) S.O.Grose	1,8819
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,4601
Heterostemon sp.	0,4240
Humiriastrum sp.	0,0972
Lecythis ampla Miers	0,1463
Maclura tinctoria (L.) D.Don ex Steud.	0,2727
Macrosamanea sp.	0,7301
Malouetia sp.	0,0170
Muntingia calabura L.	0,0462
Nectandra sp.	0,0922
Pachira aquatica Aubl.	0,2233
Pachira quinata (Jacq.) W.S.Alverson	0,2376
Protium apiculatum Swart	2,6063
Pseudobombax septenatum (Jacq.) Dugand	0,1281
Quadrella odoratissima (Jacq.) Hutch.	0,0689
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	1,2162
Sapium glandulosum (L.) Morong	0,0131
Sapium sp.	0,0383
Senna occidentalis (L.) Link	2,0325
Spondias mombin L.	0,9264

Especie	VCs/sp /ha
Sterculia apetala (Jacq.) H.Karst.	5,0340
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,9339
Theobroma sp.	0,0072
Trichilia hirta L.	0,1783
Zygia longifolia (Willd.) Britton & Rose	0,0700

Tabla 275. Distribución de volumen cosechable por especie y por clase diamétrica

Clase diamétrica / Especie	VCsp /ha/Ct diam.
ı	6,5126
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,1005
Albizia saman (Jacq.) Merr.	0,0127
Bursera simaruba (L.) Sarg.	0,0808
Caesalpinia ebano H.Karst.	0,0189
Caesalpinia pluviosa DC.	0,0055
Calliandra magdalenae (DC.) Benth.	0,0849
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0,0718
Cecropia peltata L.	1,0105
Ceiba pentandra (L.) Gaertn.	0,0427
Chrysophyllum argenteum Jacq.	0,0686
Chrysophyllum cainito L.	0,0132
Coccoloba sp.	0,0095
Coccoloba uvifera (L.) L.	0,0231
Cordia alliodora (Ruiz & Pav.) Oken	0,8821
Crescentia cujete L.	0,0590
Croton sp.	0,0523
Ecclinusa sp.	0,0195
Ficus citrifolia Mill.	0,0920
Gliricidia sepium (Jacq.) Walp.	0,0941
Guarea glabra Vahl	0,2779
Guazuma ulmifolia Lam.	0,6376
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,0998
Humiriastrum sp.	0,0071
Lecythis ampla Miers	0,1463
Maclura tinctoria (L.) D.Don ex Steud.	0,0150
Macrosamanea sp.	0,3504
Malouetia sp.	0,0170
Pachira quinata (Jacq.) W.S.Alverson	0,0510
Protium apiculatum Swart	0,0623
Pseudobombax septenatum (Jacq.) Dugand	0,1281

Clase diamétrica / Especie	VCsp /ha/Ct diam.		
Quadrella odoratissima (Jacq.) Hutch.	0,0689		
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,6566		
Sapium glandulosum (L.) Morong	0,0131		
Sapium sp.	0,0383		
Senna occidentalis (L.) Link	0,6576		
Spondias mombin L.	0,0091		
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,4989		
Theobroma sp.	0,0072		
Trichilia hirta L.	0,0285		
II	5,2517		
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,2221		
Albizia saman (Jacq.) Merr.	0,1693		
Anacardium excelsum (Bertero ex Kunth) Skeels	0,1786		
Cecropia peltata L.	0,4420		
Chrysophyllum argenteum Jacq.	0,0219		
Cocos nucifera L.	0,1551		
Cordia alliodora (Ruiz & Pav.) Oken	0,0973		
Cordia collococca L.	0,1012		
Ficus citrifolia Mill.	0,1401		
Guazuma ulmifolia Lam.	0,1102		
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,2330		
Macrosamanea sp.	0,3797		
Muntingia calabura L.	0,0462		
Protium apiculatum Swart	0,5315		
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0,5595		
Senna occidentalis (L.) Link	1,2124		
Sterculia apetala (Jacq.) H.Karst.	0,2167		
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0,4349		
III	3,4586		
Acacia mangium Willd.	0,2277		
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,1992		
Calliandra magdalenae (DC.) Benth.	0,1986		
Chrysophyllum argenteum Jacq.	0,0902		
Coccoloba sp.	0,0993		
Cordia alliodora (Ruiz & Pav.) Oken	0,2605		
Guazuma ulmifolia Lam.	0,0285		
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,5752		
Humiriastrum sp.	0,0901		
Maclura tinctoria (L.) D.Don ex Steud.	0,1666		
Nectandra sp.	0,0922		

Clase diamétrica / Especie	VCsp /ha/Ct diam.
Pachira aquatica Aubl.	0,2233
Protium apiculatum Swart	1,0573
Trichilia hirta L.	0,1499
IV	4,7357
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,4351
Ecclinusa sp.	0,3510
Guazuma ulmifolia Lam.	0,0139
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,6155
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,2774
Heterostemon sp.	0,4240
Maclura tinctoria (L.) D.Don ex Steud.	0,0911
Pachira quinata (Jacq.) W.S.Alverson	0,1866
Protium apiculatum Swart	0,4649
Spondias mombin L.	0,7684
Sterculia apetala (Jacq.) H.Karst.	1,1079
IX	1,0515
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	1,0515
V	4,2215
Anacardium excelsum (Bertero ex Kunth) Skeels	0,3501
Ficus citrifolia Mill.	0,7977
Gliricidia sepium (Jacq.) Walp.	0,1773
Handroanthus chrysanthus (Jacq.) S.O.Grose	0,3585
Protium apiculatum Swart	0,4902
Spondias mombin L.	0,1489
Sterculia apetala (Jacq.) H.Karst.	1,8288
Zygia longifolia (Willd.) Britton & Rose	0,0700
VI	1,1378
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,5721
Ficus dugandii Standl.	0,2205
Handroanthus impetiginosus (Mart. ex DC.) Mattos	0,1827
Senna occidentalis (L.) Link	0,1625
VII	1,8806
Sterculia apetala (Jacq.) H.Karst.	1,8806

5.5.2.14.2. Indicadores estructurales del bosque de vegetación secundaria baja

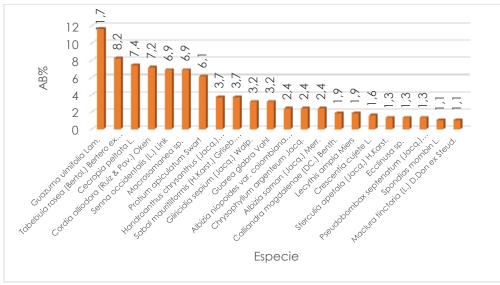
5.5.2.14.2.1. Estructura horizontal

En la Tabla 276 se observa los datos obtenidos del análisis de la estructura horizontal de la cobertura de vegetación secundaria baja.

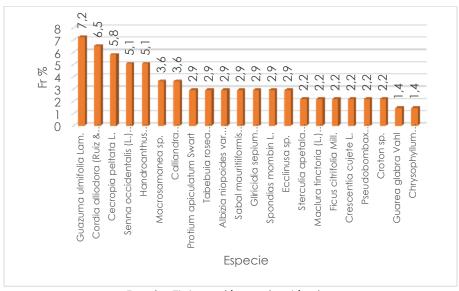
Tabla 276. Estructura horizontal para el bosque de vegetacipon secundaria baja

	N° de	Abundancia		Dominancia		Frecuencia		
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Guazuma ulmifolia Lam.	44	0,117	11,671	0,060	6,013	0,625	7,246	24,930
Protium apiculatum Swart	23	0,061	6,101	0,113	11,334	0,250	2,899	20,333
Senna occidentalis (L.) Link	26	0,069	6,897	0,059	5,941	0,438	5,072	17,910
Cordia alliodora (Ruiz & Pav.) Oken	27	0,072	7,162	0,032	3,227	0,563	6,522	16,910
Cecropia peltata L.	28	0,074	7,427	0,033	3,339	0,500	5,797	16,563
Tabebuia rosea (Bertol.) Bertero ex A.DC.	31	0,082	8,223	0,044	4,374	0,250	2,899	15,496
Handroanthus chrysanthus (Jacq.)		·		·				
S.O.Grose Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	9	0,037	2,387	0,059	5,868 8,489	0,438	5,072 2,899	13,775
Macrosamanea sp.	26	0,069	6,897	0,032	3,247	0,313	3,623	13,767
Sterculia apetala (Jacq.) H.Karst.	5	0,013	1,326	0,073	7,274	0,188	2,174	10,774
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	14	0,037	3,714	0,025	2,510	0,250	2,899	9,122
Gliricidia sepium (Jacq.) Walp.	12	0,032	3,183	0,023	2,295	0,250	2,899	8,377
Spondias mombin L.	4	0,011	1,061	0,032	3,230	0,250	2,899	7,189
Calliandra magdalenae (DC.) Benth.	7	0,019	1,857	0,009	0,946	0,313	3,623	6,426
Ecclinusa sp.	5	0,013	1,326	0,019	1,948	0,250	2,899	6,173
Guarea glabra Vahl	12	0,032	3,183	0,012	1,175	0,125	1,449	5,808
Chrysophyllum argenteum Jacq.	9	0,024	2,387	0,019	1,936	0,125	1,449	5,773
Maclura tinctoria (L.) D.Don ex Steud.	4	0,011	1,061	0,022	2,162	0,188	2,174	5,397
Albizia saman (Jacq.) Merr.	9	0,024	2,387	0,022	2,233	0,063	0,725	5,345
Ficus dugandii Standl.	2	0,005	0,531	0,037	3,658	0,063	0,725	4,914
Ficus citrifolia Mill.	3	0,008	0,796	0,019	1,913	0,188	2,174	4,883
Handroanthus impetiginosus (Mart. ex DC.) Mattos	2	0,005	0,531	0,028	2,787	0,125	1,449	4,767
Crescentia cujete L.	6	0,016	1,592	0,004	0,375	0,188	2,174	4,141
Pseudobombax septenatum (Jacq.) Dugand	5	0,013	1,326	0,004	0,439	0,188	2,174	3,939
Anacardium excelsum (Bertero ex Kunth) Skeels	3	0,008	0,796	0,015	1,533	0,125	1,449	3,779
Trichilia hirta L.	3	0,008	0,796	0,014	1,361	0,125	1,449	3,606
Lecythis ampla Miers	7	0,019	1,857	0,008	0,828	0,063	0,725	3,409
Heterostemon sp.	2	0,005	0,531	0,020	1,990	0,063	0,725	3,245
Croton sp.	3	0,008	0,796	0,003	0,251	0,188	2,174	3,220
Pachira quinata (Jacq.) W.S.Alverson	3	0,008	0,796	0,010	0,975	0,125	1,449	3,220
Coccoloba sp.	2	0,005	0,531	0,006	0,602	0,125	1,449	2,581
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	2	0,005	0,531	0,002	0,225	0,125	1,449	2,205
Zygia longifolia (Willd.) Britton & Rose	1	0,003	0,265	0,012	1,162	0,063	0,725	2,152

	N° de	Abundancia		Dominancia		Frecuencia		
Especies	ind	Ab absoluta	AB%	Do absoluta	Do%	Fr absoluta	Fr%	IVI
Sapium sp.	2	0,005	0,531	0,001	0,144	0,125	1,449	2,124
Sapium glandulosum (L.) Morong	2	0,005	0,531	0,001	0,099	0,125	1,449	2,079
Bursera simaruba (L.) Sarg.	3	0,008	0,796	0,003	0,349	0,063	0,725	1,869
Humiriastrum sp.	2	0,005	0,531	0,005	0,486	0,063	0,725	1,741
Pachira aquatica Aubl.	1	0,003	0,265	0,005	0,529	0,063	0,725	1,519
Nectandra sp.	1	0,003	0,265	0,005	0,510	0,063	0,725	1,500
Acacia mangium Willd.	1	0,003	0,265	0,005	0,472	0,063	0,725	1,462
Cocos nucifera L.	1	0,003	0,265	0,004	0,368	0,063	0,725	1,357
Malouetia sp.	2	0,005	0,531	0,001	0,101	0,063	0,725	1,356
Cordia collococca L.	1	0,003	0,265	0,003	0,336	0,063	0,725	1,326
Muntingia calabura L.	1	0,003	0,265	0,002	0,192	0,063	0,725	1,182
Quadrella odoratissima (Jacq.) Hutch.	1	0,003	0,265	0,002	0,163	0,063	0,725	1,153
Coccoloba uvifera (L.) L.	1	0,003	0,265	0,001	0,127	0,063	0,725	1,117
Ceiba pentandra (L.) Gaertn.	1	0,003	0,265	0,001	0,118	0,063	0,725	1,108
Caesalpinia ebano H.Karst.	1	0,003	0,265	0,001	0,105	0,063	0,725	1,094
Caesalpinia pluviosa DC.	1	0,003	0,265	0,001	0,092	0,063	0,725	1,082
Chrysophyllum cainito L.	1	0,003	0,265	0,001	0,088	0,063	0,725	1,078
Theobroma sp.	1	0,003	0,265	0,001	0,080	0,063	0,725	1,070
Total general		1	100	1	100	8,625	100	300


<u>Abundancia</u>

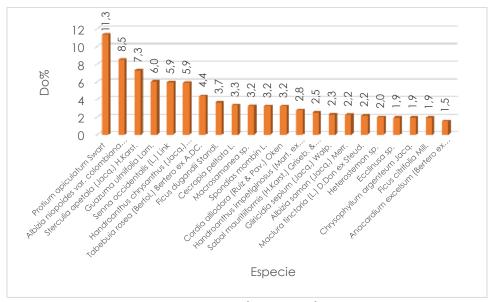
La abundancia absoluta y relativa presente en la cobertura de vegetación secundaria baja muestra que la especie más abundante es *Guazuma ulmifolia* Lam. Con 27 individuos en una hectárea y de abundancia relativa 11,7%. Igualmente, la especie *Tabebuia rosea* (Bertol.) Bertero ex A.DC. presenta la segunda mayor abundancia con 19 individuos por hectárea y una abundancia realtiva de 8,2 % (Figura 171).


Figura 171. Distribución de la abundancia relativa para el bosque de vegetación secundaria baja

<u>Frecuencia</u>

La especie Guazuma ulmifolia Lam.es la mas frecuente con una presencia en 10 parcelas de las 16 realizadas, seguida de Cordia alliodora (Ruiz & Pav.) Okencon una presencia en 9 parcelas de las 16 realizadas con una frecuencia realtiva de 6,52 % (Figura 172).

Figura 172. Distribución de frecuencia relativa para la cobertura de vegetación secundaria baja

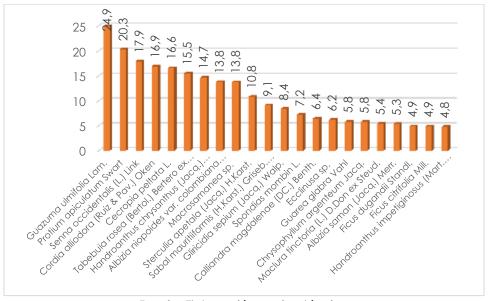


Dominancia

La especie de mayor dominancia *Protium apiculatum* Swart con 11,33 % y área basal de 1,9875 m², seguida de la especie *Albizia niopoides* var. colombiana (Britton & Killip) Barneby & J..con 8,48 % y un área basal de 1,4887 m² (Figura 173).

Figura 173. Distribución de la dominancia relativa para la cobertura de vegetación secundaria baja

Fuente: Elaboración equipo técnico


Indice de valor de importancia (IVI)

La especie de mayor peso ecológico es *Guazuma ulmifolia* Lam. con un IVI de 24,9, seguida de la especie *Protium apiculatum* Swart con un peso ecológico de 20,3, evidenciando el comportamiento de J invertida de bosque natural (Figura 174).

Figura 174. Distribución del IVI para la cobertura de vegetación secundaria baja

Coefiente de mezcla (CM)

$$CM = 1 / \frac{Nsp}{Nti}$$

$$CM = 1 / \frac{51}{377}$$

$$CM = 1 / 0.135$$

$$CM = 7.40$$

El coeficiente de mezcla obtenido implica que por cada 7,40 individuos estudiados hay una especie nueva para la cobertura de vegetación secundaria alta.

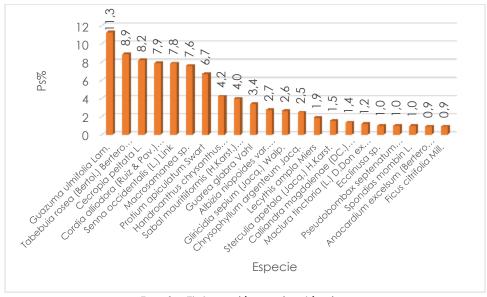
5.5.2.14.2.2. Estructura vertical

Posición sociólogica

La posición sociológica muestra que la especie con mayor peso es Guazuma ulmifolia Lam. con 11,27 % debido a la presencia de la totalidad de sus individuos en el estrato

dominante, el detallado de cada una de las especies se muestra en la Tabla 277 y Figura 175.

Tabla 277. Posición sociológica de las especies de la cobertura de vegetación secundaria baja


Nombre científico	Suprimido	Codominante	Dominante	Ps	Ps%
Guazuma ulmifolia Lam.	0	8	36	12032	11,276
Tabebuia rosea (Bertol.) Bertero ex A.DC.	0	2	29	9448	8,854
Cecropia peltata L.	0	1	27	8749	8,199
Cordia alliodora (Ruiz & Pav.) Oken	0	1	26	8427	7,897
Senna occidentalis (L.) Link	0	0	26	8372	7,846
Macrosamanea sp.	0	1	25	8105	7,595
Protium apiculatum Swart	0	1	22	7139	6,690
Handroanthus chrysanthus (Jacq.) S.O.Grose	0	0	14	4508	4,225
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	0	1	13	4241	3,974
Guarea glabra Vahl	0	1	11	3597	3,371
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0	0	9	2898	2,716
Gliricidia sepium (Jacq.) Walp.	0	4	8	2796	2,620
Chrysophyllum argenteum Jacq.	0	1	8	2631	2,466
Lecythis ampla Miers	0	1	6	1987	1,862
Sterculia apetala (Jacq.) H.Karst.	0	0	5	1610	1,509
Calliandra magdalenae (DC.) Benth.	0	3	4	1453	1,362
Maclura tinctoria (L.) D.Don ex Steud.	0	0	4	1288	1,207
Ecclinusa sp.	0	2	3	1076	1,008
Pseudobombax septenatum (Jacq.) Dugand	0	2	3	1076	1,008
Spondias mombin L.	0	1	3	1021	0,957
Anacardium excelsum (Bertero ex Kunth) Skeels	0	0	3	966	0,905
Ficus citrifolia Mill.	0	0	3	966	0,905
Pachira quinata (Jacq.) W.S.Alverson	0	0	3	966	0,905
Trichilia hirta L.	0	0	3	966	0,905
Crescentia cujete L.	0	4	2	864	0,810
Croton sp.	0	1	2	699	0,655
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	0	0	2	644	0,604
Coccoloba sp.	0	0	2	644	0,604
Heterostemon sp.	0	0	2	644	0,604
Humiriastrum sp.	0	0	2	644	0,604
Albizia saman (Jacq.) Merr.	0	9	0	495	0,464
Bursera simaruba (L.) Sarg.	0	2	1	432	0,405
Ficus dugandii Standl.	0	1	1	377	0,353
Handroanthus impetiginosus (Mart. ex DC.)	0	1	1	377	0,353

Nombre científico	Suprimido	Codominante	Dominante	Ps	Ps%
Mattos					
Sapium glandulosum (L.) Morong	0	1	1	377	0,353
Sapium sp1.	0	1	1	377	0,353
Acacia mangium Willd.	0	0	1	322	0,302
Ceiba pentandra (L.) Gaertn.	0	0	1	322	0,302
Coccoloba uvifera (L.) L.	0	0	1	322	0,302
Cocos nucifera L.	0	0	1	322	0,302
Cordia collococca L.	0	0	1	322	0,302
Muntingia calabura L.	0	0	1	322	0,302
Nectandra sp.	0	0	1	322	0,302
Pachira aquatica Aubl.	0	0	1	322	0,302
Quadrella odoratissima (Jacq.) Hutch.	0	0	1	322	0,302
Theobroma sp.	0	0	1	322	0,302
Zygia longifolia (Willd.) Britton & Rose	0	0	1	322	0,302
Malouetia sp.	0	2	0	110	0,103
Caesalpinia ebano H.Karst.	0	1	0	55	0,052
Caesalpinia pluviosa DC.	0	1	0	55	0,052
Chrysophyllum cainito L.	0	1	0	55	0,052

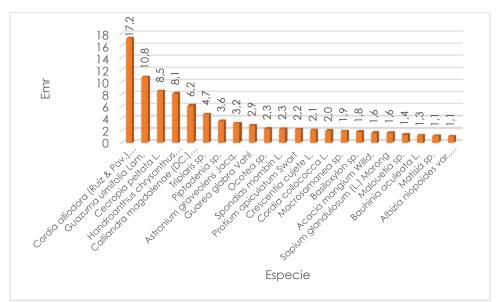
Figura 175. Distribución de la posición sociológica de las especies de la cobertura de vegetación secundaria baja

5.5.2.14.2.3. Analisis del sotobosque

Categoría de tamaño absoluta

El análisis de regeneración natural muestra que la especie que presenta mayor representación es *Cordia alliodora* (Ruiz & Pav.) Oken con una categoría de tamaño de 21,751 %, seguido de *Guazuma ulmifolia* Lam. con una categoría de tamaño de 12,905% (Figura 176) (Tabla 278).

Tabla 278. Cálculo de la estructura de sotobosque en el bosque de vegetación secundaria baja


<u>Especies</u>	AB %	FA%	СТаЕМ%	Emr
Cordia alliodora (Ruiz & Pav.) Oken	20,955	8,871	21,751	17,192
Guazuma ulmifolia Lam.	10,710	8,871	12,905	10,829
Cecropia peltata L.	8,498	6,452	10,608	8,519
Handroanthus chrysanthus (Jacq.) S.O.Grose	9,895	4,839	9,605	8,113
Calliandra magdalenae (DC.) Benth.	5,704	5,645	7,124	6,158
Triplaris sp.	6,519	4,032	3,646	4,732
Piptadenia sp.	5,006	3,226	2,572	3,601
Astronium graveolens Jacq.	4,075	1,613	4,005	3,231
Guarea glabra Vahl	2,678	2,419	3,492	2,863
Ocotea sp.	1,863	4,032	1,048	2,314
Spondias mombin L.	1,281	4,032	1,511	2,274
Protium apiculatum Swart	1,746	4,032	0,966	2,248
Crescentia cujete L.	1,863	3,226	1,213	2,100
Cordia collococca L.	1,863	1,613	2,503	1,993
Macrosamanea sp.	2,445	2,419	0,930	1,931
Basiloxylon sp.	1,281	3,226	0,941	1,816
Acacia mangium Willd.	1,048	2,419	1,408	1,625
Sapium glandulosum (L.) Morong	0,698	3,226	0,938	1,621
Malouetia sp.	1,048	1,613	1,408	1,356
Bauhinia aculeata L.	1,281	0,806	1,720	1,269
Matisia sp.	1,397	0,806	1,142	1,115
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	0,815	1,613	0,885	1,104
Trichilia hirta L.	0,582	2,419	0,242	1,081
Coccoloba pubescens L.	0,931	1,613	0,502	1,015
Centrolobium paraense Tul.		1,613	0,782	0,992
Gliricidia sepium (Jacq.) Walp.	0,698	1,613	0,593	0,968
Tabebuia rosea (Bertol.) Bertero ex A.DC.		1,613	0,626	0,901
Maclura tinctoria (L.) D.Don ex Steud.	0,466	0,806	0,938	0,814
Xylopia sp.	0,233	1,613	0,313	0,720
Chrysophyllum argenteum Jacq.	0,582	0,806	0,572	0,654

<u>Especies</u>	<u>AB%</u>	<u>FA%</u>	СТаЕМ%	<u>Emr</u>
Ficus dugandii Standl.	0,466	0,806	0,626	0,633
Pachira quinata (Jacq.) W.S.Alverson	0,466	0,806	0,626	0,633
Simaba cedron Planch.	0,466	0,806	0,521	0,598
Bursera simaruba (L.) Sarg.	0,233	0,806	0,313	0,451
Huberodendron sp.	0,233	0,806	0,313	0,451
Annona muricata L.	0,116	0,806	0,156	0,360
Cynophalla verrucosa (Jacq.) J.Presl	0,116	0,806	0,156	0,360
Myrcia popayanensis Hieron.	0,116	0,806	0,156	0,360
Pseudobombax septenatum (Jacq.) Dugand	0,116	0,806	0,156	0,360
Anacardium excelsum (Bertero ex Kunth) Skeels	0,116	0,806	0,051	0,325
Croton sp.	0,116	0,806	0,036	0,320
Total general	100	100	100	100

Figura 176. Distribución del sotobosque de la cobertura de vegetación secundaria baja

Fuente: Elaboración equipo técnico

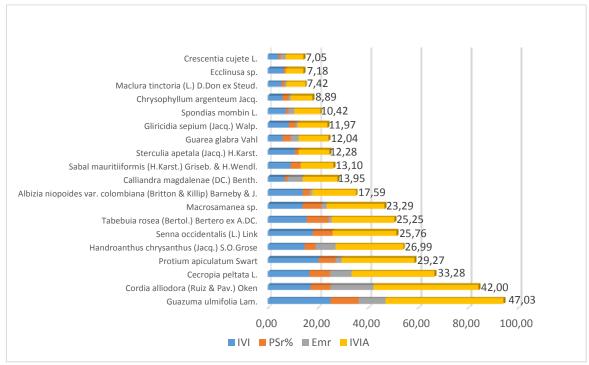
5.5.2.14.2.4. <u>Índice de valor de importancia ampliado (IVIA)</u>

La especie con el mayor valor de importancia en el bosque es *Guazuma ulmifolia* Lam., la cual obtuvo un valor de 47,03 de IVIA con la mayor significancia asociado al IVI y PS. La especie *Cordia alliodora* (Ruiz & Pav.) Oken presenta un valor de 42,00, asociado al peso de IVI y Emr (

Tabla **279**) (Figura 177).

Tabla 279. Índice de valor de importancia ampliado para la cobertura de vegetación secundaria baja

<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	<u>IVIA</u>
Guazuma ulmifolia Lam.	24,93	11,28	10,83	47,03
Cordia alliodora (Ruiz & Pav.) Oken	16,91	7,90	17,19	42,00
Cecropia peltata L.	16,56	8,20	8,52	33,28
Protium apiculatum Swart	20,33	6,69	2,25	29,27
Handroanthus chrysanthus (Jacq.) S.O.Grose	14,65	4,22	8,11	26,99
Senna occidentalis (L.) Link	17,91	7,85	0,00	25,76
Tabebuia rosea (Bertol.) Bertero ex A.DC.	15,50	8,85	0,90	25,25
Macrosamanea sp.	13,77	7,60	1,93	23,29
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	13,77	2,72	1,10	17,59
Calliandra magdalenae (DC.) Benth.	6,43	1,36	6,16	13,95
Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	9,12	3,97	0,00	13,10
Sterculia apetala (Jacq.) H.Karst.	10,77	1,51	0,00	12,28
Guarea glabra Vahl	5,81	3,37	2,86	12,04
Gliricidia sepium (Jacq.) Walp.	8,38	2,62	0,97	11,97
Spondias mombin L.	7,19	0,96	2,27	10,42
Chrysophyllum argenteum Jacq.	5,77	2,47	0,65	8,89
Maclura tinctoria (L.) D.Don ex Steud.	5,40	1,21	0,81	7,42
Ecclinusa sp.	6,17	1,01	0,00	7,18
Crescentia cujete L.	4,14	0,81	2,10	7,05
Ficus dugandii Standl.	4,91	0,35	0,63	5,90
Albizia saman (Jacq.) Merr.	5,34	0,46	0,00	5,81
Ficus citrifolia Mill.	4,88	0,91	0,00	5,79
Trichilia hirta L.	3,61	0,91	1,08	5,59
Pseudobombax septenatum (Jacq.) Dugand	3,94	1,01	0,36	5,31
Lecythis ampla Miers	3,41	1,86	0,00	5,27
Handroanthus impetiginosus (Mart. ex DC.) Mattos	4,77	0,35	0,00	5,12
Anacardium excelsum (Bertero ex Kunth) Skeels	3,78	0,91	0,32	5,01
Pachira quinata (Jacq.) W.S.Alverson	3,22	0,91	0,63	4,76
Triplaris sp.	0,00	0,00	4,73	4,73
Croton sp.	3,22	0,66	0,32	4,20
Sapium glandulosum (L.) Morong	2,08	0,35	1,62	4,05
Heterostemon sp.		0,60	0,00	3,85
Cordia collococca L.		0,30	1,99	3,62
Piptadenia sp.		0,00	3,60	3,60
Acacia mangium Willd.	1,46	0,30	1,62	3,39
Astronium graveolens Jacq.	0,00	0,00	3,23	3,23
Coccoloba sp.	2,58	0,60	0,00	3,18



<u>Especie</u>	<u>IVI</u>	PSr%	<u>Emr</u>	<u>IVIA</u>
Malouetia sp.	1,36	0,10	1,36	2,81
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	2,21	0,60	0,00	2,81
Bursera simaruba (L.) Sarg.	1,87	0,40	0,45	2,72
Sapium sp1.	2,12	0,35	0,00	2,48
Zygia longifolia (Willd.) Britton & Rose	2,15	0,30	0,00	2,45
Humiriastrum sp.	1,74	0,60	0,00	2,34
Ocotea sp.	0,00	0,00	2,31	2,31
Pachira aquatica Aubl.	1,52	0,30	0,00	1,82
Basiloxylon sp.	0,00	0,00	1,82	1,82
Nectandra sp.	1,50	0,30	0,00	1,80
Cocos nucifera L.	1,36	0,30	0,00	1,66
Muntingia calabura L.	1,18	0,30	0,00	1,48
Quadrella odoratissima (Jacq.) Hutch.	1,15	0,30	0,00	1,46
Coccoloba uvifera (L.) L.	1,12	0,30	0,00	1,42
Ceiba pentandra (L.) Gaertn.	1,11	0,30	0,00	1,41
Theobroma sp.	1,07	0,30	0,00	1,37
Bauhinia aculeata L.	0,00	0,00	1,27	1,27
Caesalpinia ebano H.Karst.	1,09	0,05	0,00	1,15
Caesalpinia pluviosa DC.	1,08	0,05	0,00	1,13
Chrysophyllum cainito L.	1,08	0,05	0,00	1,13
Matisia sp.	0,00	0,00	1,12	1,12
Coccoloba pubescens L.	0,00	0,00	1,02	1,02
Centrolobium paraense Tul.	0,00	0,00	0,99	0,99
Xylopia sp.	0,00	0,00	0,72	0,72
Simaba cedron Planch.	0,00	0,00	0,60	0,60
Huberodendron sp.	0,00	0,00	0,45	0,45
Annona muricata L.	0,00	0,00	0,36	0,36
Cynophalla verrucosa (Jacq.) J.Presl	0,00	0,00	0,36	0,36
Myrcia popayanensis Hieron.	0,00	0,00	0,36	0,36

Figura 177. Índice de valor de importancia ampliado para la cobertura de vegetación secundaria baja

5.5.2.14.3. Indicadores de diversidad alfa de la cobertura de vegetación secundaria baja

Los resultados de los parámetros para determinar la biodiversidad de esta cobertura se presentan en la Tabla 280.

Tabla 280. Indices de biodiversidad alfa del bosque de vegetación secundaria baja

Parámetro	Valor
Dmn	2,627
Dsi	1/0,0531=18,80
d	1-0,116= 0,88
H´	3,29
dmg	8,42

Fuente: Elaboración equipo técnico

El índice de Menhinick muestra una tendencia media a la diversidad, siendo poco heterogéneo en su estructura. Al igual que el de Menhinick, el índice de Simpson muestra tendencia a la alta diversidad del bosque, por lo tanto, presenta baja dominancia.

Para la cobertura de vegetación secundaria baja, el índice de Shannon establece que es típicamente diverso y heterogéneo. De igual manera, el índice de Mangalef muestra que es altamente biodiverso. El índice de Berger Parker muestra que la dominancia es alta y diversidad alta.

5.5.3. <u>Identificación de especies amenazadas e invasoras encontrada en el</u> inventario forestal

Inicialmente una especie amenazada es considerada aquella que ha sido declarada como tal por tratados o convenios internacionales aprobados y ratificados por Colombia o haya sido declarada en alguna categoría de amenaza por el Ministerio de Ambiente y Desarrollo Sostenible. Está amenazada cuando sus poblaciones naturales se encuentran en riesgo de desaparecer por cumplir con alguno o varios de los siguientes criterios: Rápida reducción en tamaño poblacional, área pequeña, fragmentado, en disminución o fluctuante, población pequeña y en disminución, población o área muy pequeño, análisis de viabilidad poblacional (Ministerio de Ambiente y Desarrollo Sostenible , 2014). Sin embargo, existen normas regionales, nacionales e internacionales que permiten, en cierta medida, la protección de las especies.

Las categorías utilizadas para este análisis son: En Peligro Crítico (CR), cuando están enfrentando un riesgo de extinción extremadamente alto en estado de vida silvestre; En Peligro (EN), cuando están enfrentando un riesgo de extinción muy alto en estado de vida silvestre y Vulnerable (VU), cuando se encuentran frente a un riesgo de extinción alto en estado de vida silvestre. Casi Amenazado (NT), cuando no satisface ninguno de los criterios para las categorías "En Peligro Crítico", "En Peligro" o "Vulnerable", pero está cercano a calificar como "Vulnerable", o podría entrar en dicha categoría en un futuro cercano. Preocupación Menor (LC), cuando no califica para ninguna de las categorías arriba expuestas. De igual manera dentro de la categoría de la lista roja de la UICN se incluye Menor riesgo – dependiente de conservación, indicando que el taxa se encuentra en programas de conservación y si este se interrumpe en un periodo de cinco años ingresaría a algunas de las caregorías anteriores.

Una vez revisado el listado de las especies vegetales y su categorización de acuerdo a la resolución 1912 de 2017, los apéndices CITES y la lista roja de la UICN, en la Tabla 281 se registra la la presencia de 21 especies con alguna categoría de amenaza.

Tabla 281. Especies en categoría de amenaza registradas en el inventario forestal

Nombre cientifico	Familia	Res 1912 de 2017	CITES	UICN
				Casi
Cariniana pyriformis Miers	Lecythidaceae	Peligro Crítico	Sin reporte	amenazado
Cedrela odorata L.	Meliaceae	En peligro	Apendice III	Vulnerable
Pachira quinata (Jacq.) W.S.Alverson	Malvaceae	En peligro	Sin reporte	Sin reporte
Lecythis tuyrana Pittier	Lecythidaceae	Vulnerable	Sin reporte	Sin reporte
Wettinia hirsuta Burret	Arecaceae	Vulnerable	Sin reporte	En peligro

Nombre cientifico	Familia	Res 1912 de 2017	CITES	UICN
Swietenia macrophylla King	Meliaceae	Peligro Crítico	Apendice II	Vulnerable
Bulnesia arborea (Jacq.) Engl.	Zygophyllaceae	En peligro	Sin reporte	Sin reporte
Aspidosperma polyneuron Müll.Arg.	Apocynaceae	En peligro	Sin reporte	En peligro
Hymenaea courbaril L.	Leguminosae	Sin reporte	Sin reporte	Preocupación menor
Inga macrophylla Willd.	Leguminosae	Sin reporte	Sin reporte	Preocupación menor
Cordia collococca L.	Boraginaceae	Sin reporte	Sin reporte	Preocupación menor
Cordia alliodora (Ruiz & Pav.) Oken	Boraginaceae	Sin reporte	Sin reporte	Preocupación menor
Senna spectabilis (DC.) H.S.Irwin & Barneby	Leguminosae	Sin reporte	Sin reporte	Preocupación menor
Conocarpus erectus L.	Combretaceae	Sin reporte	Sin reporte	Preocupación menor
Delonix regia (Hook.) Raf.	Leguminosae	Sin reporte	Sin reporte	Preocupación menor
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth	Malvaceae	Sin reporte	Sin reporte	Casi amenazado
Couroupita guianensis Aubl.	Lecythidaceae	Sin reporte	Sin reporte	Preocupación menor
Iriartea deltoidea Ruiz & Pav.	Arecaceae	Sin reporte	Sin reporte	Preocupación menor
Phytelephas seemannii O.F.Cook	Arecaceae	Sin reporte	Sin reporte	Menor riesgo /dependiente Conservación
Zanthoxylum panamense P.Wilson	Rutaceae	Sin reporte	Sin reporte	En peligro
Caryocar costaricense Donn.Sm.	Caryocaraceae	Sin reporte	Sin reporte	Vulnerable

5.5.4. Especies de importancia económica, ecológica y/o cultural en cuanto al uso de las especies.

Los usos encontrados en la Tabla 282 fueron registrados a partir de las comunidades adyacentes a las parcelas del inventario forestal y complementada con revisión de información secundaria de cada una de las especies encontradas en los levantamientos de campo.

Tabla 282. Usos reportados por las comunidades y revisión secundaria

1	Abarco	Cariniana pyriformis Miers	Lecythidaceae	Alimento para la fauna, Hábitat para la fauna, Ornamental (UEIA, 2014)
2	Aceituno	Vitex cymosa Bertero ex	Lamiaceae	Muy útil para láminas de

		Spreng		enchape, y muebles (Malaret,
3	Algarrobo	Hymenaea courbaril L.	Leguminosae	1970). Su madera se utiliza en construcciones, ebanistería y carpintería. Produce una resina medicinal llamada copal. Los frutos son comestibles. (Vazquez, 2005)
4	Amargo	Vatairea sp.	Leguminosae	La madera es utilizada en la construcción (Christoforo, Blecha, Carvalho, Rezende, & Lahr, 2013)
5	Amarillo - Laurel	Nectandra sp.	Lauraceae	Maderable (INEGI, 2000)
6	Arenillo	Dendrobangia boliviana Rusby	Cardiopteridac eae	Construcción y muebles. Es recomendado para durmientes, artículos deportivos, pisos, mangos de herramientas, revestimiento de interiores, muebles, gabinetes, implementos agrícolas, artículos torneados, estacones, cajas, pulpa y pale (Vazquez, 2005)
7	Ariza	Brownea ariza Benth.	Leguminosae	Edificios institucionales, Orejas de puente, Parques, Parques lineales, Plaza/plazoleta, Retiros de quebrada (UEIA, 2014)
8	Asauco	Cordia alba (Jacq.) Roem. & Schult.	Boraginaceae	Utilizada mayormente en la carpintería, postes y leña.
9	Balso	Ochroma pyramidale (Cav. ex Lam.) Urb.	Malvaceae	Se emplea en la construcción de maquetas de aeromodelismo y arquitectónicas, tableros contrachapados y aislamientos de refrigeración y sonido, dispositivos de resorte o elásticos, tapón para recipientes muy grandes, asentadores de navajas, moldes, maniquíes, figuras esculpidas, protección en el transporte de muebles (Arevalo & Londoño, 2006)
10	Bollo limpio	Goethalsia meiantha (Donn.Sm.) Burret	Malvaceae	Postes de cerca, mangos para herramientas livianas, construcciones interiores y exteriores, cajas cajones, tablillas para techo. (Malavassi, 2003)
11	Ceiba verde - Bonga chitua	Pseudobombax septenatum (Jacq.) Dugand	Malvaceae	La madera es empleada para postes y estacas. La corteza es usada en la fabricación de cuerdas y sogas (UEIA, 2014)
12	Cachimond a	Crateva tapia L.	Capparaceae	Madera empleada en construcciones rurales y para postes de cercas. (Institution Smithsonian, 2014)

13	Caimito	Chrysophyllum cainito L.	Sapotaceae	Madera empleada para postes de cercas y mangos de herramientas. La pulpa de los frutos maduros es comestible y muy dulce. (Institution Smithsonian, 2014)
14	Calenturo	Aralia excelsa (Griseb.) J.Wen	Araliaceae	Con la madera hacen cabos de hachas, usan las hojas machacadas para madurar el plátano. (Institution Smithsonian, 2014)
15	Camajón	Sterculia apetala (Jacq .) H.Karst.	Malvaceae	Madera empleada en la fabricación de cajas, cajones, palillos de fósforos y postes de cercas. (Institution Smithsonian, 2014)
16	Campano	Albizia saman (Jacq.) Merr.	Leguminosae	La madera se utiliza en ebanistería y la construcción. Las semillas son tóxicas. (UEIA, 2014)
17	Canilla muerto - Cacho de carnero	Talisia sp.	Sapindaceae	Medicinal: paludismo (Jiménez & Estupiñán, 2010)
18	Caña fistula	Cassia fistula L.	Leguminosae	Su madera se usa en construcción (UEIA, 2014)
19	Capacho	Buchenavia tetraphylla (Aubl.) R.A.Howard	Combretacea e	La madera se emplea en carpintería, la construcción y tornería. La corteza es rica en taninos (UEIA, 2014)
20	Caracolí	Anacardium excelsum (Bertero ex Kunth) Skeels	Anacardiacea e	Madera empleada en la fabricación de botes, remos, muebles ordinarios, formaletas, bateas y pilones (Institution Smithsonian, 2014)
21	Carreto	Aspidosperma desmanthum Benth. ex Müll.Arg.	Apocynaceae	Medicinal (Pereira, 2007)
22	Cedro	Cedrela odorata L.	Meliaceae	Construcción, la carpintería y ebanistería fina. (UEIA, 2014)
23	Cedro macho	Cedrela sp.	Meliaceae	Maderable (López & Cárdenas, 2002)
24	Ceiba bonga	Ceiba pentandra (L.) Gaertn.	Malvaceae	La madera se emplea para cajonería y aeromodelismo (UEIA, 2014)
25	Ceiba tolua	Pachira quinata (Jacq.) W.S.Alverson	Malvaceae	La madera se emplea en ebanistería y carpintería (UEIA, 2014)
26	Cenicero	Virola sp.	Myristicaceae	Muebles, entrepaños, cubrecantos, molduras y lambrines, tableros enlistonados, chapas desenrolladas (triplay) y rebanadas, paneles, talla y empaques finos. (Silva, 2008)
27	Chingale	Jacaranda copaia	Bignoniaceae	Es recomendado para

		(Aubl.) D.Don		embalajes, carpintería y
		(, (00), 1)		ebanistería sencilla. (Vazquez, 2005)
28	Coco	Lecythis sp.	Lecythidaceae	Implementos agrícolas, construcción de botes y barcos, construcción de vías de ferrocarril. (Malavassi, 2003)
29	Coco abarco	Couratari sp.	Lecythidaceae	Para construcción mediana interior y exterior bajo techo, carpintería de obra, muebles, pisos, embalajes, chapas desenrolladas y triplay. (Silva, 2008)
30	Coco cristal	Lecythis minor Jacq.	Lecythidaceae	Las semillas son comestibles, de las cuales se extrae un aceite. (Bernal & Correa, 1990, 2010)
31	Coco de mono	Lecythis tuyrana Pittier	Lecythidaceae	Su madera es empleada para la construcción de viviendas, corrales y postes (UEIA, 2014)
32	Copé	Ficus citrifolia Mill.	Moraceae	La madera se usa de manera limitada para combustible, carpintería e instrumentos musicales tales como guitarras y quatros (Francis, 1994)
33	Corcho	Apeiba glabra Aubl.	Malvaceae	Utiliza principalmente para sellar las botellas de bebidas alcohólicas (Institution Smithsonian, 2014)
34	Coronillo	Bellucia sp.	Melastomatac eae	Medicinales (Pimenta, 2016)
35	Dormilon	Pentaclethra macroloba (Willd.) Kuntze	Leguminosae	La madera se emplea en construcciones civiles y carpintería. (UEIA, 2014)
36	Dormilon cachaco	Vochysia ferruginea Mart.	Vochysiaceae	Cajas y otro tipo de embalaje rústico, carpintería general, construcciones livianas y revestimientos de interiores (Silva, 2008)
37	Espino brujo	Macrolobium sp.	Leguminosae	Utensilio doméstico), embarcación (cubierta de barco) (UEIA, 2014)
38	Fremo	Tapirira guianensis Aubl.	Anacardiacea e	Carpintería, construcción, utensilios domésticos y mangos de herramientas (Institution Smithsonian, 2014)
39	Guacamay o	Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	Leguminosae	Madera empleada para leña y en la construcción (Institution Smithsonian, 2014)
40	Guacharac o	Matayba sp.	Sapindaceae	Madera empleada para postes de cercas, mangos de herramientas y tajonas (Institution Smithsonian, 2014)
41	Guacimo	Guazuma ulmifolia Lam.	Malvaceae	Uniones, carpintería, construcción interior, cercas,

				leña y carbón (Malavassi, 2003)
42	Guamo machete	Inga edulis	Leguminosae	Alimentación, ornamentación, medicinal (UEIA, 2014)
43	Guamo	Inga sp.	Leguminosae	Se utiliza en la implementación de cercas vivas (UEIA, 2014)
44	Guamo blanco	Inga macrophylla Willd.	Leguminosae	Alimenticio (FAO, 1987)
45	Guamo colorado	Inga oerstediana Benth.	Leguminosae	Cultivo en callejones para recuperación de parcelas degradadas en suelos ácidos (UEIA, 2014)
46	Guamo macho	Pithecellobium lanceolatum (Willd.) Benth.	Leguminosae	Madera empleada para postes de cercas y leña (Institution Smithsonian, 2014)
47	Guanabanit o	Xylopia sp.	Annonaceae	Construcción (Jiménez & Estupiñán, 2010)
48	Guarumo	Cecropia peltata L.	Urticaceae	Medicinal (diarrea, tos, asma, etc.) (Sanchez, 2017)
49	Guarumo colorado	Cecropia insignis Liebm.	Urticaceae	Construcciones, abrevaderos para ganado, cañerías para techos de casa (Institution Smithsonian, 2014)
50	Guarumon	Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin	Araliaceae	La madera se utiliza en carpintería, molduras, cajonería y palillos (UEIA, 2014)
51	Guayaba de pava	Bellucia grossularioides (L.) Triana	Melastomatac eae	Alimentación fruto comestible cuando está maduro (Pennington, 2005)
52	Guayabo danto	Bellucia pentamera Naudin	Melastomatac eae	Fruto comestible y las hojas se usan para tratar afecciones de los ojos (Forero, 1980)
53	Guayacan	Handroanthus guayacan (Seem.) S.O.Grose	Bignoniaceae	Carpintería, ebanistería, Instrumentos musicales (UEIA, 2014)
54	Higuerón	Ficus insipida Willd.	Moraceae	Madera empleada para postes de cercas. El exudado lechoso tiene uso medicinal (Institution Smithsonian, 2014)
55	Jobo	Spondias mombin L.	Anacardiacea e	Madera empleada para postes de cercas, fruto comestible y hojas y raíces medicinales (Institution Smithsonian, 2014)
56	Jobo macho	Trichilia hirta L.	Meliaceae	La madera se emplea para postes, ebanistería y carpintería (UEIA, 2014)
57	Indio encuero	Bursera simaruba (L.) Sarg.	Burseraceae	La madera se emplea para triplex, pulpa para papel y en la construcción (UEIA, 2014)
58	Lacre	Vismia macrophylla Kunth	Hypericaceae	Madera empleada para leña y en la fabricación de mangos de herramientas. De la resina se obtienen tintes, taninos y aceites (Institution Smithsonian, 2014)
59	Lacre -	Vismia baccifera (L.)	Hypericaceae	Su madera es utilizada para

	carate	Planch. & Triana		leña, carbón vegetal, postes, herramientas y construcciones (UEIA, 2014)
60	Laurel aguacate	Persea caerulea (Ruiz & Pav.) Mez	Lauraceae	La madera se emplea en la fabricación de embarcaciones, construcciones pesadas y muebles (UEIA, 2014)
61	Lechoso	Sapium sp.	Euphorbiaceae	Madera liviana se emplea en la construcción de viviendas, fabricación cuencos, utensilios o artesanías, medicinales y exudado utilizado para la caza (Brea, Franco, Bonomo, & Politis, 2013)
62	Lengua vaca - Patevaca	Senna bacillaris (L.f.) H.S.Irwin & Barneby	Leguminosae	Medicinal las hojas cocinadas se utilizan para la mordedura de culebra (ITTO, 2017)
63	Lengua venao	Heisteria acuminata (Humb. & Bonpl.) Engl.	Olacaceae	Alimento animales y leña (Cerón & Montalvo, 1998)
64	Lomo caiman	Cynophalla verrucosa (Jacq.) J.Presl	Capparaceae	La madera es empleada para mangos de herramientas y tajonas (Institution Smithsonian, 2014)
65	Mango	Mangifera sp.	Anacardiacea e	Alimenticio valor nutritivo el fruto (Institution Smithsonian, 2014)
66	Melao	Heliocarpus americanus L.	Malvaceae	Corteza se extraen fibras empleadas como cuerdas para amarrar y empleada para recuperación de áreas degradadas (Institution Smithsonian, 2014)
67	Meao de perro	Solanum microleprodes Bitter	Solanaceae	Medicinal (antibiótico). (López N. , 2006)
68	Mora	Maclura tinctoria (L.) D.Don ex Steud.	Moraceae	El exudado componentes medicinales. La corteza se usa para extraer tintes y colorantes. Los frutos son comestibles. La madera es empleada en construcciones pesadas. (Institution Smithsonian, 2014)
69	Muñeco	Cordia collococca L.	Boraginaceae	Madera empleada para leña y postes de cercas. La pulpa de los frutos maduros es comestible. (Institution Smithsonian, 2014)
70	Muñeco montañero	Cordia sp.	Boraginaceae	Madera empleada para leña y postes de cercas. La pulpa de los frutos maduros es comestible. (Institution Smithsonian, 2014)
71	Ñipi Ñipi	Sapium glandulosum (L.) Morong	Euphorbiaceae	Madera empleada para postes en cercas vivas y El exudado utilizado para a caza. (Institution Smithsonian, 2014)
72	Olletillo	Eschweilera sp.	Lecythidaceae	Carpintería y ebanistería (López & Erazo, 2015)

	T	T		T
73	Olleto	Eschweilera caudiculata R.Knuth	Lecythidaceae	Su madera es empleada para la construcción de viviendas,
		Caudiculata R.KHUITI		corrales y postes (UEIA, 2014)
74	Orejero	Enterolobium cyclocarpum (Jacq.) Griseb.	Leguminosae	La madera se utiliza en ebanistería y carpintería. Sus frutos son alimento para el ganado (UEIA, 2014)
75	Palma amarga	Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	Arecaceae	Sus hojas son utilizadas para techar las viviendas. Palmito comestible (UEIA, 2014)
76	Maquenca	Wettinia hirsuta Burret	Arecaceae	Tallar cerbatanas y lanzas para pescar (Henderson, Galeano, & Bernal, 1995)
77	Papayote	Cochlospermum vitifolium (Willd.) Spreng.	Bixaceae	La madera es empleada para pulpa de papel. Los pelos algodonosos del fruto se utilizan para rellenar almohadas y colchones. La fibra de la corteza se emplea para fabricar cuerdas para amarrar. Las hojas y las flores se utilizan como forraje para el ganado. La corteza, hojas, flores y raíces se usan en la medicina tradicional (Institution Smithsonian, 2014)
78	Pata de vaca	Bauhinia aculeata L.	Leguminosae	Medicinal control de diabetes, colesterol, infecciones urinarias, dolor de cabeza. (Restrepo, Quintero, Fraume, & Palomino, 2005)
79	Pat'e gallina	Oreopanax incisus (Willd. ex Schult.) Decne. & Planch.	Araliaceae	Su madera es utilizada para construcciones locales, carpintería y como leña (UEIA, 2014)
80	Peinecillo	Terminalia sp.	Combretacea e	Madera empleada en construcciones de puentes, durmientes de ferrocarril, gabinetes, pisos y postes para cercas (Institution Smithsonian, 2014)
81	Pepo	Ochoterenaea colombiana F.A.Barkley	Anacardiacea e	Fuente de combustible, por su rápido crecimiento y adaptabilidad (David, Díaz, Urrea, & Cardona, 2014)
82	Pimentillo	Aspidosperma sp.	Apocynaceae	Medicinal (Barriga, 1974)
83	Polvillo	Handroanthus chrysanthus (Jacq.) S.O.Grose	Bignoniaceae	La madera se emplea para pisos, construcciones, chapas e implementos deportivos (UEIA, 2014)
84	Rayo	Albizia niopoides (Benth.) Burkart	Leguminosae	La madera es empleada para leña y en la construcción. La especie también se utiliza como ornamental y árbol de sombra (Institution Smithsonian, 2014)

85	Roble	Tabebuia rosea (Bertol.) Bertero ex A.DC.	Bignoniaceae	La madera se emplea en ebanistería fina y carpintería (UEIA, 2014)
86	Sangre pescao	Virola sebifera Aubl.	Myristicaceae	Madera empleada para construcciones internas y en el contrachapado (Institution Smithsonian, 2014)
87	Santa cruz	Astronium graveolens Jacq.	Anacardiacea e	La madera se usa en ebanistería, torneado y tallado (UEIA, 2014)
88	Sapotillo	Matisia sp.	Malvaceae	Carpintería, ebanistería y construcciones (López & Montero, 2005)
89	Tambolero	Schizolobium parahyba (Vell.) S.F.Blake	Leguminosae	La madera se utiliza en la elaboración de instrumentos musicales de percusión y parquet. Se emplea en la fabricación de canoas y artesanías y para pulpa de papel (UEIA, 2014)
90	Tostao	Protium sagotianum Marchand	Burseraceae	Carpintería y ebanistería (Hokche, 2008)
91	Totumo	Crescentia cujete L.	Bignoniaceae	La madera se emplea para cabos de herramientas y el fruto seco en la elaboración de artesanías (UEIA, 2014)
92	Vara de humo	Cordia alliodora (Ruiz & Pav.) Oken	Boraginaceae	La madera se emplea en la fabricación de muebles finos, chapas decorativas y en la construcción (UEIA, 2014)
93	Vara o culo de Hierro	Aspidosperma album (Vahl) Benoist ex Pichon	Apocynaceae	Medicinal- corteza utilizada para el paludismo (Institution Smithsonian, 2014)
94	Varepiedra	Casearia arborea (Rich.) Urb.	Salicaceae	La madera es empleada para postes de cercas, pilastras y leña (Institution Smithsonian, 2014)
95	Vara santa	Triplaris americana L.	Polygonaceae	La madera es fácil de trabajar y da un buen pulimiento (UEIA, 2014)
96	Veneno	Trophis caucana (Pittier) C.C. Berg	Moraceae	Madera empleada para postes de cercas (Institution Smithsonian, 2014)
97	Yaya	Guatteria sp.	Annonaceae	Carpintería, ebanistería y construcciones. (López & Montero, 2005)
98	Yaya negra	Unonopsis sp.	Annonaceae	Artesanías, leña y madera (Hurtado, Macías, & Chito, 2011)
99	Yaya prieta	Duguetia sp.	Annonaceae	Maderable (Jiménez & Estupiñán, 2010)
100	Arrayan	Myrcia popayanensis Hieron.	Myrtaceae	Su madera es utilizada para torno, postes, cercas, cabos de herramientas y construcción (UEIA, 2014)
101	Fruta de	Xylopia aromatica	Annonaceae	La madera se emplea en

	burro	(Lam.) Mart.		construcción. Cerca viva (UEIA, 2014)
102	Piloncillo	Cariniana sp.	Lecythidaceae	Construcciones civiles, carpientería, contrachapado, mueblería y en lugar de la CAOBA para la fabricación de botas (Tarama, 2008).
103	Achí	Zygia longifolia (Willd.) Britton & Rose	Leguminosae	La madera se utiliza para postes de cercas y leña. El arilo blanco que cubre las semillas es comestible. Con las raíces se prepara una bebida afrodisíaca (Institution Smithsonian, 2014)
104	Achiote	Bixa orellana L.	Bixaceae	Arbusto medicinal, empleado en culinaria (UEIA, 2014)
105	Bola puerco	Malouetia sp.	Apocynaceae	Construcción, madera utensilios (Castro & Peñuela, 2006)
106	Cañaguate	Handroanthus impetiginosus (Mart. ex DC.) Mattos	Bignoniaceae	Medicinal, carpintería, ebanistería, construcción, ecológico y agroforestal (Betina, 2011)
107	Caoba	Swietenia macrophylla King	Meliaceae	Madera fabricación de muebles de lujo, ebanistería, instrumentos musicales y en carpintería de interiores y exteriores. Con los frutos se hacen arreglos artesanales, principalmente flores. La corteza contiene gran cantidad de taninos y se usa para curtir y teñir pieles. La corteza y las semillas tienen uso medicinal contra la fiebre y la diarrea (Institution Smithsonian, 2014)
108	Carbonero	Calliandra magdalenae (DC.) Benth.	Leguminosae	Silvopastoril (Uso reportado por la comunidad)
109	Florisanto	Brownea ariza Benth.	Leguminosae	La madera se usa como leña, carbón vegetal, postes para cercas (Institution Smithsonian, 2014)
110	Guayuyo	Trichospermum galeottii (Turcz.) Kosterm.	Malvaceae	Las fibras que se extraen de la corteza se utilizan como cuerdas para amarrar. El tronco y las ramas se emplean para leña, puede emplearse en plantaciones mixtas para recuperación de áreas degradadas (Institution Smithsonian, 2014)
111	Higo	Ficus magdalenica Dugand	Moraceae	Medicinal (Villao, 2006)
112	Mamon	Melicoccus bijugatus Jacq.	Sapindaceae	La madera se emplea en ebanistería, molduras y torneado

				y el fruto es comestible (UEIA, 2014)
113	Matarratón	Gliricidia sepium (Jacq.) Walp.	Leguminosae	Su madera es dura y pesada, se usa en construcciones y carpintería. Se siembra como cerca viva, para leña y forraje. Es una especie melífera (UEIA, 2014)
114	Nigua	Muntingia calabura L.	Muntingiaceae	Madera empleada para postes de cercas, leña y carbón. Las fibras de la corteza se utilizan en la fabricación de cuerdas, cestos y canastas. Los frutos maduros son comestibles y tienen un sabor dulce. Todas las partes de la planta tienen uso medicinal. Los árboles de esta especie presentan un gran potencial en fincas dedicadas a la apicultura. Empleada para la recuperación de áreas degradadas (Institution Smithsonian, 2014)
115	Uvero	Coccoloba pubescens L.	Polygonaceae	La madera es utilizada en construcciones, para vigas, horcones, postes, traviesas, obras de tornería y en la fabricación de muebles (Luther, Wadsworth, & Marrero, 1967)
116	Uvito de playa	Coccoloba uvifera (L.) L.	Polygonaceae	La madera es utilizada para poste, combustible, así como en trabajos de tornería y ebanistería. Los frutos son comestibles, se hacen mermeladas y al fermentar una bebida parecida al vino. Esta planta es melífera, medicinal. (Luther, Wadsworth, & Marrero, 1967)
117	Laurel	Ocotea sp.	Lauraceae	Producción de aceites esenciales (Louis, 2017); Maderable (Tropicos, 2010)
118	Laurel amarillo	Persea sp.	Lauraceae	Medicinal. (Muñoz, Montes, & Wilkomirsky, 2001)
119	Chirimoya	Annona cherimola Mill.	Annonaceae	Medicinal, industrial y las empleadas como plantas exóticas y en labores de reforestación. (González, 2013)
120	Escubillo	Xylopia sericea A.StHil.	Annonaceae	Madera utilizada para leña (Institution Smithsonian, 2014)
121	Higo suan	Ficus maxima Mill.	Moraceae	La madera es empleada para postes de cercas (Institution Smithsonian, 2014)
122	Ноја	Macrosamanea sp.	Leguminosae	La madera se utiliza en

	menuda			construcciones civiles, forros internos y carpintería, molduras, embalajes livianos y trabajos artesanales de tallado (Tavares, Santos, Souza, & Junior, 2015)
123	Pimiento	Caesalpinia sp.	Leguminosae	Ornamentales (Mederos, 2016).
124	Tamarindo de monte	Dialium guianense (Aubl.) Sandwith	Leguminosae	La madera es dura, pesada y resistente a la pudrición y al ataque de insectos, se utiliza para postes, pilastras y durmientes de ferrocarril. La pulpa de los frutos maduros es comestible (Institution Smithsonian, 2014)
125	Igua amarillo - campano bleo	Albizia guachapele (Kunth) Dugand	Leguminosae	La madera se utiliza en ebanistería y construcción (UEIA, 2014)
126	Calenturo	Aralia excelsa (Griseb.) J.Wen	Araliaceae	Con la madera hacen cabos de hachas, usan las hojas machacadas para madurar el plátano (GBIF, 2017)
127	Carbonero	Calliandra haematocephala Hassk.	Leguminosae	Alimento para la fauna, Barrera rompevientos, Ornamental, Restauración ecológica, Seto (UEIA, 2014)
128	Guayacan hediondo	Abarema jupunba (Willd.) Britton & Killip	Leguminosae	Alimento para la fauna, Ornamental (UEIA, 2014)
129	Guanacona	Annona purpurea Moc. & Sessé ex Dunal	Annonaceae	La madera es empleada en la construcción de implementos agrícolas, cajas, cajones, postes de cercas y en la producción de pulpa para papel. La pulpa de los frutos maduros es comestible (Institution Smithsonian, 2014)
130	Asauco	Cordia alba (Jacq.) Roem. & Schult.	Boraginaceae	Madera empleada para leña y postes de cercas. Con las flores se prepara un medicamento utilizado como tónico pectoral, sudorífico y emoliente. Los frutos maduros son comestibles (Institution Smithsonian, 2014)
131	Velero	Senna spectabilis (DC.) H.S.Irwin & Barneby	Leguminosae	La madera se emplea para leña, estacones de cercas vivas y varas tutoras (UEIA, 2014)
132	Cascarrabio	Hieronyma alchorneoides Allemão	Phyllanthacea e	Madera empleada en construcciones marinas, puentes, postes para cercas, barriles, fondos de vagón y durmientes de ferrocarril. El aceite de las semillas presenta propiedades antihelmínticas. La corteza es rica en taninos y se usa para curtir y teñir pieles (

				Institution Smithsonian, 2014)
133	Cedro caoba	Cedrela angustifolia DC.	Meliaceae	Carpintería ebanistería y construcción interiores, persianas, muebles finos, chapas, tableros alistonados. (Fundación exportar & GTZ, 2014)
134	Ceiba amarilla	Hura crepitans L.	Euphorbiaceae	Madera empleada en la fabricación de botes. Las semillas y el exudado se emplearon en el tratamiento de la elefantiasis, la lepra, fiebres reumáticas y lombrices intestinales. Con los restos de los frutos se fabrican artesanías (Institution Smithsonian, 2014)
135	Dividivi	Caesalpinia coriaria (Jacq.) Willd.	Leguminosae	La madera es empleada para leña y postes de cercas. Los frutos contienen tintes y taninos y se utilizan para teñir y curtir pieles (Institution Smithsonian, 2014)
136	Espino prieto	Piptadenia sp.	Leguminosae	Leña (UEIA, 2014)
137	Higo copé	Ficus dugandii Standl.	Moraceae	Medicinal (Villao, 2006)
138	Limoncillo	Swinglea glutinosa (Blanco) Merr.	Rutaceae	Es usado como medicinal y para hacer cercas vivas (Según Jardines Botánicos Eloy Valenzuela y San Jorge). Se usa como ornamental en el ornato público (Mahecha, Ovalle, Camelo, Rozo, & Barrero, 2004)
139	Mangle zaragoza	Conocarpus erectus L.	Combretacea e	Madera empleada en la construcción de viviendas rurales, leña y carbón (Institution Smithsonian, 2014)
140	Membrillo	Gustavia superba (Kunth) O.Berg	Lecythidaceae	Su madera tiene pocos usos y con un olor desagradable. La pulpa del fruto es comestible (UEIA, 2014)
141	Palo de agua	Cochlospermum sp.	Bixaceae	para amarre (místico) (Mendoza, y otros, 2008)
142	Trébol - Balaustre	Platymiscium pinnatum (Jacq.) Dugand	Leguminosae	La madera se utiliza para muebles, objetos torneados, postes de cerca y construcción (UEIA, 2014)
143	Acacia roja	Delonix regia (Hook.) Raf.	Leguminosae	De la corteza se extraen taninos. Las semillas se emplean en la elaboración de artesanías (UEIA, 2014)
144	Almendro	Dipteryx sp.	Leguminosae	Maderable (Flores, 2014)
145	Amarillo	Centrolobium paraense Tul.	Leguminosae	Contribuyen a la sostenibilidad del medio ambiente (UEIA, 2014)
146	Anón	Annona squamosa L.	Annonaceae	Alimenticio la pulpa blanca que

				rodea las semillas es comestible (Institution Smithsonian, 2014)
147	Anón liso	Annona sp.	Annonaceae	Madera empleada para postes de cercas. La pulpa blanca que rodea las semillas en los frutos maduros es comestible (Institution Smithsonian, 2014)
148	Volandero	Gyrocarpus americanus Jacq.	Hernandiacea e	Madera empleada para fabricar instrumentos musicales y artesanías. También se usa para hacer las palas que utilizan los salineros en el proceso de la limpieza y la extracción de la sal (Institution Smithsonian, 2014)
149	Caimitillo	Micropholis sp.	Sapotaceae	Carpinteara (Vantommer, Déon, Chichignoud, Detienne, & Parant, 2005)
150	Canime	Copaifera canime Harms	Leguminosae	Carpintería de obra, ebanistería, carrocería, cajonería, pisos y construcciones de vivienda en el trópico (Escobar, Rodríguez, & Correa, 1993)
151	Coco	Cocos nucifera L.	Arecaceae	El tronco se emplea para construir cabañas y las hojas para techar. Con las hojas se elaboran sombreros y cestos. Frutos comestibles (UEIA, 2014)
152	Flor de reina	Lagerstroemia speciosa (L.) Pers.	Lythraceae	Ornamental (UEIA, 2014)
153	Guayaba	Psidium guajava L.	Myrtaceae	La madera se usa en ebanistería, la construcción, para cabos de herramientas y torneado. Fruto comestible (UEIA, 2014)
154	Guayacan bola	Bulnesia arborea (Jacq.) Engl.	Zygophyllacea e	La madera es utilizada en construcciones civiles y navales (UEIA, 2014)
155	Jagua	Genipa americana L.	Rubiaceae	La madera se emplea en construccciones y carpintería. Los frutos son comestibles (UEIA, 2014)
156	Lecherito	Sapium sp.	Euphorbiaceae	Fabricación de gomas (Botero, Verhelst, & Páez, 2010)
157	Mamon de mico	Malpighia sp.	Malpighiaceae	Medicinal (Hanamura, Hagiwara, & Kawagishi, 2005)
158	Níspero	Manilkara huberi (Ducke) Standl.	Sapotaceae	Alimentación (látex y frutos), artesanías (corteza), combustible, cosméticos, fines medicinales, jabones (látex) (ITTO, 2017)
159	Olleto pelao	Grias cauliflora L.	Lecythidaceae	La pulpa de los frutos maduros es comestible (Institution Smithsonian, 2014)
160	Sangregao	Croton sp.	Euphorbiaceae	Medicinal, posee propiedades

				antiinflamatorias, antisépticas y
				hemostáticas, así como
				antidiarreico. (Pieters, Bruyne,
				Claeys, & Vlietinch, 1993)
161	Aguacate	Persea americana Mill.	Lauraceae	Los frutos son comestibles (UEIA, 2014)
				Andenes y vías de servicio,
				Edificios institucionales, Glorietas,
162	Amargo	Andira inermis (Wright)	Leguminosae	Orejas de puente, Parques,
	moca	DC.	G	Parques lineales,
				Plaza/plazoleta, Vías peatonales (UEIA, 2014)
				Se utiliza como ornamental, su
		Schefflera trianae		madera es utilizada como leña.
163	Barbasco	(Planch. & Linden ex	Araliaceae	Sus frutos son consumidos por
		Marchal) Harms		aves silvestres (Murillo & Lázaro,
				2010)
164	Bongo	Cavanillesia platanifolia	Malvaceae	Madera muy blanda, sirve para
	- 31	(Humb. & Bonpl.) Kunth		construir canoas (UEIA, 2014)
	1.12			La madera es empleada para
165	Higuerón -	Ficus tonduzii Standl.	Moraceae	chapas decorativas. El exudado
	Laurel			lechoso tiene uso medicinal (
				Institution Smithsonian, 2014) Madera empleada para leña y
				en la fabricación de mangos de
166	Lacre	Vismia billbergiana	Hypericaceae	herramientas. El exudado tiene
100	montañero	Beurl.	riypenededdo	uso medicinal (Institution
				Smithsonian, 2014)
				Aplicaciones extremas,
		Vismia tomentosa Ruiz		construcciones civiles, muebles
167	Carate	& Pav.	Hypericaceae	ordinarios y Tableros
				aglomerados. (Rodriguez, 1996)
				Medicinal y ornamental. Las
				semillas de esta especie son
168	Acacia	Senna occidentalis (L.)	Leguminosae	empleadas en la elaboración
100	nativa	Link	Legoriiriosae	de bebidas estimulantes
				sinónimas a las obtenidas del
				famoso café (Mederos, 2016)
				La madera se emplea en
169	Acacio	Acacia mangium Willd.	Leguminosae	carpintería y ebanistería (UEIA,
				2014)
				Construcciones pesadas, suelo
	A o o ituro o			industrial, entarimados, obras
170	Aceituno	Humiriastrum sp.	Humiriaceae	hidráulicas, fuentas chapas
	montañero	·		moviliarios etc (Vantommer, Déon, Chichignoud, Detienne, &
				Parant, 2005)
171	Algarrobillo	Heterostemon sp.	Leguminosae	1 drdm, 2003)
1/1		Hererosiemon sp.	LOGOTIIIIOSOG	Utilizada para artesanías L talla
172	Cojon de	Malouetia sp.	Apocynaceae	de diversas de especias animal
', _	puerco		Apocynacede	(Castro & Peñuela, 2006)
				Edificios institucionales, Glorietas,
173	Cacaito	Theobroma sp.	Malvaceae	Orejas de puente, Parques,
				Parques lineales,

				Plaza/plazoleta, Vías peatonales
				(UEIA, 2014)
174	Acacia amarilla	Caesalpinia pluviosa DC.	Leguminosae	VIVIENDA GENERAL, MUEBLES Y ARMARIOS, EMBALAJE (ITTO, 2017)
175	Caimito montañero	Chrysophyllum argenteum Jacq.	Sapotaceae	La madera es empleada para postes de cercas y mangos de herramientas. La pulpa de los frutos maduros es comestible y muy dulce (Institution Smithsonian, 2014)
176	Cañaguate	Handroanthus impetiginosus (Mart. ex DC.) Mattos	Bignoniaceae	Comestibles, medicinales carpintería ebanistería, vías públicas (Medicina Natural, 2017)
177	Cedrillo	Guarea glabra Vahl	Meliaceae	Produce una madera dura de excelente calidad para construcciones rurales y por sus diversos usos a nivel de finca (Malavassi, 2003)
178	Ceiba blanca	Pachira aquatica Aubl.	Malvaceae	Madera empleada para pulpa de papel. De la corteza se extraen fibras utilizadas para fabricar cuerdas. Es un árbol que se utiliza como ornamental por sus hermosas flores y agradable fragancia. Las semillas tostadas al fuego son comestibles. El cocimiento de la corteza y las semillas se usa para fortalecer la sangre (Institution Smithsonian, 2014)
179	Cocuelo	Lecythis ampla Miers	Lecythidaceae	Madera empleada en construcciones pesadas, durmientes de ferrocarril, pisos, gabinetes y ebanistería. Las semillas emplean como medicina contra la neumonía y la diarrea. Los frutos se usan para fabricar artesanías y como recipientes para guardar azúcar, sal y café (Institution Smithsonian, 2014)
180	Congo	Coccoloba sp.	Polygonaceae	Medicinal, Utensilios domésticos (Malavassi, 2003)
181	Ébano	Caesalpinia ebano H.Karst.	Leguminosae	La madera es empleada en la elaboración de artesanías y objetos valiosos (UEIA, 2014)
182	Olivo	Quadrella odoratissima (Jacq.) Hutch.	Capparaceae	La madera es empleada en la fabricación de mangos para herramientas y postes de cercas. (Institution Smithsonian, 2014).
183	Sapotillo chejo	Ecclinusa sp.	Sapotaceae	Aserrío, combustible, construcción. (Corba, Cárdenas,

				& Suárez, 2005)
184	Ciruelo	Spondias purpurea L.	Anacardiacea e	Los frutos son comestibles. Las hojas son alimento para el ganado (UEIA, 2014)
185	Guanaban a	Annona muricata L.	Annonaceae	Los frutos se comen crudos, en jugos, batidos y helados (UEIA, 2014)
186	Laurel negro	Nectandra cuspidata Nees & Mart.	Lauraceae	Madera empleada en construcciones locales, postes de cercas y mangos de herramientas (Institution Smithsonian, 2014)
187	Nim	Azadirachta indica A.Juss.	Meliaceae	La madera se emplea en carpintería y construcción. Se cultiva como combustible y por sus propiedades medicinales e insecticidas (UEIA, 2014)
188	Papaya vaquero	Jacaratia digitata (Poepp. & Endl.) Solms	Caricaceae	Alimenticio fruto comestible (Cerón & Montalvo, 1998)
189	Pomarroso	Syzygium malaccense (L.) Merr. & L.M.Perry	Myrtaceae	Frutos comestibles (UEIA, 2014)
190	Sangregad o	Dussia lehmannii Harms	Leguminosae	Su madera es moderadamente pesada, de color crema y resistente (UEIA, 2014)
191	Ají	Clarisia racemosa Ruiz & Pav.	Moraceae	Carpintería y construcción y el exudado utilizado para ceras. (Correa, 1926)
192	Algodoncill o	Luehea seemannii Triana & Planch	Malvaceae	Su madera es blanda y liviana, usada para elaborar cajones, tableros, aglomerados y para la fabricación de pulpa de papel. Su madera sierva como leña (UEIA, 2014)
193	Trébol	Protium apiculatum Swart	Burseraceae	Alimenticio, construcción y su resina para elaborar incienso (con fines mágico – religiosos) (Corba, Cárdenas, & Suárez, 2005)
194	Bolsillo	Trichospermum sp.	Malvaceae	Construcción (Jiménez & Estupiñán, 2010)
195	Carretico	Aspidosperma desmanthum Benth. ex Müll.Arg.	Apocynaceae	Carpintería, ebanistería, construcción, herramientas, utensilios (ITTO, 2017)
196	Carreto mamellón	Aspidosperma polyneuron Müll.Arg.	Apocynaceae	Construcciones de viviendas civiles, juguetes. (Lorenzi, 1992)
197	Varepiedra blanco	Casearia decandra Jacq.	Salicaceae	Su cáscara se utiliza para tratar los problemas del estómago, los dolores en general, el reumatismo, las hojas tienen propiedades antisépticas (Matsushita, 2010)
198	Coco picho	Couroupita guianensis Aubl.	Lecythidaceae	Carpintería y construcciones pesadas (UEIA, 2014)
199	Gasparillo	Mouriri sp.	Melastomatac	Ornaméntale (Corba, Cárdenas,

			eae	& Suárez, 2005)			
200	Naranjuelo	Crateva tapia L.	Capparaceae	La madera es empleada en construcciones rurales y para postes de cercas. La pulpa arenosa de los frutos maduros es comestible (Institution Smithsonian, 2014)			
201	Pategarza	Clidemia andersonii Wurdack	Melastomatac eae	Alimento para aves (GBIF, 2017)			
202	Peine mono	Apeiba membranacea Spruce ex Benth.	Malvaceae	La madera es empleada en la fabricación de cajones, revestimiento de interiores, tableros, aglomerados, flotadores para redes de pesca y otros usos similares. La corteza se desgarra en fibras, las cuales se utilizan como cuerdas para amarrar. Las semillas tienen un alto contenido de aceite que se emplea como brillantina y tónico para el cabello (Institution Smithsonian, 2014)			
203	Toro	Sloanea sp.	Elaeocarpace ae	Aserrío (Lombo, 1963)			
204	Achiotillo	Bixa sp.	Bixaceae	Medicinal (Institution Smithsonian, 2014)			
205	Arará	Caesalpinia sp.	Leguminosae	Ornamentales (Mederos, 2016).			
206	Baboso	Sterculia speciosa K. Schum.	Malvaceae	Maderable (Escobar, Rodríguez, & Correa, 1993)			
207	Bálsamo	Myroxylon balsamum (L.) Harms	Leguminosae	La madera se emplea en construcciones, para torno y carpintería. Del tronco se extrae una resina aromática llamada bálsamo de tolú, utilizado en perfumería y en medicina como expectorante y cicatrizante (UEIA, 2014)			
208	Balsamito	Myrospermum frutescens Jacq.	Leguminosae	La madera se utiliza en la carpintería y la ebanistería (Institution Smithsonian, 2014)			
209	Vara blanca	Triplaris sp.	Polygonaceae	Maderable y construcción de viviendas rurales (Somarriba, 1987).			
210	Caucho	Ficus involucrata Blume	Moraceae	Aceites, gomas y resinas (UEIA, 2014)			
211	Cabo de hacha	Trichilia sp.	Meliaceae	Madera es usada para la elaboración de muebles (Aguirre, Solano, & Aguirre, 2015)			
212	Granadillo	Platymiscium sp.	Leguminosae	Maderable. (Bornás, 1971)			
213	Guartinajer o	Pterocarpus sp.	Leguminosae	Medicinal (Perera, 2000)			
214	Molenillo	Mabea occidentalis Benth.	Euphorbiaceae	Construcción de muebles e inmuebles, alimenticio, medicinal y fabricación de fibra			

				para ataduras y otras
				aplicaciones (Rutter, 1990)
				La madera se utiliza para postes
215	Mortiño	Miconia affinis DC.	Melastomatac	de cercas y leña (Institution
			eae	Smithsonian, 2014)
				Madera excelente para usos
				generales y construcciones
				pesadas: vigas, viguetas,
				columnas, miembros de
				armaduras, pisos, muebles
				pesados, traviesas para líneas
216	Ñequero	Goupia glabra Aubl.	Goupiaceae	férreas, crucetas para líneas
		, 3	·	aéreas, carpintería y ebanistería
				de uso general, chapas
				cuchilladas decorativas, caras
				de contrachapado, carretería,
				tornería, implementos agrícolas (
				Institution Smithsonian, 2014)
				Se utiliza como ornamental, su
	Pat'e gallina	Schefflera trianae		madera es utilizada como leña.
217	blanco	(Planch. & Linden ex	Araliaceae	Sus frutos son consumidos por
	Didrico	Marchal) Harms		aves silvestres (Murillo & Lázaro,
				2010)
218	Sangretoro	Vantanea sp.	Humiriaceae	Maderable (Gonzaga, 2006)
				La madera es empleada en la
		Caryocar amygdaliferum Mutis ex Cav.	Caryocaracea e	fabricación de traviesas de
				ferrocarril, postes, estructuras,
219	Cagüi			bastidores, soportes de molinos,
				puentes y, en general, en
				construcción pesada, ya que es moderadamente dura y pesada
				(UEIA, 2014)
				Medicinal, mordedura animales
220	Maporí	Simaba cedron Planch.	Simaroubacea	venenosos, paludismo, cólicos
220	Mapon	Simaba cearon nanch.	е	(Jiménez & Estupiñán, 2010)
				Madera empleada para postes
				de cercas, durmientes de
				ferrocarril, tablones y mangos de
				herramientas. Muy apreciada
001	Nispero	Manilkara bidentata	0 1	para la construcción de muelles
221	montañero	(A.DC.) A.Chev.	Sapotaceae	y embarcaciones marítimas. El
				exudado lechoso se utilizó en el
				pasado para la elaboración del
				chicle o goma de mascar (
				Institution Smithsonian, 2014)
				La madera se emplea en
		Ormosia colombiana		construcciones rurales y las
222	Peronillo	Rudd	Leguminosae	semillas se utilizan en la
		, Roda		elaboración de artesanías (UEIA,
				2014)
		D. W. C.		La madera es liviana y no tiene
223	Golero	Rollinia mucosa (Jacq.)	Annonaceae	usos conocidos. La pulpa blanca
1		Baill.		que rodea las semillas cuando
				los frutos están maduros es

				comestible (Institution
				Smithsonian, 2014)
224	Zarazo	Dialium sp.	Leguminosae	Maderable (INEGI, 2000)
	Coca de	Erythroxylum gracilipes	Erythroxylacea	Los frutos son fuente de alimento
225	monte	Peyr.	е	para las aves (David, Díaz, Urrea,
		-, -		& Cardona, 2014)
226	Siete cueros	Machaerium capote Dugand	Leguminosae	Andenes y vías de servicio, Edificios institucionales, Glorietas, Orejas de puente, Parques, Parques lineales, Plaza/plazoleta, Separador de arterias principales, Separador autopistas, Vías peatonales (UEIA, 2014)
227	Abeto	Senna siamea (Lam.) H.S.Irwin & Barneby	Leguminosae	Su madera es dura, utilizada para construcción, ebanistería, tornería, y postes. Es usada frecuentemente como leña y produce un carbón de excelente calidad (UEIA, 2014)
228	Polvillo blanco	Handroanthus billbergii (Bureau & K.Schum.) S.O.Grose	Bignoniaceae	Maderable (Tarama, 2008)
				La madera es empleada en la
229	Cafetillo	Bertiera guianensis	Rubiaceae	fabricación de tajonas y
		Aubl.		mangos de herramientas (
	Laurel			Institution Smithsonian, 2014) Construcciones y ebanistería
230	comino	Aniba sp.	Lauraceae	(Silva, 2008)
231	Trementino	Trattinnickia aspera (Standl.) Swart	Burseraceae	Madera empleada en carpintería de interiores, en la fabricación de cajas, instrumentos musicales, mobiliarios y encofrados. La resina se utiliza en el tratamiento de resfriados, asma, dolores de cabeza, extracción de tórsalos y en la cicatrización de heridas (Institution Smithsonian, 2014)
232	Laurel colorado	Rhodostemonodaphne kunthiana (Nees) Rohwer	Lauraceae	Madera para leñas potes y cercas (Vargas, 2002)
233	Laca	Cespedesia spathulata (Ruiz & Pav.) Planch.	Ochnaceae	Andenes y vías de servicio, Cerros, Edificios institucionales, Glorietas, Orejas de puente, Parques, Parques lineales, Plaza/plazoleta, Retiros de quebrada, Separador de arterias principales, Vías peatonales (UEIA, 2014)
234	Cachito de toro	Acacia cornigera (L.) Willd.	Leguminosae	Melífera, medicinal (UEIA, 2014)
235	Molinillo blanco	Quararibea asterolepis Pittier	Malvaceae	Los frutos maduros son comestibles y constituyen uno

		<u></u>		
				de los alimentos preferidos para muchas especies de aves y
				mamíferos dentro del bosque (
				Institution Smithsonian, 2014)
236	Toloncoy	Malvaviscus sp.	Malvaceae	
				El aceite de los frutos se emplea
				para cocinar y como cosmético
				para el cabello. La grasa de los
				frutos se usa para fabricar jabón
				y velas. Las fibras que quedan después de extraer el aceite de
	_	Elaeis oleifera (Kunth)		los frutos conjuntamente con la
237	Coroza	Cortés	Arecaceae	pelusa de las bases de las hojas
				se usan para encender fuego.
				Los indígenas de Darién en
				Panamá comen los brotes
				tiernos de las hojas, crudos o
				cocidos (Institution Smithsonian, 2014)
				Medicinal contra el colesterol,
000		Bactris guineensis (L.)		para adelgazar, para reducir
238	Lata	H.E.Moore	Arecaceae	niveles de azúcar en sangre
				(Oviedo, 2017)
				El tronco se emplea en la
000	Lata de			construcción de paredes de
239	montaña	Bactris major Jacq.	Arecaceae	ranchos. Los frutos maduros son
				comestibles (Institution Smithsonian, 2014)
				Los tallos tienen madera muy
	Dalas	Lister dell'idea Biro		dura y se usan para la
240	Palma barrigona	Iriartea deltoidea Ruiz & Pav.	Arecaceae	construcción de pisos. Las
	bangona	T dv.		semillas se usan en artesanías
				(UEIA, 2014)
				Las hojas son utilizadas para techar y las semillas en la
241	Palma de	Attalea butyracea	Arecaceae	elaboración de artesanías.
2-71	vino	(Mutis ex L.f.) Wess.Boer	7110000000	Frutos oleaginosos. (Institution
				Smithsonian, 2014)
	Palma	Oenocarpus bataua		Alimenticio las inflorescencias
242	milpesos	Mart.	Arecaceae	son utilizadas para bebidas
				alcohólicas (Balick, 1986)
				la fibra de esta especie se utiliza para elaborar cordones y
	Palma	Raphia taedigera		cuerdas mientras que sus hojas
243	panga	(Mart.) Mart.	Arecaceae	son empleadas en la
		1 - 7		construcción de techos
				(Williams, 1981)
	Palma	Phytelephas seemannii		Las semillas son utilizadas para
244	tagua	O.F.Cook	Arecaceae	figuras artesanas (Morales,
				Correa, & Torib, 2009)
	Zancona,	Socratea exorrhiza		El tronco es empleado para construir pisos y paredes de
245	Palma	(Mart.) H.Wendl.	Arecaceae	casas. Las raíces espinosas se
	zancona			utilizan para rayar coco y yuca (
				. , , , , , , , , , , , , , , , , , , ,

				Institution Smithsonian, 2014)		
246	Pasmo	Callicarpa sp.	Lamiaceae	Construcciones y ebanistería. (Idárraga, Ortiz, Callejas, & Merello, 2013)		
247	Pinga	Adenocalymma aspericarpum (A.H.Gentry) L.G.Lohmann	Bignoniaceae	Uso no determinado. (López, Espitia, & Sarmiento, 2016)		
248	Yaya macho	Oxandra panamensis R.E. Fr.	Annonaceae	Madera empleada en la fabricación de mangos para herramientas y tajonas (Institution Smithsonian, 2014)		
249	Tachuelo	Zanthoxylum panamense P.Wilson	Madera empleada para la fabricación de muebles, carpintería en general, decorados de interiores, pis puertas, durmientes de ferrocarril, cajones y palos descobas. Las espinas y la cortienen usos medicinales (Institution Smithsonian, 2014)			
250	Cojón de toro	Thevetia ahouai (L.) A.DC.	Apocynaceae	Los frutos maduros son de colo rojo y muy atractivos, pero extremadamente tóxicos y venenosos. El exudado lechoso tiene uso medicinal (Institution Smithsonian, 2014)		
251	Gatera	Caryocar costaricense Donn.Sm.	Caryocaracea e	Maderable. (López, Espitia, & Sarmiento, 2016)		
252	Zanca de mula	Ocotea spectabilis (Meisn.) Mez	Lauraceae	Producción de aceites esenciales (Louis, 2017).		
253	Zapatero	Basiloxylon sp.	Malvaceae	Maderable, cercas vivas (Chamorro, 2002)		
254	Теса	Tectona grandis L.f.	Lamiaceae	Su madera es de buena calidad, moderadamente dura, pesada y resistente al ataque de insectos. Se usa en la construcción de barcos, ebanistería, carpintería y contrachapados (UEIA, 2014)		
254	Teca Limon criollo	Tectona grandis L.f. Citrus aurantiifolia (Christm.) Swingle	Lamiaceae Rutaceae	calidad, moderadamente dura, pesada y resistente al ataque de insectos. Se usa en la construcción de barcos, ebanistería, carpintería y		
		Citrus aurantiifolia		calidad, moderadamente dura, pesada y resistente al ataque de insectos. Se usa en la construcción de barcos, ebanistería, carpintería y contrachapados (UEIA, 2014) Medicinal y alimenticio		
255	Limon criollo	Citrus aurantiifolia (Christm.) Swingle	Rutaceae	calidad, moderadamente dura, pesada y resistente al ataque de insectos. Se usa en la construcción de barcos, ebanistería, carpintería y contrachapados (UEIA, 2014) Medicinal y alimenticio (Cuidado de la salud, 2017) Los frutos se utilizan para elaborar mermeladas y conservas (UEIA, 2014) Alimentico (Institution Smithsonian, 2014)		
255 256	Limon criollo Cerezo	Citrus aurantiifolia (Christm.) Swingle Malpighia glabra L. Carica goudotiana	Rutaceae Malpighiaceae	calidad, moderadamente dura, pesada y resistente al ataque de insectos. Se usa en la construcción de barcos, ebanistería, carpintería y contrachapados (UEIA, 2014) Medicinal y alimenticio (Cuidado de la salud, 2017) Los frutos se utilizan para elaborar mermeladas y conservas (UEIA, 2014) Alimentico (Institution		
255 256 257	Limon criollo Cerezo Papaya Vara de	Citrus aurantiifolia (Christm.) Swingle Malpighia glabra L. Carica goudotiana (Triana & Planch.) Solms	Rutaceae Malpighiaceae Caricaceae	calidad, moderadamente dura, pesada y resistente al ataque de insectos. Se usa en la construcción de barcos, ebanistería, carpintería y contrachapados (UEIA, 2014) Medicinal y alimenticio (Cuidado de la salud, 2017) Los frutos se utilizan para elaborar mermeladas y conservas (UEIA, 2014) Alimentico (Institution Smithsonian, 2014) Medicinal (problemas bronquiales) (Blair & Madrigal,		

para animales (Pozo, 1988)

Fuente: Elaboración equipo técnico

5.6. Fauna silvestre

La fauna es el conjunto de especies animales que habitan una región determinada. Está condicionada por factores naturales del medio, en especial el clima y la vegetación. Por eso, cada especie animal posee condiciones físicas que le permite sobrevivir en su propio hábitat.

En el departamento de Córdoba la diversidad de fauna es bastante rica y singular en virtud a su origen, dado que la zona tiene la influencia de la biota de la Provincia Biogeográfica del Choco y de la Provincia Biogeográfica Cinturón Arido Pericaribeño y elementos faunisticos australes que franquearon la barrera cordillerana o tan antiguos que quedaron aislados de sus congéneres cisandinos esto permitió el establecimiento del corredor mesoamericano, que facilito el ingreso de grupos como los lagomorpha (conejos), Muridae (ratones), Sciuridae (ardillas), Equidae (caballos), Tapiridae Camelidae (camélidos uramericanos, alpaca, vicuña), y algunos carnívoros de las familias Felidae, Canidae, Ursidae y Mustelidae.

De acuerdo a lo registrado por (SIB, 2016), el departamento de Córdoba posee el 18% de las especies de mamíferos en Colombia, el 18% de los reptiles, el 11% de los anfibios y el 22% de la variedad de las aves (Tabla 283).

GRUPO	POMIC SAN JORGE 2005	POMCA SINU 2006	POMIC CANALETE 2008	PGOF 2007	COLOMBIA 2015
AVES	280	469	133	432	1921
MAMIFEROS	108	89	19	100	492
REPTILES	64	108	5	90	537
ANFIBIOS	42	89	11	70	803

Tabla 283. Caracterización de la fauna del departamento de córdoba.

Fuente: Elaboración equipo tecnico a partir de (CVS & CONIF, 2007) (CVS, 2007), (CVS, CARSUCRE, UNIVERSIDAD DE CORDOBA & PARQUES NACIONALES, 2006), (CVS & UPB, 2008) y (SIB, 2016).

En Plan de ordenamiento de cuenca del Rio San Jorge (CVS, 2007), los autores reportan para el componente fauna un total de 494 especies distribuidas en 280 especies de aves, 108 especies de mamíferos, 64 especies de reptiles y 42 especies de anfibios (CVS et al, 2006).

En el estudio de la fauna del plan de ordenamiento de cuenca del Rio Sinú (CVS, CARSUCRE, UNIVERSIDAD DE CORDOBA & PARQUES NACIONALES, 2006), los autores reportan para el componente un total de 755 especies distribuidas en 469 especies de aves, 89 especies de mamíferos, 108 especies de reptiles y 89 especies de anfibios (CVS et al, 2006).

En Plan de ordenamiento forestal del departamento de Córdoba - PGOF (CVS & CONIF, 2007), los autores caracterizaron la biota y la ecología de la zona realizando un inventario de los grupos de vertebrados y su estatus de conservación. Como metodología para la consecución de resultados se utilizó la observación directa y la colecta de especímenes en campo. Como resultado de estos estudios se identificaron 432 especies de aves 100 especies de mamíferos, 90 especies de reptiles y 70 especies de anfibios (CVS et al, 2006). Para la cuenca del rio Canalete (CVS & UPB, 2008) el plan de ordenamiento registra un total de 168 especies distribuidas en 133 especies de aves, 19 especies de mamíferos, 5 especies de reptiles y 11 especies de anfibios (CVS et al, 2006).

Cabe resaltar que en la actualidad todos los planes de ordenamiento a los cuales se hace mención se encuentran bajo procesos de actualización.

El sistema de información sobre la Biodiversidad de Colombia (SIB, 2016), reporta que para Colombia en el año 2015 se han identificado 1921 especies de aves, 492 especies de mamíferos, 537 especies de reptiles y 803 especies de anfibios

(Rangel-Ch, 2012), registro la biodiversidad de los municipios del Caribe Colombiano en la cual se encuentran algunos de los municipios del departamento de Córdoba (Tabla 284).

Tabla 284. Fauna registrada para los municipios del departamento del departamento de Córdoba.

Subregión Ambiental	Municipio	Aves	Mamíferos	Reptiles	Anfibios	Total
All - Cir.	Valencia	162	18	14	6	200
Alto Sinú	Tierra Alta	218	15	88	67	388
	Montería	219	32	34	20	305
Medio Sinú	Cerete	194	26	25	15	260
	Ciénaga de Oro	204	26	22	16	268
	Chima	285	30	29	17	361
Bajo Sinú	Lorica	280	27	36	21	364
	Momil	282	27	31	19	359
	Canalete	183	35	34	20	272
	Los Córdobas	183	32	32	17	264
Costera	Moñitos	193	31	21	12	257
	San Antero	276	27	33	18	354
	San Bernardo del Viento	276	27	34	19	356
C orlo ora or	Pueblo Nuevo	75	23	54	19	171
Sabana	Chinú	283	26	16	15	340
	San José de Ure	85	23	16	15	139
Causa La nava	Puerto Libertador	170	18	24	8	220
San Jorge	Montelíbano	87	26	20	15	148
	Planeta Rica	87	32	16	15	150

Fuente: Elaboración equipo técnico a partir de (Rangel-Ch, 2012).

El municipio de Tierra Alta ubicado en la cuenca alta del río Sinú, es el que registra la mayor abundancia de especies (388), esto se debe a que dentro de su jurisdicción se encuentra ubicado el Parque Nacional Natural Paramillo - PNN Paramillo.

El Parque Nacional Natural Paramillo es, dada su extensión y razón de ser, el principal ecosistema estratégico en la Cuenca del río Sinú, ya que allí se encuentran los nacimientos de los principales aportantes al curso principal del río y fuente de subsistencia para muchas especies de vegetación natural y fauna silvestre en toda la cuenca, por ende, de la biodiversidad otrora tan abundante en el que es considerado uno de los valles fluviales más ricos (CVS, CARSUCRE, UNIVERSIDAD DE CORDOBA & PARQUES NACIONALES, 2006).

Otros municipios con una gran abundancia de especies de fauna son Chima (361), Lorica (364), Momil (359), San Antero (354) y San Bernardo del Viento (356). La alta abundancia de especies para los tres primeros municipios se explica debido a que sus territorios se encuentran ubicados en el mayor humedal de la cuenca del Bajo Sinú – La Ciénaga Grande del Bajo Sinú. De la existencia de este ecosistema depende en gran parte (80%) de los aportes del río Sinú a través del caño Bugre, el 20% restante del agua que llega a este complejo proviene de la hoya de captación, conducida principalmente por el caño Aguas Prietas (CVS, CARSUCRE, UNIVERSIDAD DE CORDOBA & PARQUES NACIONALES, 2006).

En el municipio de San Antero, se encuentra ubicado el Distrito de Manejo Integrado de la Bahía de Cispata, La Balsa, Tinajones y Sectores Aledaños - DMI Cispata; Esta área protegida cuenta con más de 15 ecosistemas, que actúan como hábitat de una de las mayores diversidades de fauna del departamento (CVS & INVEMAR, 2010).

5.6.1. Metodología

Para la caracterización de la fauna del plan general de ordenamiento forestal del departamento de Córdoba, se utilizará la metodología general del trabajo basada en los criterios del documento de Evaluación Ecológica Rápida, propuesto por The Nature Conservancy (The Nature Conservancy, 2002).

Para lo cual, se realizará la revisión secundaria de todos aquellos documentos que puedan brindar información de la composición de la fauna en el departamento de Córdoba, dentro de estos documentos se destacan los planes de manejo de cuencas hidrográficas, el plan de ordenamiento forestal del departamento, planes de ordenamiento de los municipios, artículos científicos y documentos técnicos aprobados por la autoridad ambiental.

Asimismo, se realizaron recorridos diurnos en transeptos entre 200 y 500 metros de longitud por las diferentes coberturas vegetales empleando métodos directos e indirectos, a través de los cuales se contabilizan los individuos observados y se registra cualquier indicio de la

presencia de especies de individuos (osamentas, madrigueras, heces, huellas etc.) (Figura 178).

Figura 178. Formato de registro de identificación de especies en campo del componente fauna.

OBSERVACIONES D	E FA!	UNA	<u> </u>						- 	
INFORMACION SOBRE EL SITIO										
NOMBRE DEL LUGAR										
LONGITUD										
LATITUD										
ALTITUD										
PARCELA No.										
ESPECIES REPORTADAS			СОВ	ERTL	JRA A	SOCIA	ADA			
NOMBRE COMUN	VSA	VSB	BDA	BDB	BFPC	BFVS	BG	ВАА	ВАВ	OBSERVACIONES
	<u> </u>				<u> </u>	<u> </u>				
	<u> </u>				<u> </u>	<u> </u>				
	—	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>		
	—	<u> </u>			<u> </u>			<u> </u>		
	—	<u> </u>	<u> </u>		<u> </u>			<u> </u>		
	4—	<u> </u>	<u> </u>		↓	↓		<u> </u>	\sqcup	
	4—	<u> </u>	<u> </u>		↓	↓		<u> </u>	\sqcup	
	4—	<u> </u>	<u> </u>		↓	↓		<u> </u>	\sqcup	
	—	<u> </u>	<u> </u>		 				$\vdash \vdash$	
	—	-	-	igspace	<u> </u>	ļ	_	-		
	—	-	-		<u> </u>	ļ				_
	—	-	<u> </u>		<u> </u>	<u> </u>				
	—	-	<u> </u>		<u> </u>	<u> </u>				
	igg		<u> </u>						\vdash	
	+-	-	-	\vdash	-	-		-	\vdash	
	+-	-	<u> </u>	-	-	ļ —			\vdash	
	+	-								
	+									
	+								-	
	+-	 	-		-	-				
	+-	<u> </u>								
	+									
	+									
	+	-			 	-				
	1				<u> </u>					
	1				<u> </u>					
VSA: Vegetacion secuendaria alta; VSB: Vegetacion secund	daria b	aja;	BDA:	Bos	que d	enso a	alto	; BDE	3: Bosq	jue denso bajo; BFPC: Bosque
fragmentado pastos y cultivos; BFVS: Bosque fragmenta						,BG: B	osq	ue d	e galeri	ia; BAA: Bosque abierto alto;

La determinación taxonómica para el grupo de los mamíferos se realizo tomando como guía a (Defler, 2003) y a (Emmons, 1997), para el grupo de las aves se utilizo a la guía de identificación especializada de (Hilty, 1986) y para los grupos de anfibios y reptiles se utilizo la guía de campo de (Rengifo, 1999).

De igual forma se llevaron a cabo una serie encuestas no formales, basadas en la técnica de cuestionario, a los habitantes cercanos a los puntos escogidos como áreas de muestreo, en donde los encuestados apoyaron el reconocimiento de fauna silvestre en la zona; a su vez las encuestas permitieron identificar los usos actuales de la fauna silvestre y las problemáticas a las cuales se ven enfrentadas.

Con el fin de determinar el número de encuestas que se debian realizar y estableciendo que el número de especies de fauna silvestre asociadas a coberturas vegetales, reportadas para el departamento de Córdoba es de 755, se empleó la siguiente fórmula para población finita (dos colas):

$$n = \frac{z^2 Npq}{(N-1)e^2 + z^2 pq}, \text{ en donde:}$$

p= Probabilidad de que un fenómeno ocurra.

q= Probabilidad de que un fenómeno no ocurra

N= Tamaño de la población

n= Tamaño de la muestra

Z= Correspondiente al nivel de confianza elegido

e= Error muestral permitido

Se estableció un intervalo de confianza del 95%, que da un valor de Z=1,96 y un error muestral permitido del e=5%. En este trabajo, los parámetros p y q se asignan los valores p =0,5 y q=0,5. Los resultados del cálculo de la muestra, de acuerdo a los parámetros previamente definidos arroja la realización de 256 encuestas como se muestran en la Figura 179.

Figura 179. Formato de encuesta del componente fauna

ENTREVISTA SOBRE OBSERVACIONES DE FAUNA										
	INFORMACION SOBRE EL SITIO									
NOMBRE DEL LUGAR	"	NFORMAC	ION 3OB	KE EL SIIIC	,					
LONGITUD										
LATITUD										
ALTITUD										
ACTIVIDADES HUMANAS										
amenazas del sitio										
	REPORTADAS	AB	UNDANC	IA.			USO		OBSERVACIONES	
NOMB	RE COMUN	PRESENTE	ESCASA	AUSENTE	CAZA	VENTA	CONSUMO	NINGUNA		

De igual forma, fueron definidas la cantidad de encuestas a realizar por cada tipo de cobertura vegetal, con base en la distribución proporcional de cada cobertura en el inventario forestal donde la proporción se obtiene del área del estrato divida el área total, como se muestra en la Tabla 285.

Tabla 285. Número de Encuestas para el componente Fauna por Cobertura.

Tipo de Cobertura	Proporción	N° de encuestas
Bosque Denso Bajo Inundable	0,0031	2
Bosque Abierto Bajo Inundable	0,0032	3
Bosque Fragmentado con vegetación secundaria	0,0056	4
Bosque Abierto Alto de Tierra Firme	0,0228	6
Bosque Denso Alto de Tierra Firme	0,0314	8
Bosque Denso Bajo de Tierra Firme	0,0779	20
Bosque Abierto Bajo de Tierra Firme	0,2746	64
Bosque Fragmentado	0,0706	18
Bosque Fragmentado con pastos y cultivos	0,1044	27
Bosque de Galería	0,0943	24
Vegetación secundaria o en transición	0,1286	33
Vegetación secundaria alta	0,0622	16
Vegetación secundaria baja	0,1214	31
Total		256

Identificación de especies endémicas, raras o amenazadas de Fauna y Flora.

Con el fin de identificar aquellas especies que se encuentre bajo categorías de amenaza se tendrá como guía la Resolución 192 de 2014 del Ministerio de Ambiente y Desarrollo Sostenible la cual establece el listado de las especies silvestres amenazadas de la diversidad biológica colombiana.

En el Artículo 4 de la citada resolución se encuentran las diferentes Categorías de Amenaza:

- 1. **En Peligro Crítico (CR):** Aquellas que están enfrentando un riesgo de extinción extremadamente alto en estado de vida silvestre.
- 2. **En Peligro (EN):** Aquellas que están enfrentando un riesgo de extinción muy alto en estado de vida silvestre.
- 3. **Vulnerable (VU):** Aquellas que están enfrentando un riesgo de extinción alto en estado de vida silvestre.

Internacionalmente las categorías y símbolos para los niveles de amenaza a los que se enfrenta una especie se encuentran establecidos por CITES (Defler, 2003) (Emmons, 1997) y UICN bajo las siguientes categorías:

a. UICN (Unión Internacional para la Conservación de la Naturaleza).

Extinto (EX): Un taxón está "Extinto" cuando no queda duda alguna que el último individuo ha muerto.

Extinto en Estado Silvestre (EW): Un taxón está "Extinto en Estado Silvestre" cuando sólo sobrevive en cultivo, en cautiverio o como población naturalizada completamente fuera de su distribución original.

En Peligro Crítico (CR): Un taxón está "En Peligro Crítico" cuando enfrenta un riesgo extremadamente alto de extinción en estado silvestre en un futuro inmediato.

En Peligro (EN): Un taxón está "En Peligro" cuando, no estando "En Peligro Crítico", enfrenta de todas formas un alto riesgo de extinción o deterioro poblacional en estado silvestre en el futuro cercano.

Vulnerable (VU): Un taxón está en la categoría de "Vulnerable" cuando, no estando ni "En Peligro Crítico" ni "En Peligro", enfrenta de todas formas un moderado riesgo de extinción o deterioro poblacional a mediano plazo.

Casi Amenazado (NT): Un taxón está en la categoría de "Casi Amenazado" cuando no satisface ninguno de los criterios para las categorías "En Peligro Crítico", "En Peligro" o "Vulnerable", pero está cercano a calificar como "Vulnerable", o podría entrar en dicha categoría en un futuro cercano.

Preocupación Menor (LC): Un taxón está en la categoría de "Preocupación Menor" cuando no califica para ninguna de las categorías arriba expuestas, generalmente se usa para organismos muy comunes o abundantes y equivale a "fuera de peligro".

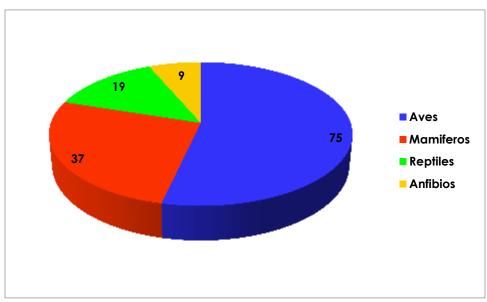
Datos Insuficientes (DD): Un taxón pertenece a la categoría de "Datos Insuficientes" cuando la información disponible es inadecuada para hacer una evaluación, directa o indirecta, de su riesgo de extinción, con base en la distribución y/o el estado de la población.

No Evaluado (NE): Un taxón se considera "No Evaluado" cuando aún no ha sido confrontado contra los criterios de la UICN.

b. CITES (Convención Sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestre)

Apéndice I: Especies en peligro de extinción que son o pueden ser afectadas por el comercio. El comercio de individuos, especímenes o productos de estas especies está sujeto a una reglamentación particularmente estricta y se autoriza solamente bajo circunstancias excepcionales a fin de no poner en peligro aun mayor su supervivencia.

Apéndice II:


- a) Incluye todas las especies que, si bien en la actualidad no se encuentran necesariamente en peligro de extinción, podrían llegar a esta situación a menos que su comercio esté sujeto a una reglamentación estricta orientada a evitar un uso incompatible con su supervivencia.
- **b)** Y también incluye otras especies no afectadas por el comercio, pero que también deben sujetarse a reglamentación debido a su apariencia similar a otras especies reguladas, facilitando un control más efectivo de las mismas.

Apéndice III: Todas las especies que cualquiera de los países parte manifieste como sometidas a reglamentación dentro de su jurisdicción con el objeto de prevenir o restringir su explotación, y que necesita la cooperación de otras partes en el control de su comercio.

5.6.2. <u>Inventario de Fauna</u>

En este capitulo se presenta la fauna potencial asociada a las coberturas vegetales presentes en el departamento de córdoba y no constituyen la totalidad de las especies silvestres que lo habitan, ya que para el presente estudio no se incluyeron las áreas protegidas. Esto es importante tenerlo en cuenta a la luz de los resultados que denotan una baja riqueza de especies. En este sentido se registraron 139 especies de animales silvestres de los cuales, las aves fueron el grupo más abundante en cuanto al número de especies con 75, seguido por los mamíferos con 37 especies, reptiles con 19 especies y por último y con la menor cantidad le especies, los anfibios con tan solo nueve especies (Figura 180).

Figura 180. Composición de la fauna de acuerdo al número de especies caracterizadas en el departamento de Córdoba a partir de la información de campo.

Fuente: Elaboración equipo técnico.

5.6.2.1. **Aves**

Las aves son importantes porque ayudan en la dispersión de semillas y a la polinización de las plantas; controlan plagas y cumplen una importante función sanitaria limpiando los desechos orgánicos, ayudándonos con el cuidado de la salud ambiental; pero es su importancia ecológica, económica y cultural lo que las hace esenciales a la hora de estudiar el componente faunístico. Las aves poseen una serie de características que las hacen ideales para determinar gran parte de la comunidad con un buen grado de certeza y así caracterizar los ecosistemas y los hábitats en que residen. Algunas de estas características son: Comportamiento llamativo, identificación rápida y confiable, fáciles de detectar, son el grupo animal mejor conocido, diversidad y especialización ecológica y sensibilidad a perturbaciones del hábitat (Villarreal, 2006).

Figura 181. Avifauna registrada para las diferentes coberturas vegetales en el departamento de Córdoba; A) Theristicus caudatus B) Psarocolius decumanus C) Buteogallus urubitinga.

Fuente: Elaboración equipo técnico.

5.6.2.1.1. Composición de especies

De acuerdo a los resultados obtenidos por la caracterización en campo y las entrevistas realizadas, el grupo de las aves fue el que mayor número de especies registro con 78, las cuales estuvieron distribuidas en 19 órdenes y 37 familias (Tabla 286) (Figura 181).

Tabla 286. Distribución taxonómica de las especies de aves registradas en las diferentes coberturas vegetales del departamento de Córdoba.

ORDEN	FAMILIA	ESPECIE	NOMBRE COMUN	Tipo Registro
Accipitriformes	Accipitridae	Busarellus nigricollis	Aguila cienaguera	C, E
Accipitriformes	Accipitridae	Buteo nitidus	Gavilan saraviado	C, E
Accipitriformes	Accipitridae	Buteogallus meridionallis	Gavilan cangrejero	С
Accipitriformes	Accipitridae	Buteogallus urubitinga	Aguila negra	С
Accipitriformes	Accipitridae	Geranospiza caerulescens	Aguililla zancona	С
Accipitriformes	Accipitridae	Pandion haliaetus	Aguila pescadora	С
Accipitriformes	Cathartidae	Cathartes aura	Gallinazo cabecirojo	C, E

ORDEN	FAMILIA	ESPECIE	NOMBRE COMUN	Tipo Registro
Accipitriformes	Cathartidae	Coragips atratus	Gallinazo cabecinegro	С
Anseriformes	Anatidae	Anas discors	Barraquete	C, E
Anseriformes	Anatidae	Dendrocygna bicolor	Pato café	C, E
Anseriformes	Anhimidae	Chauna chavaria	Chavarry	C, E
Apodiformes	Apodidae	Chaetura spinicauda	Vensejo	С
Apodiformes	Trochilidae	Chalybura buffonii	Colibri	C, E
Apodiformes	Trochilidae	Amazilia tzacatl	Colibri	С
Apodiformes	Trochilidae	Glausis hirsutus	Colibri	С
Apodiformes	Trochilidae	Phaethornis guy	Colibri	С
Caprimulgiforme	Caprimulgidae	Nyctidromus albicollis	Guarda caminos	С
Charadriiformes	Charadriidae	Vanellus Chilensis	Tanga	C, E
Charadriiformes	Jacanidae	Jacana jacana	Gallito de cienaga	C, E
Charadriiformes	Scolopacidae	Tringa semipalmatus	Playerito	С
Ciconiiformes	Ciconiidae	Mycteria americana	Coyongo	C, E
Columbiformes	Columbidae	Columbina minuta	Tortola	С
Columbiformes	Columbidae	Columbina talpacoti	Tortola	C, E
Columbiformes	Columbidae	Leptotila verreauxi	Paloma de monte	С
Coraciiformes	Alcedinidae	Chloroceryle amazona	Martin pescador matraquero	C, E
Coraciiformes	Alcedinidae	Chloroceryle americana	Martin pescador chico	C, E
Cuculiformes	Cuculidae	Crotophaga ani	Cocinero comun	C, E
Falconiformes	Falconidae	Caracara plancus	Caracara	C, E
Falconiformes	Falconidae	Herpetotheres cachinnans	Gavilan culebrero	С
Falconiformes	Falconidae	Falco sparverius	Cernicola	С
Falconiformes	Falconidae	Milvago chimachima	Pigua	C, E
Galbuliformes	Bucconidae	Hypnelus ruficollis	Martin café	С
Galliformes	Cracidae	Ortalis Garrula	Guacharaca	C, E
Galliformes	Odontophoridae	Odontophorus stopium	Perdiz	С
Passeriformes	Coerebidae	Coereba flaveola	Platanero	С
Passeriformes	Corvidae	Cyancorax affinis	Chau chau	C, E
Passeriformes	Cotingidae	Querula purpurata	Cotinga	С
Passeriformes	Emberizidae	Oryzoborus angolensis	Semillero	С
Passeriformes	Emberizidae	Volatinia jacarina	Mochuelo	C, E
Passeriformes	Furnariidae	Furnarius leucopus	Hornero patiamarillo	С
Passeriformes	Icteridae	Quiscalus mexicanus	Maria mulata	C, E
Passeriformes	Icteridae	Chrysomus icterocephalus	Turpial de agua, toche	С
Passeriformes	Icteridae	Icterus nigrogularis	Turpial amarillo	C, E
Passeriformes	Icteridae	Molothrus bonariensis	Garrapatero	С
Passeriformes	Icteridae	Sturnella militaris	Pechirojo	С

ORDEN	FAMILIA	ESPECIE	NOMBRE COMUN	Tipo Registro
Passeriformes	Icteridae	Psarocolius decumanus	Guarupendula	C, E
Passeriformes	Thraupidae	Saltator coerulescens	Papayero	С
Passeriformes	Thraupidae	Ramphocelus dimidiatus	Sangretoro	C, E
Passeriformes	Thraupidae	Thraupis episcopus	Azulejo	С
Passeriformes	Troglodytidae	Campylorhynchus griseus	Chupahuevos, currucuchu	С
Passeriformes	Troglodytidae	Troglodytes aedon	Cucarachero comun	C, E
Passeriformes	Tyrannidae	Machitornis rixosa	Picabuey	С
Passeriformes	Tyrannidae	Myiarchus tuberculifer	Atrapamoscas	С
Passeriformes	Tyrannidae	Pitangus lictor	Chamaria	C, E
Passeriformes	Tyrannidae	Poecilotriccus sylvia	Espatulilla	С
Passeriformes	Tyrannidae	Tyrannus melancholicus	Chamaria, Siriri	C, E
Passeriformes	Tyrannidae	Tyrannus sabana	Tijereta	C, E
Pelecaniformes	Ardeidae	Ardea herodias	Garza ceniza	С
Pelecaniformes	Ardeidae	Ardea alba	Garza Real	C, E
Pelecaniformes	Ardeidae	Bubulcus ibis	Garza del Ganado	C, E
Pelecaniformes	Ardeidae	Butorides striata	Garcita azulada	С
Pelecaniformes	Ardeidae	Pilherodius pileatus	Garza crestada	C, E
Pelecaniformes	Ardeidae	Tigrisoma Lineatum	Vaco	C, E
Pelecaniformes	Threskiornithidae	Theristicus caudatus	Bandurria	С
Pelecaniformes	Threskiornithidae	Phimosus infuscatus	Coquito	C, E
Pelecaniformes	Threskiornithidae	Mesembrinibis cayenensis	Ibis	C, E
Piciformes	Galbulidae	Galbula raficauda	Colibri verdeazul	С
Piciformes	Picidae	Colaptes punctugula	Carpintero café	С
Piciformes	Picidae	Dryocopus lineatus	Carpintero real	С
Piciformes	Picidae	Melanerpes rubricapillus	Carpintero rallado	С
Piciformes	Ramphastidae	Ramphastos swainsonii	Tucan	C, E
Psittaciformes	Psittacidae	Amazona Ochrocephala	Loro real	C, E
Psittaciformes	Psittacidae	Aratinga pertinax	Perico carisucio	C, E
Psittaciformes	Psittacidae	Botogeris juglaris	Perico pico amarillo	C, E
Stringiformes	Strigidae	Megascops choliba	Currucucu	C, E
Stringiformes	Strigidae	Bubo virginianus	Buho real	С
Suliformes	Anhingidae	Anhinga anhinga	Pato buzo	C, E
Tinamiformes	Tinamidae	Crypturellus soui	Gallinita de monte	C, E

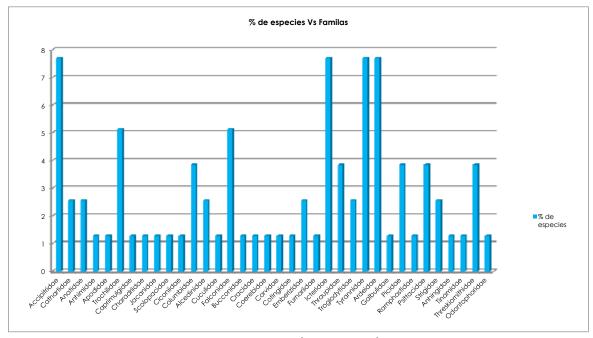
El orden más abundante en cuanto al número de especies fue Passeriformes con el 29%, seguido con menos del doble de especies por Pelecaniformes con 12% y Accipitriformes con 10%, los demás órdenes tienen menos del 6% cada uno (Figura 182).

% de especies Vs Ordenes 29 30 25 20 12 15 10 10 5 % de especies Anseriformes Galbuliformes Pelecaniformes Accipitriformes Caprimulgiforme Charadriiformes Columbiformes Cuculiformes **Falconiformes** Galliformes Passeriformes **Piciformes** Psittaciformes Stringiformes Ciconiiformes Coraciiformes Finamiformes

Figura 182. Distribución (%) de las especies de aves con respecto al Orden al que pertenecen.

Fuente: Elaboración equipo técnico.

Los Passeriformes son un orden que abarca a más de la mitad de todas las aves del mundo, con alrededor de 5.400 especies. A pesar de que el grupo es bastante homogéneo, es muy complejo en detalles, y las divisiones secundarias son a menudo discutidas. El orden presenta tres subórdenes: en primer lugar un reducido grupo basal, Acanthisitti, y dos grupos mayoritarios que se establecieron tradicionalmente por la conformación de las patas y su órgano del canto: Tyranni o pájaros clamadores, que tienen una siringe simple; y Passeri, o pájaros cantores, cuya siringe tienen un sistema complejo de músculos para controlarla (aunque comprende especies como los cuervos, que no cantan) (S. Guallar, 2009).


Este orden comprende 56 familias y desempeña un papel ecológico fundamental puesto que cumplen funciones como controladores de poblaciones de insectos, dispersadores de semillas y polinizadores, por lo cual se les considera un componente importante en la dinámica y conservación de los ecosistemas naturales (Kattan, 2007).

A nivel de familia las mas abundantes en cuanto al número de especies fueron Accipitridae, Icteridae, Tyrannidae y Ardeidae con 8%, le siguen las familias Trochilidae y Falconidae con 5% y las familias Columbidae, Picidae, Psittacidae y Threskiornithidae con 4% (Figura 183).

Figura 183. Distribución (%) de las especies de aves con respecto a las familias a las que pertenecen.

5.6.2.1.2. Asociación de las especies de aves con las coberturas vegetales

La cobertura vegetal que mayor número de especies de aves registró fue el Bosque de Galería con 48, le sigue el Bosque Abierto Inundable y el Bosque Fragmentado con Pastos y cultivos con 48 y 43 especies respectivamente, las demás coberturas presentan menos de 39 especies cada uno. Cabe resaltar que la cobertura que menor número de especies registró fue la Vegetación Secundaria o en Transición.

Tabla 287. Asociación de especies de aves con las coberturas vegetales estudiadas.

Tipo de Cobertura Vegetal	No. especies
Bosque Abierto Bajo de Tierra Firme	39
Bosque Abierto Bajo Inundable	48
Bosque de Galería	53
Bosque Denso Bajo de Tierra Firme	38
Bosque Denso Bajo Inundable	33
Bosque Fragmentado	31
Bosque Fragmentado con Pastos y Cultivos	43
Bosque Fragmentado con Vegetación Secundaria	33

Tipo de Cobertura Vegetal	No. especies
Vegetación Secundaria o en Transición	26
Vegetación Secundaria Alta	33
Vegetación Secundaria Baja	32
Bosque Abierto Alto de Tierra Firme	38
Bosque Denso Alto de Tierra Firme	37

Si se analiza la presencia de especies de aves por cobertura se puede observar que la mayoría ocupan más de una cobertura, como se ve en la (Tabla 288), 32 especies ocupan entre 2 y 4 coberturas, 17 especies ocupa entre 8 y 10 coberturas y así sucesivamente. Tan solo dos especies fueron registradas en un tipo de cobertura.

Tabla 288. Rango del número de especies registradas por cobertura.

Rango del Número de especies por Coberturas	Número de Especies
1	2
2 a 4	32
5 a 7	11
8 a 10	17
11 a 13	12

Fuente: Elaboración equipo técnico.

5.6.2.2. **Mamíferos**

Hace más de 150 millones de años, unas pequeñas criaturas peludas, insectívoras y nocturnas vivieron con bajo perfil en un mundo dominado por reptiles. Cuando los dinosaurios desaparecieron hace aproximadamente 65 millones de años, estos mamíferos primitivos se diversificaron en una amplia radiación adaptativa y ocuparon nichos ecológicos de lo más variados (Eisenberg, 1981). Desde entonces y, en parte debido a su alto metabolismo, muchos mamíferos han jugado un papel ecológico notable en diversos ecosistemas, ya sea como consumidores, depredadores, dispersores de semillas, polinizadores o en otras funciones (Vaughan, 2000).

De este modo, la presencia de determinado tipo de especies indica el grado de mantenimiento de un sistema, pudiendo utilizar a ciertos mamíferos como indicadores de la calidad del hábitat (Vaughan, 2000).

Figura 184. Mamíferos registrados para las diferentes coberturas vegetales en el departamento de Córdoba; A) Saguinus oedipus B) Galictis vittata C) Bradypus variegatus

5.6.2.2.1. Composición de especies

De acuerdo a los resultados obtenidos por la caracterización en campo y las entrevistas realizadas, el grupo de los mamíferos fue el segundo grupo en número de especies ya que registro 38, las cuales estuvieron distribuidas en 9 órdenes y 23 familias (Tabla 289) (Figura 184).

Tabla 289. Distribución taxonómica de las especies de mamíferos registrados en las diferentes coberturas vegetales del departamento de Córdoba.

ORDEN	FAMILIA	ESPECIE	NOMBRE COMUN	Tipo Registro
Artiodactyla	Cervidae	Odocoileus sp.	Venado de Monte	C, E
Artiodactyla	Cervidae	Odocoileus virginiaunus	Venado Coli Blanco	Е
Artiodactyla	Tayassuidae	Tayassu pecari	Cajuche	C,E
Artiodactyla	Tayassuidae	Pecari tajacu	Zaino	Е
Carnivora	Canidae	Cerdocyon thous	Zorra	C,E
Carnivora	Felidae	Panthera onca	Jaguar	Е
Carnivora	Felidae	Puma concolor	Puma	C, E
Carnivora	Felidae	Leopardus tigrinus	Tigrillo	Е
Carnivora	Felidae	Felis silvestris	Gato de monte	C, E
Carnivora	Mustelidae	Lontra longicaudis	Nutria, Perro de agua	C, E
Carnivora	Mustelidae	Galictis vittata	Uron	C, E
Chiroptera	Emballonuridae	Centroniycteris centralis	Murcielago	С
Chiroptera	Emballonuridae	Saccopteryx bilineata	Murcielago de lineas blancas	C, E
Chiroptera	Molossidae	Molossus molossus	Murcielago mastn	С
Chiroptera	Phyllostomidae	Artibeus lituratus	Murcielago frujivoro	С
Chiroptera	Phyllostomidae	Artibeus planirostris	Murcielago frujivoro	С

ORDEN	FAMILIA	ESPECIE	NOMBRE COMUN	Tipo Registro
Chiroptera	Phyllostomidae	Platyrrhinus brachicephalus	Murcielago	С
Chiroptera	Phyllostomidae	Desmodus rotundus	Vampiro comun	C, E
Chiroptera	Phyllostomidae	Sturnira lilium	Murcielago	C, E
Chiroptera	Vespertilionidae	Myotis negricans	Murcielago negro	С
Cingulata	Dasypodidae	Dasypus novemcinctus	Armadillo	C, E
Cingulata	Dasyproctidae	Dasyprocta punctata	Ñeque	С
Didelphimorphia	Didelphidae	Didelphis marsupialis	Sorrochucho o zarigueya	C, E
Didelphimorphia	Didelphidae	Marmosa murina	Raton de anteojos	С
Lagomorpha	Leporidae	Sylvilagus brasiliensis	Conejo	C, E
Pilosa	Bradypodidae	Bradypus variegatus	Perezoso de tres dedos, Guasa	C, E
Pilosa	Megalonychidae	Choloepus Hoffmanni	Perezoso de dos dedos, Guasa café	C, E
Pilosa	Myrmecophagidae	Tamanua mexicana	Oso chupero o Hormiguero	C, E
Pilosa	Myrmecophagidae	Myrmecophaga tridactyla	Oso Palmero	Е
Primates	Atelidae	Allouta palliata	Aullador Negro	С
Primates	Atelidae	Allouta seniculus	Aullador colorado	C, E
Primates	Callitrichidae	Saguinus oedipus	Mono titi cabeciblanco	С
Primates	Cebidae	Cebus capucinos	Capuchino, machin	C, E
Rodentia	Caviidae	Hidrochaeris hydrochaerus	Chiguiro, Capibara	С
Rodentia	Cuniculidae	Coniculos paca	Guartinaja	С
Rodentia	Echimyidae	Proechimys magdalenae	Rata espinosa	C, E
Rodentia	Muridae	Rattus rattus	Rata	С
Rodentia	Sciuridae	Sciurus granatensis	Ardilla cola roja	С

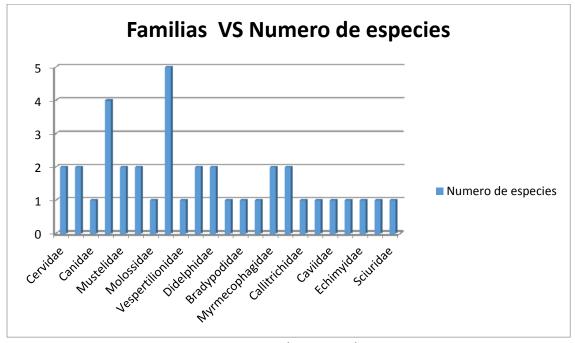
El orden más abundante en cuanto al número de especies fue Chiroptera con el 24%, seguido por Carnivora con 18%, Rodentia con 13% y Artiodactyla, Pilosa y Primates con 11%, los demás órdenes tienen menos del 5% cada uno (Tabla 290).

Tabla 290. Distribución (%) de las especies de mamíferos con respecto al Orden al que pertenecen.

Orden	Número de especies	Número de especies (%)
Artiodactyla	4	11
Carnivora	7	18
Chiroptera	9	24
Cingulata	2	5
Didelphimorphia	2	5
Lagomorpha	1	3
Pilosa	4	11

Orden	Número de especies	Número de especies (%)
Primates	4	11
Rodentia	5	13

El grupo más diverso es el de los murciélagos (Chiroptera) con 9 especies, su capacidad de volar los coloca en ventaja (similar a la de las aves) sobre los mamíferos terrestres en cuanto a la posibilidad de huir cuando se presentan perturbaciones, son gregarios (viven en grupos) y relativamente con tasa de reproducción alta; además las especies insectívoras pueden verse beneficiadas por actividades humanas que incrementan las poblaciones de insectos (v.g. deforestación, cultivos, desechos) (CVS, CARSUCRE, UNIVERSIDAD DE CORDOBA & PARQUES NACIONALES, 2006).


El grupo de los carnívoros contiene 18 especies, este grupo de animales es muy susceptible a la extinción, debido a sus hábitos alimenticios, su tamaño, su potencial como alimento, sus pieles, su baja tasa reproductiva y su territorialidad. El primer aspecto hace que necesiten de ecosistemas poco intervenidos donde haya una buena probabilidad de encontrar alimento, por lo cual también necesitan áreas de gran tamaño (esto está relacionado con la territorialidad) Cuando se intervienen los ecosistemas algunas especies cambian de presa y entran en conflicto con el ser humano al empezar a predar sobre especies domésticas, por lo cual son perseguidos y aniquilados, Adicional a este problema también son cazados por sus pieles y como trofeos de caza. En esta situación se encuentran especialmente los félidos (jaguar, tigrillos, puma y gatos de monte) y los cánidos (zorras) (CVS, CARSUCRE, UNIVERSIDAD DE CORDOBA & PARQUES NACIONALES, 2006).

A nivel de familia las más abundantes en cuanto al número de especies fueron Phyllostomidae con cinco y Felidae con cuatro, le siguen las familias Cerviade, Tayassuidae, Mustellidae, Emballonuridae, Dasypodidae, Didelphidae, Myrmecophagidae y Atelidae con dos especies cada una (Figura 185).

Figura 185. Distribución de mamíferos con respecto a las familias a las que pertenecen.

5.6.2.2.2. Asociación de las especies de mamíferos con las coberturas vegetales

La cobertura vegetal que mayor número de especies de mamíferos registró fue el Bosque Denso Alto de Tierra Firme con 29, le sigue el Bosque Abierto Alto de Tierra Firme inundable y el Bosque Abierto Bajo de Tierra firme con 28 y 21 especies respectivamente, las demás coberturas presentan menos de 19 especies cada uno. Cabe resaltar que la cobertura que menor número de especies registró fue Vegetación Secundaria Baja con seis (Tabla 291).

Tabla 291. Asociación de especies de mamíferos con las coberturas vegetales estudiadas.

Tipo de Cobertura Vegetal	No. especies
Bosque Denso Alto de Tierra Firme	29
Bosque Abierto Alto de Tierra Firme	28
Bosque Abierto Bajo de Tierra Firme	21
Bosque Abierto Bajo Inundable	19
Bosque de Galería	19
Bosque Denso Bajo de Tierra Firme	18
Bosque Denso Bajo Inundable	16
Bosque Fragmentado con Vegetación Secundaria	16
Bosque Fragmentado con Pastos y Cultivos	13

Tipo de Cobertura Vegetal	No. especies
Bosque Fragmentado	10
Vegetación Secundaria o en Transición	10
Vegetación Secundaria Alta	10
Vegetación Secundaria Baja	6

Si se analiza la presencia de especies de mamíferos por cobertura se puede observar que la mayoría ocupan más de una. Ya que como se puede evidenciar en la (Tabla 292), 18 especies ocupan entre 2 y 4 coberturas, 11 especies ocupa entre 5 y 7. En ninguna cobertura se registró una sola especie de mamífero.

Tabla 292. Rango del número de especies registradas por cobertura.

Rango del Número de especies por Coberturas	Número de Especies
2 a 4	18
5 a 7	11
8 a 10	5
11 a 13	4

Fuente: Elaboración equipo técnico.

5.6.2.3. **Reptiles**

Aun cuando los reptiles son menos dependientes del medio acuático que los anfibios, esa dependencia no deja de ser importante y, de hecho, son las especies más acuáticas que se cierne sobre el grupo de las serpientes. Por lo tanto, la alteración de los hábitats afecta seriamente las poblaciones de reptiles, en especial la desecación de humedales y la deforestación. Además de estas amenazas un gran número de especies son objeto de sobreexplotación (caimán, babilla, tortugas, iguana) mientras otras son eliminadas por su supuesta peligrosidad (serpientes, venenosas o no) y por entrar en conflicto con las actividades humanas (lobo pollero) (Carreira & Meneghel, 2005).

Figura 186. Reptiles registrados para las diferentes coberturas vegetales en el departamento de Córdoba; A) Gonatodes albogularis B) Leposoma rugiceps C) Chironius carinatus.

Fuente: Elaboración equipo técnico.

5.6.2.3.1. Composición de especies

De acuerdo a los resultados obtenidos los reptiles fueron el tercer grupo en número de especies registrando 24, las cuales estuvieron distribuidas en 2 órdenes y 14 familias (Tabla 293) (Figura 186).

Tabla 293. Distribución taxonómica de las especies de reptiles registrados en las diferentes coberturas vegetales del departamento de Córdoba.

ORDEN	FAMILIA	ESPECIE	NOMBRE COMUN	Tipo Registro
Squamata	Boidae	Boa constrictor	Воа	C, E
Squamata	Colubridae	Chironius carinatus	Jueteadora	C, E
Squamata	Colubridae	Chironius monticola	Lomo de machete	Е
Squamata	Colubridae	Dendrophidion bivittatus	Guarda caminos	Е
Squamata	Colubridae	Helicops danieli	Mapana de agua	C,E
Squamata	Colubridae	Leptophis ahaetulla	Culebra perico	Е
Squamata	Colubridae	Lampropeltis triangulum	Falsa coral	C, E
Squamata	Colubridae	Pseustes shropshirei	Tigre, toche	Е
Squamata	Corytophanidae	Basiliscus basiliscus	Saltacharcos	C, E
Squamata	Elapidae	Micrurus sp	Coral	Е
Squamata	Gekkonidae	Gonatodes albogularis	Geco cabeziamarilla	C, E
Squamata	Gymnophthalmidae	Leposoma rugiceps	Lobopollero	С
Squamata	Gymnophthalmidae	Ptychoglossus festae	Lobopollero	C, E
Squamata	Iguanidae	Iguana iguana	Iguana	С
Squamata	Polychrotidae	Anolis auratus	Camaleon americano	С
Squamata	Teiidae	Tupinambis teguixin	Lobopollero	С
Squamata	Teiidae	Ameiva lineolata	Lagartija	С
Squamata	Teiidae	Cnemidophorus lemniscatus	Lobito listado	C, E
Squamata	Viperidae	Bothrops sp	Mapana	C, E
Squamata	Viperidae	Bothrops atrox	Mapana barba amarilla	Е
Testudines	Chelidae	Messoclemys dalhi	Tortuga carranchina	C, E
Testudines	Emydidae	Trachemys callirostris	Icotea	C,E
Testudines	Kinosternidae	Kinosternon leucostomum	Tacan, tapaculo	C, E
Testudines	Testudinidae	Chelonoides carbonaria	Morrocoy	C,E

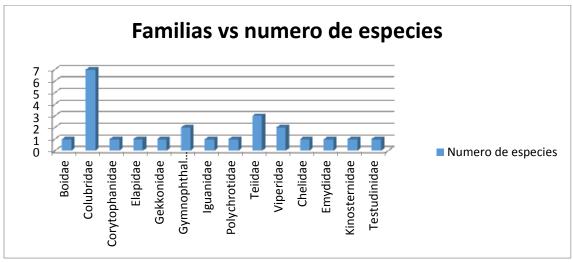
Fuente: Elaboración equipo técnico.

En el grupo de los reptiles solo se registraron dos órdenes, de estos el más abundante en cuanto al número de especies fue Squamata con el 83% y Testudines con el 17% (Tabla 294).

Tabla 294. Distribución (%) de las especies de reptiles con respecto al Orden al que pertenecen.

Orden	Número de especies	Número de especies (%)
Squamata	20	83
Testudines	4	17

El orden Squamata, es la orden más grande de los últimos de reptiles, incluyendo lagartos y serpientes. Los miembros de la orden se distinguen por su piel, que tienen escamas córneas o escudos. También poseen muebles huesos cuadrados, lo que hace posible mover el maxilar superior en relación con el cráneo. Esto es particularmente visible en las serpientes, que son capaces de abrir la boca muy amplia para dar cabida a la presa relativamente grande (Carreira & Meneghel, 2005).


A pesar de que sobrevivió a muchos de los cambios en la historia de la Tierra, hoy el orden Squamata tiene muchas especies que se encuentran en peligro debido a la pérdida de hábitat, la caza y la caza furtiva, el comercio de mascotas, especies exóticas se introducen en su hábitat (que pone a las criaturas nativas en peligro por la competencia desleal y depredación). Sin embargo la implementación de parques de animales silvestres están tratando de salvar a muchos reptiles en peligro de extinción y muchos zoológicos y criadores en educar a la gente sobre la importancia de las serpientes y lagartos (Carreira & Meneghel, 2005).

A nivel de familia las más abundantes en cuanto al número de especies fueron Colubridae con siete y Teiidae con tres, le siguen las familias Gymnophthalmidae y Viperidae con dos especies cada una, las demás familias tan solo registraron una especie (Figura 187).

Figura 187. Distribución de reptiles con respecto a las familias a las que pertenecen.

5.6.2.3.2. Asociación de las especies de reptiles con las coberturas vegetales

La cobertura vegetal que mayor número de especies registró fue el Bosque de Galería con 18, le sigue el Bosque Abierto Bajo inundable y el Bosque Denso Alto de Tierra Firme con 17 y 16 especies respectivamente, las demás coberturas presentan menos de 15 especies cada uno. Cabe resaltar que la cobertura que menor número de especies registró fue Vegetación Secundaria Alta con seis (Tabla 295).

Tabla 295. Asociación de especies de reptiles con las coberturas vegetales estudiadas.

Tipo de Cobertura Vegetal	No. especies
Bosque de Galería	18
Bosque Abierto Bajo Inundable	17
Bosque Denso Alto de Tierra Firme	16
Bosque Abierto Alto de Tierra Firme	15
Bosque Denso Bajo Inundable	14
Bosque Fragmentado con Pastos y Cultivos	13
Bosque Abierto Bajo de Tierra Firme	11
Vegetación Secundaria Baja	11
Bosque Fragmentado	10
Bosque Fragmentado con Vegetación Secundaria	10
Bosque Denso Bajo de Tierra Firme	8
Vegetación Secundaria o en Transición	7
Vegetación Secundaria Alta	6

Fuente: Elaboración equipo técnico.

Si se analiza la presencia de individuos se puede observar que todas las especies ocupan más de una cobertura. Como lo muestra la Tabla 296, nueve especies ocupan entre 2 y 4 coberturas, seis especies ocupa entre 5 y 7, seis especies ocupa entre 8 y 10.

Tabla 296. Rango del número de especies registradas por cobertura.

Rango del Número de especies por Coberturas	Número de Especies
2 a 4	9
5 a 7	6
8 a 10	6
11 a 13	3

Fuente: Elaboración equipo técnico.

5.6.2.4. **Anfibios**

Los anfibios al igual que los seres humanos dependemos del agua para la vida, muchas de estas especies ponen sus huevos en ella y al nacer los renacuajos, estos se alimentan de plantas y algas ayudando a limpiar los cuerpos de agua de sedimento orgánico, la alta concentración de materia orgánica en la superficie invita a esta a realizar un proceso de descomposición, estas reacciones químicas requieren del oxígeno disuelto en el agua para su desarrollo, por esta razón es que estos depósitos de agua comienzan a tener un olor, color desagradable además de que no podría utilizarse para consumo humano o de cualquier otra especie a causa de la proliferación de bacterias anaerobias causantes de enfermedades, los renacuajos ayudan entonces a limpiar estos depósitos de agua (Parra-Olea & Flores-Villela, 2014).

Todos los anfibios comen insectos y esto los hace controladores naturales de plagas que producen enfermedades como el dengue, la malaria, el paludismo, chikungunya causadas por vectores como los zancudos (Aedes aegypt), por otro lado los anfibios también se alimentan de plagas agrícolas que causan grandes pérdidas en la agricultura y de esta manera ayudan a la economía del agricultor (Parra-Olea & Flores-Villela, 2014).

Los anfibios tienen un rol muy importante para la conservación de los ecosistemas ya que son una de las herramientas más efectivas para detectar cambios en los ecosistemas como producto de la intervención humana. Sin embargo cada vez más especies se encuentran en peligro de extinción por la pérdida y degradación del hábitat, cambio climático, enfermedades emergentes, especies introducidas y tráfico de especies (Parra-Olea & Flores-Villela, 2014) (Figura 188).

Figura 188. Anfibios registrados para las diferentes coberturas vegetales en el departamento de Córdoba; A) Rhinella marina.

5.6.2.4.1. Composición de especies

De acuerdo a los resultados obtenidos los anfibios fueron el grupo que menor número de especies registró con 9, las cuales estuvieron distribuidas en 1 orden y 3 familias (Tabla 297).

Tabla 297. Distribución taxonómica de las especies de anfibios registrados en las diferentes coberturas vegetales del departamento de Córdoba.

ORDEN	FAMILIA	ESPECIE	NOMBRE COMUN	Tipo Registro
Anura	Bufonidae	Rhinella humboldti	Sapo	C, E
Anura	Bufonidae	Rhinella marina	Sapo común	C, E
Anura	Hylidae	Hypsiboas pugnax	Rana Platanera	E
Anura	Hylidae	Scianx ruber	Rana rayada	E
Anura	Hylidae	Scianx sp.	Rana	C,E
Anura	Hylidae	Hypsiboas crespitans	Rana Platanera	E
Anura	Leptodactylidae	Leptodactylus fuscus	Rana de rio	C, E
Anura	Leptodactylidae	Leptodactylus labialis	Rana de rio	E
Anura	Leptodactylidae	Leptodactylus fragilis	Rana de rio	C, E

Fuente: Elaboración equipo técnico.

En el grupo de los reptiles solo se registró un orden Anura con el total de las especies; este orden, compuesto por 6200 especies es el más abundante y diversificado de los anfibios vivientes. Las especies de este grupo se encuentran en hábitats acuáticos, terrestres, fosoriales y arborícolas en prácticamente todos los continentes (Parra-Olea & Flores-Villela, 2014).

A nivel de familia la más abundante en cuento al número de especies fue Hilidae con cuatro, seguida por la familia Leptodactylidae con tres y la familia Bufonidae con dos especies (Figura 189).

Familias vs Número de especies

4
3
2
1
0
Número de especies

Rightoridae

Rightori

Figura 189. Distribución de Anfibios con respecto a las familias a las que pertenecen.

Fuente: Elaboración equipo técnico.

5.6.2.4.2. Asociación de las especies de reptiles con las coberturas vegetales

La cobertura vegetal que mayor número de especies registró fue el Bosque de Galería con ocho, le sigue el Bosque Denso Bajo Inundable y el Bosque Abierto Alto de Tierra Firme con seis especies respectivamente, las demás coberturas presentan menos de cuatro especies cada uno. Cabe resaltar que la cobertura que menor número de especies registró fue el Bosque Fragmentado con Vegetación Secundaria con una especie (Tabla 298).

Tabla 298. Asociación de especies de anfibios con las coberturas vegetales estudiadas.

Tipo de Cobertura Vegetal	No. especies
Bosque de Galería	8
Bosque Denso Bajo Inundable	6
Bosque Abierto Alto de Tierra Firme	6
Vegetación Secundaria Baja	4
Bosque Abierto Bajo de Tierra Firme	3
Bosque Fragmentado con Pastos y Cultivos	3
Bosque Denso Alto de Tierra Firme	3
Bosque Abierto Bajo Inundable	2

Tipo de Cobertura Vegetal	No. especies
Vegetación Secundaria o en Transición	2
Vegetación Secundaria Alta	2
Bosque Denso Bajo de Tierra Firme	1
Bosque Fragmentado	1
Bosque Fragmentado con Vegetación Secundaria	1

Si se analiza la presencia de individuos se puede observar que todas las especies ocupan más de una cobertura. Como lo muestra la Tabla 299, tres especies ocupan entre 2 y 4 coberturas y seis especies ocupa entre 5 y 7.

Tabla 299. Rango del número de especies registradas por cobertura.

Rango del Número de especies por Coberturas	Número de Especies
2 a 4	3
5 a 7	6

Fuente: Elaboración equipo técnico.

5.6.3. Aspectos ecológicos de la Fauna Silvestre

5.6.3.1. Problemática de la fauna silvestre en el departamento de Córdoba.

El departamento de Córdoba está ubicado en la costa Caribe colombiana y es privilegiado por presentar una gran diversidad de ecosistemas, que representan una importante riqueza faunística para el país, entre estos ecosistemas se encuentran los bosque tropicales húmedos que son considerados como el bioma de más interés por su importancia biológica, al ser ecosistemas singulares, amenazados y poco conocidos, con presencia de especies endémicas y un importante grado de diversidad local y regional (Ballesteros, J. & Linares, J., 2015).

Los ecosistemas del departamento de Córdoba experimentan graves problemas de conservación por actividades antropogénicas tales como la sobreexplotación de la biota y cambios en el uso del suelo (agricultura, ganadería extensiva, obras civiles entre otros). Estas actividades ocasionan la pérdida, modificación y fragmentación del medio, disminuyendo la calidad del hábitat y afectando las poblaciones de manera directa, debido a la reducción limitación de su área de distribución a relictos de bosques que presentan una baja capacidad de carga y sin los elementos suficientes para sostener poblaciones viables de ciertas especies de comportamientos más especialistas (CVS - FONADE, 2005).

Caza Indiscriminada

En esta actividad humana se produce la captura de especies de fauna silvestre de forma incontrolada, sin parámetros de protección a la biodiversidad o al medio ambiente. Sus efectos pueden causar una amenaza a la diversidad genética de las especies y un favorecer un desarrollo insostenible de las mismas, perdiéndose el equilibrio entre el medio ambiente y las especies.

Uno de los casos de mayor relevancia en cuanto a la caza indiscriminada de especies de fauna silvestre en el departamento de Córdoba, es el de la Hicotea (*Trachemys scripta*). El comercio de la hicotea, en gran parte, inicia en la zona rural de San Marcos (Sucre), en inmediaciones de La Mojana, pero en Córdoba existen actividades de caza en lo que queda de los pantanos y ciénagas. En el año 2016, se incautaron, para la época de semana santa, 4 mil unidades que fueron liberadas a su hábitat natural por el Centro de Atención y Valoración de la Fauna Silvestre (CAV), de la corporación CVS.

Tráfico llegal

El comercio ilegal de animales salvajes es un problema global y puede constituir una amenaza seria para las especies amenazadas y en peligro de extinción. Se habla de comercio ilegal de animales salvajes si la importación viola la Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES) o si viola las leyes nacionales de cuarentena u otras leyes que regulan el comercio de ciertos animales o productos.

En Colombia, el tráfico ilegal de especies afecta a 234 especies de aves, 76 de mamíferos, 27 de reptiles y 9 de anfibios ocupando el segundo lugar en tráfico de especies a nivel global (MADS, 2017).

Existe una presión extractiva de especies silvestres producto de la demanda de individuos y/o productos para atender un comercio ilegal a nivel nacional e internacional, situación que se agrava si se considera la cantidad de animales que deben ser extraídos para cumplir con esta demanda bajo las condiciones anteriormente expuestas, convirtiéndose en otra causa de extinción de especies.

De acuerdo al MADS (2017), el tráfico ilegal de fauna silvestre en Colombia en el año 2016 presento las siguientes consideraciones:

- En el año 2016 se incautaron 23.761 de animales silvestres. 1.199 fueron recuperados durante la Semana Santa.
- La flora también es víctima del tráfico ilegal. En 2016 se incautaron 303.300 ejemplares, 25.441 durante la semana mayor. las especies que más se traficaron fueron las orquídeas y la palma de cera.

- En la Semana Santa de 2016 se registró la incautación de 148.125 huevos de iguana a nivel nacional, un incremento del 43% en comparación con el 2015.
- Esta actividad delictiva se da con mayor frecuencia en áreas de influencia de ríos, lo cual supone que estos son utilizados como canales para facilitar procesos de acopio y distribución de especies desde los puntos de extracción hacia los sitios de comercialización. Los departamentos con mayor número de decomisos corresponden a Sucre, Meta, Caldas, Antioquia y Córdoba.
- El tráfico de especies es considerado un problema de seguridad nacional por lo que se ha endurecido la normativa frente a este tipo de delitos, por ejemplo en el Código Penal se establecen penas de entre 32 y 90 meses de cárcel así como multas de hasta de 15.000 salarios mínimos a quienes incurran en el delito de tráfico ilegal de animales silvestres (artículo 328).

Introducción de especies exóticas

Las especies exóticas invasoras son especies foráneas introducidas de forma artificial, accidental o intencionadamente y que, después de cierto tiempo, consiguen adaptarse al medio y colonizarlo. Las especies nativas, al no haber evolucionado en contacto con estas nuevas especies, no pueden competir con ellas, por lo que son desplazadas o, en el peor de los casos, mueren y se extinguen. Según la ONU, son la segunda causa de pérdida de biodiversidad en el mundo ya que una de cada tres especies está en peligro crítico de extinción por esta creciente amenaza.

Deforestación.

Deforestación significa eliminar la cobertura de los árboles en aras de la agricultura, actividades mineras, represas, creación y mantenimiento de la infraestructura, expansión de las ciudades y otras consecuencias debidas a un crecimiento rápido de la población.

• Generación de mayores extensiones de tierra para la agricultura y la ganadería.

La expansión de los pastizales para la producción ganadera ha sido una de las causas de esta enorme destrucción.

- Tala inmoderada para extraer la madera.
- Incendios.
- Construcción de más espacios urbanos y rurales.
- Plagas y enfermedades de los árboles.

Consecuencias de la deforestación

La deforestación causa daños ambientales incalculables, porque libera miles de millones de toneladas de bióxido de carbono en la atmósfera y causa la extinción de miles de especies todos los años.

Emisiones de bióxido de carbono: Los árboles absorben el carbono de la atmósfera y lo convierten en tejido leñoso, la deforestación también contribuye a la acumulación de gases que producen el efecto de invernadero al destruir valiosos "sumideros de carbono".

Degradación del suelo: Los frágiles suelos forestales sólo pueden sustentar una vida abundante porque las hojas y las ramas que caen proporcionan nutrientes, por la protección que les proporciona el follaje forestal contra el sol ardiente y las lluvias torrenciales.

Pérdida de biodiversidad: Los expertos estiman que en el curso de un decenio se extingue entre el 2 por ciento y el 5 por ciento del total de las especies de los bosques lluviosos, debido en gran parte a la pérdida de su hábitat por causa de la deforestación.

5.6.3.2. COBERTURAS VEGETALES COMO HABITATS PARA LAS ESPECIES DE FAUNA SILVESTRE

Las especies suelen presentar patrones de distribución discontinuos producidos por la variación espacial de las condiciones ambientales que determinan la calidad de sus hábitats (Figura 190). Además, el régimen natural de perturbaciones – gaps - producidos por la caída de grandes árboles, corrimientos de tierra, inundaciones, incendios, huracanes, etc, los cuales dan lugar a cambios continuos en la estructura del territorio generando un paisaje heterogéneo. No es este fragmentado natural, sin embargo, el que preocupa desde una perspectiva conservacionista, sino su atomización adicional por causa de la acción humana (Hansson, 1995).

Figura 190. Perturbaciones por deforestación registradas en el departamento de Córdoba.

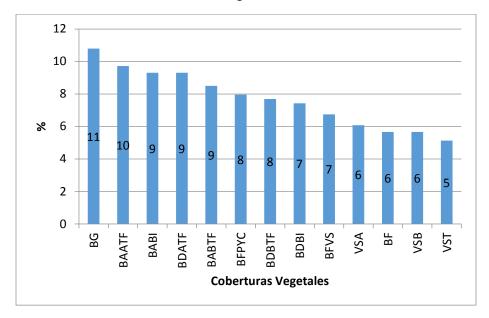
Fuente: Elaboración equipo técnico.

Una imagen muy familiar, por ejemplo, es la destrucción y fragmentación de los bosques por la expansión de cultivos y pastizales, o la eliminación de los terrenos agrícolas en beneficio de las áreas urbanas (Figura 191). En todos estos casos, las especies ven mermar el territorio disponible a la vez que se enfrentan a una creciente disminución de sus poblaciones. Este proceso es tan antiguo como la expansión agrícola de la humanidad, solo que ahora se ha intensificado por una capacidad tecnológica que no conoce barreras. De esta forma, el hombre ha alterado en su propio beneficio la mayor parte de la tierra emergida útil (Loh, 2004)No ha de extrañar, por tanto, que la reducción y fragmentación de los hábitats naturales o semi-naturales de nuestro planeta, con su secuela de pérdida de especies, esté considerada como una de las amenazas más frecuentes y ubicuas para la conservación de la biodiversidad (Turner, 1996).

Figura 191. Deforestación causada por la ampliación de la frontera agropecuaria.

Fuente: Elaboración equipo técnico.

Como se presenta en la


Figura 192, más del 11% de las especies de fauna silvestre asociadas a coberturas vegetales fueron registradas en el Bosque de Galería (BG), seguido por el Bosque Abierto Alto de Tierra Firme (BAATF) con 10% y Bosque Abierto Bajo Inundable (BABI), Bosque Denso Alto de Tierra Firme (BDATF) y Bosque Abierto Bajo de Tierra Firme (BABTF) con el 9%.

A su vez las coberturas que presentaron 6% o menos de las especies de fauna silvestre asociadas, son aquellas en las que es evidente el alto grado de intervención antrópica como la Vegetación Secundaria en Transición (VST), Vegetación Secundaria Baja (VSB), Bosque Fragmentado (BF) y Vegetación Secundaria Alta (VSA).

Figura 192. Distribución de especies de fauna silvestre (%) registradas por cobertura vegetal.

Fuente: Elaboración equipo técnico.

5.6.3.3. Conectividad Ecológica

De acuerdo a los resultados obtenidos en la caracterización de flora y fauna, fue posible identificar que la única cobertura boscosa presente en el departamento de córdoba que aún puede proveer a las especies de fauna silvestre, algún grado de interconectividad ecológica pese a su alto grado de intervención antrópica es el Bosque de Galería (BG).

Como se puede observar en la

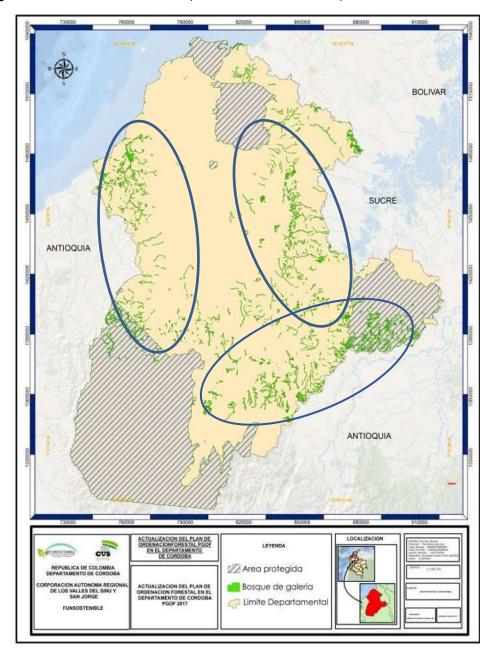


Figura 193, el Bosque de Galería también provee algún grado de interconectividad entre las Áreas Protegidas del departamento brindando a las especies de fauna silvestre seguridad y alimentación en su movimiento de un área a otra. Es de esta manera que se puede unir el complejo cenagoso del bajo Sinú con la ciénaga de Ayapel y esta con el Nudo de Paramillo.

Figura 193. Distribución del Bosque de Galería en el departamento de Córdoba.

Fuente: Elaboración equipo técnico.

5.7. Aspectos sociales y culturales

El nombre del departamento fue dado en honor al general José María Córdova, como homenaje al prócer de la independencia por su importante participación en la libertad de Colombia. En el proceso de constitución y avance del departamento se pueden ver tres etapas de gran relevancia en la construcción, desarrollo y conformación del

departamento: Precolombina que va de la aparición de los primeros pueblos que cruzaron por el río Sinú procedentes de Norteamérica (hace más de 6.000 años), hasta 1501, fecha en la que arribó la primera expedición española. (Banco de la República, 2009).

Colonial, período comprendido entre 1501 hasta la emancipación española en los años veinte en el siglo XIX. En este tiempo los españoles, fundaron ciudades, impusieron un nuevo régimen económico, político, administrativo y religioso, mezclándose con ellos como lo demuestra la tipología racial existente en la región. La zona costera de Córdoba fue reconocida por Rodrigo de Bastidas en 1501, quien arribó a la bahía de Cispatá y descubrió las bocas del río Sinú y las islas Fuerte y Tortuguilla; posteriormente llegaron Alonso de Ojeda, Francisco Pizarro y Martín Fernández de Enciso quien se internó por el río Sinú hacia el interior, en busca de riquezas. Fundando poblaciones como Chimá (1573), San Andrés de Sotavento (1600), Los Córdobas (1621) y Momíl (1693), entre otras. Durante este período Córdoba perteneció a la Provincia de Cartagena ((Gobernación de Córdoba, 2012).

Republicana; Comprende desde los años del grito de independencia (1810-1819) hasta nuestros días. Sin embargo, esta etapa está delimitada por el año de 1951, año en que se creó el departamento de Córdoba, estableciéndose hasta la fecha una etapa Pre-Segregacional y posterior a ella una etapa Post-Segregacional. El departamento fue creado a expensas del gran Bolívar, que abarcaba los departamentos de Bolívar, Córdoba y Sucre

La principal fuente económica del departamento de Córdoba es la ganadería, siendo uno de los más importantes centros ganaderos del país. La agricultura cuenta con una de las regiones potencialmente más ricas en los valles del río Sinú y San Jorge. Los principales cultivos son el maíz tradicional, maíz tecnificado, algodón, sorgo, arroz secano manual, arroz secano mecanizado, arroz riego, yuca, plátano y ñame. (Banco de la República, 2009)

En territorio del departamento de Córdoba cuenta con yacimientos de caliza, carbonato de calcio, oro, plata, platino, carbón, gas natural e igualmente presenta posibilidades petrolíferas; a su vez, es el segundo generador de energía eléctrica a nivel nacional, desarrollo piscícola y conservación de bosques, entre otros. El sector industrial y minero se concentra en la producción de ferroníquel en Cerromatoso, municipio de Montelíbano.

5.7.1. <u>Procesos de conformación del territorio</u>

El departamento de Córdoba, territorio que se ubicaba en el sur del gran Bolívar, al que en el pasado se conocía por Mexión, alberga desde 800 años a.c. a los indios zenúes, a quienes también se les denominó Señores del Valle del Sol. Estos indígenas habitaron 103 asentamientos, donde alcanzaron un avanzado nivel de organización económica y social. Los indígenas zenúes distribuyeron su territorio en tres grandes señoríos:

Primero, la Sacro-Orfebre con el nombre de Finzenú, que comprendía las áreas de Tolú, San Benito de Abad, Ayapel y el valle del Sinú; **segundo**, la Agro-Hidráulica denominada Panzenú, que se ubicaba en la hoya del río San Jorge; **tercero**, la Montano-Aurífera que recibió el nombre de Zenúfana, la cual gobernaba entre las riberas del río Cauca hasta las sabanas de Aburrá en lo que es actualmente el departamento de Antioquia (Herrera, 1992; Gordón, 1983; Abad, 1999). Pese a que estas poblaciones se ubicaban en áreas inundables, sorprende la ingeniería hidráulica que les permitió aprovechar las bondades

de las aguas provenientes de los ríos Sinú, San Jorge y Cauca. Los vestigios arqueológicos dan evidencia de que estas comunidades prehispánicas crearon canales de drenaje perpendiculares al cauce principal, especialmente en la parte baja de los ríos Sinú y San Jorge.

Aunque los europeos ejercieron inicialmente actividades principalmente extractivas, también incluyeron nuevas formas de actividades económicas. Llevaron por primera vez el ganado a la región, lo cual cambió la base económica del Sinú y del Caribe en general, donde la ganadería se estableció como el principal motor de la economía a mediados del siglo XIX y bien entrado el siglo XX. Esta influencia se mantiene incluso en épocas recientes en el departamento de Córdoba

A mediados del siglo XIX, Luis Striffler recorrió los ríos San Jorge y Sinú, y describió la abundancia de los recursos naturales y la forma de producción de la ciénaga de Doña Luisa, Ayapel. (Striffler 1993, pp. 58-60). Sobre del paisaje montañoso de la Serranía de San Jerónimo de Ayapel que se divisa desde la ciénaga Striffler dijo: "Esta selva, tan favorablemente dispuesta para la extracción de sus producciones, es el patrimonio de los agricultores de Ayapel. Muchos de ellos han conservado su raza primitiva indígena (...); pero en el día muchos negros viven con ellos en perfecta igualdad de derechos". (Striffler, 1993, pp. 113-115) (Banco de la República, 2009).

El objetivo inicial de estos franceses eran los yacimientos de oro, pero en ausencia de ello se dedicaron a ejercer actividades como la ganadería, agricultura y explotación maderera. Esta última actividad también atrajo inmigrantes norteamericanos, quienes llegaron a ejercerla en la región en 1883. Según Viloria (2003), la actividad maderera fue primordial en el condicionamiento de amplias zonas que posteriormente fueron explotadas en la ganadería y agricultura en las cuencas de los ríos Sinú y San Jorge.

La historia del departamento enseña que las desmovilizaciones no necesariamente han desembocado en un ambiente de paz y de progreso. Es así como después de la desmovilización de las guerrillas liberales en los años cincuenta, volvieron nuevos ciclos de violencia que a su turno repercutieron en el nacimiento del Ejército Popular de Liberación, EPL. A su turno, después de la desmovilización del EPL, las Farc, llenaron parte de los espacios que la otra agrupación guerrillera dejó (Gobernación de Córdoba, 1996)

En este sentido, es de especial relevancia la zona de Paramillo al sur, en límites con Antioquia, que durante el período colonial sirvió de refugio a reductos de las etnias Zenú y a negros fugados de las minas de oro del Bajo Cauca antioqueño, así como a los indígenas Embera Katío procedentes del Chocó. Para 1950, se surtió una segunda colonización, de tipo agrícola costeña y antioqueña y a partir de ahí, con la disputa de los partidos liberal y conservador, se convirtió en escenario de confrontación, donde fuerzas externas llegaban, desalojaban a los moradores anteriores y hacían su propio repoblamiento. (Gobernación de Córdoba, 1996)

5.7.1.1. Derechos legales y/o tradicionales de la población establecida

El resguardo Indígena Zenú de San Andrés De Sotavento, Córdoba – Sucre: se encuentra conformado por 7 municipios del Departamento de Córdoba y 8 del Departamento de Sucre. Los municipios en Córdoba son: San Andrés de Sotavento, Sahagún, Ciénaga de Oro, Chinú, Chimá, Momíl y Purísima; de este mismo Resguardo encontramos asentamientos en los municipios de San Antero, Lorica, San Pelayo y Cereté. De igual forma se encuentra en el municipio de Momíl la Asociación de Cabildos de San Pedro de Alcántara que la constituyen 12 cabildos menores que poseen tierras adjudicadas por INCORA. (Gobernación de Córdoba, 2012) El Resguardo Indígena Zenú del Alto San Jorge, se encuentra ubicado entre los municipios de Puerto Libertador y Montelíbano, están en vía de constitución y cuenta con tierras adjudicadas por el INCORA. Entre los indígenas Zenues del reguardo indígena de San Andrés de Sotavento el 55% son Mujeres y el 45% hombres (Banco de la República, 2009).

El resguardo Indígena Embera Katío del Alto Sinú, se encuentra dividido en dos: el IBAGADO y el KARAGABY, ubicados en el Municipio de Tierralta. El resguardo IBAGADO se encuentra representado por los Cabildos Mayores de los Ríos Verde y Sinú, están cobijados por las medidas cautelares de protección del pueblo Embera Katío otorgada por la Corte Interamericana de Derechos Humanos –CIDH. El resguardo KARAGABY está conformado por: la Alianza de Cabildos de los Ríos Esmeralda y Fracción del Sinú, el Cabildo Mayor Tradicional Embera Katío, el Consejo Tradicional de Cabildos. Con estas comunidades Embera Katío se está llevando a cabo el proyecto de Comunidades en Riesgos del Ministerio del Interior y de Justicia. Resguardo indígena DOCHAMÁ, conformado por la comunidad Embera Katío que se encuentra en los Municipios de Puerto Libertador y Montelíbano. (Gobernación de Córdoba, 2012)

La población afrocolombiana surgió con la expedición en 1851 de la Ley de libertad de los esclavos, que abolió legalmente la esclavitud y la esclavización de personas en Colombia. Los ex esclavos, los cimarrones y sus descendientes quedaron en el país como ocupantes de hecho, más no en derecho y con derechos. Quedaron ocupando el territorio, pero ilegales, por haber sido excluidos del ordenamiento jurídico republicano y del Estado de Derecho, e ignorados en las leyes como sujetos jurídicos con derechos étnicos y ciudadanos especiales. El Departamento Nacional de Estadísticas (DANE, 2015) informa que en el departamento de Córdoba tienen asentamiento 191.797 personas reconocidas como negras, mulatas o afrocolombianas. En el Ministerio de Interior, están registradas 63 Consejos Comunitarios Afrocolombianos, conformadas por un total de 14.785 personas distribuidos en los municipios de Tierralta, Lorica, Montería, Puerto Escondido, San Antero, Planeta Rica, Purísima, Moñitos, Puerto Libertador, Sahagún, Cotorra, San Pelayo, Los Córdobas, Canalete, Valencia, San Carlos, Ayapel, Chimá, San Andrés de Sotavento, San Bernardo del Viento, San Carlos, Cereté, Momíl, La Apartada, Ciénaga de Oro, Pueblo Nuevo, Tuchín, Chinú, Buenavista, San José de Uré y Chimá. (Banco de la República, 2009)

5.7.1.2. Procesos de colonización

En el período prehispánico la zona del bajo San Jorge fue aprovechada por las culturas zenúes para la producción agrícola e íctica y manejada a través de un sistema hidráulico que reguló las inundaciones por medio de camellones y caños, armonizando así el

régimen irregular de inundaciones. El territorio de la Provincia del Gran Zenú lo conforman tres provincias: Zenufana, Finzenú y Panzenú. En esta última, localizada en el valle del río San Jorge, es donde se encuentra la ciénaga de Ayapel, también llamada Doña Luisa. (Banco de la República, 2009)

El municipio de Ayapel fue receptor de emigrantes del interior del país y de sirio libaneses que se establecieron allí atraídos por las posibilidades de comercio, la riqueza de los bosques maderables, la fertilidad de sus suelos, la fauna silvestre, la pesca y riqueza de los recursos hidrobiológicos de los ríos Sinú, San Jorge y las ciénagas de Ayapel, grande de Lorica. Para el periodo 1880-1930, llegaron a estos territorios un número considerable de inmigrantes de orígenes árabes, quienes se iniciaron en las actividades económicas comenzadas por los grupos de inmigrantes mencionados, además de la explotación del trasporte fluvial y el comercio entre los ríos Sinú-Atrato y Cartagena. En conjunto, cada uno de los aportes de estas culturas y los rastros de los primeros asentamientos en el Sinú determinaron la estructura económica, social y fluvial de lo que hoy es esta región. (Banco de la República, 2009)

Los primeros asentamientos urbanos se ubicaron en los alrededores del puerto fluvial, al igual que la iglesia y la plaza pública. Cabe anotar que desde el siglo XIX los antioqueños vienen colonizando municipios del bajo Cauca y los valles del Río San Jorge y Sinú, conformando haciendas que agrupan campesinos nativos y/o trabajadores a destajo, pero cuyos propietarios y administradores son de origen antioqueño.

Continuando con los fenómenos que podemos percibir a partir de las migraciones internas, las ciudades intermedias de nuestro país se fueron formando a lo largo del siglo XIX y XX. Este suceso histórico fue posible por las migraciones permanentes de pobladores rurales, quienes en búsqueda de mejores condiciones de vida se movilizaban a regiones con mejores perspectivas, tanto económicas como sociales. Pero en ciertas ocasiones estos desplazamientos no respondían a las dinámicas tradicionales de salir de un espacio rural hacia otro urbano, sino que los campesinos iban a otras zonas rurales, como fue el fenómeno de la colonización de los territorios del sur y del occidente del país. (Banco de la República, 2009)

Para 1950, se surtió una segunda colonización, de tipo agrícola costeña y antioqueña y a partir de ahí, con la disputa de los partidos liberal y conservador, se convirtió en escenario de confrontación, donde fuerzas externas llegaban, desalojaban a los moradores anteriores y hacían su propio repoblamiento. Dicha zona ha vivido al ritmo de las constantes luchas territoriales entre los grupos insurgentes (Farc, ELN, ERP y EPL), de las autodefensas (ACCU y AUC) y actualmente de bandas criminales emergentes (Los Traquetos y los Vencedores de San Jorge), constituyéndose en un codiciado corredor estratégico que comunica al Urabá con el interior del país. (Corporación Nuevo arco Iris, 2008)

El tema del desplazamiento forzado aparece en un contexto particular, no es un fenómeno de los últimos 15 años, por el contrario, ha ocurrido en el país en diferentes períodos. El conflicto socio-político vivido en el país desde mediados del siglo XX ha posibilitado la continuación de la apropiación y dominio de grandes extensiones de tierras por parte de los grupos armados al margen de la ley. Según Flor Edilma Osorio, estos procesos han ocurrido "en zonas de colonización, municipios con elevados niveles de necesidades básicas insatisfechas, áreas de frontera, zonas de cultivos ilícitos y territorios donde se proyectan los intereses económicos del mercado global. (Universidad Pontificia Javeriana de Colombia, 2012)

5.7.1.3. Características socioculturales de la región

EL patrimonio cultural inmaterial, que se transmite de generación en generación, es recreado constantemente por las comunidades y grupos en función de su entorno, su interacción con la naturaleza y su historia, infundiéndoles un sentimiento de identidad y continuidad y contribuyendo así a promover el respeto de la diversidad cultural y la creatividad humana. (UNESCO, 2003)

El departamento del Córdoba ofrece innumerables atractivos de carácter cultural como el festival de bandas folclóricas en Planeta Rica, el festival Nacional del Porro en San Pelayo y en lo tradicional en varias localidades, con las fiestas de toros o corralejas; se llevan a cabo algunos festivales, en donde se expone las tradiciones culturales a través de representaciones y expresiones en la danza, la música, el canto. Las técnicas artesanales tradicionales, son manifestación expresiva más tangible que se ven representadas con productos artesanales de gran reconocimiento nacional como el sombrero vueltiao (declarado símbolo de Colombia), las abarcas de tres puntas, manillas, en general productos de cestería. Productos estos, que se llevan a la competencia en la Feria Nacional Artesanal que se celebra en Montería, en donde se busca, no solo el mercado de la producción sino, el intercambio de conocimientos que son imprescindibles para que no desaparezca su producción. Así como los turísticos, desde el punto de vista natural, cultural y científico. Entre los principales lugares de interés turístico sobresalen Montería, Lorica, Ciénaga de Oro, Ayapel, Montelíbano, en la faja costera: Puerto Escondido, Moñitos, San Bernardo del viento y San Antero; y en el paisaje de montañas, la zona del Parque Nacional Natural Paramillo (reserva natural que alberga una de las mayores concentraciones de fauna y flora nativa del norte de Suramérica y donde nacen los ríos Sinú y San Jorge), además de la represa de Urrá, con su embalse, el desarrollo piscícola y conservación de bosques. A nivel regional son importantes los reinados nacionales de la Ganadería y la feria agropecuaria artesanal celebrada en Montería, y otros festivales. (COLCULTURA, sf)

El turismo es un aspecto macroeconómico considerado muy beneficioso para los reinados, concursos y para las fiestas y, además, es visto como una alternativa potencial económica de Córdoba. Adicionalmente, la historia, las tradiciones culturales y la gastronomía pueden ser productos turísticos culturales que no han sido explotados aún.

5.7.1.4. Áreas de interés arqueológico, cultural y paisajístico

Tres zonas plenamente identificadas, conformaron un gran territorio que partía de la zona central de la Costa Atlántica Colombiana, sobre el mar Caribe y se adentraba hasta la parte baja y media del Río Cauca, pasando por los Valles de los Ríos Sinú y San Jorge. Era el territorio de los Zenúes, que soportaron por espacio de un cuarto de siglo, la pretendida dominación de los Conquistadores Españoles. Se denominaba: Finzenú y comprendía la parte norte del gran territorio destacándose el área del Río Sinú. Panzenú, situado sobre el valle del Río San Jorge y parte del Cauca. Zenúfana, que comprendía la parte sur. Los Zenúes demostraron su bravura y orgullo frente a la acción desoladora de los conquistadores. Sus valores culturales, fueron expresados en orfebrería y la cerámica ((ICANH, 2017)

Se trataba de un pueblo que alcanzó considerables avances tecnológicos en el manejo de los principales recursos naturales de que disponían: tierra, agua y fauna destacándose la explotación piscícola. Aún quedan vestigios de las obras hidráulicas desarrolladas en la parte baja del río San Jorge y en proximidades de la parte baja del río Sinú. En la primera fueron centenares las hectáreas sobre las cuales construyeron obras calificadas como de alta ingeniería para controlar las inundaciones y hacer un mejor uso del agua en las labores agrícolas y de la fauna piscícola. (Banco de la República, 2009)

La región del río San Jorge fue habitada gradualmente durante más de 2000 años, desde antes del siglo IX a.C. hasta los siglos XV y XVII d.C., en diferentes etapas de ocupación. Sus antiguos habitantes se distinguieron social y técnicamente por el manejo hidráulico que impusieron en la región del bajo río San Jorge, basado en un sistema de canales artificiales, camellones para el manejo agrícola y montículos artificiales donde construyeron sus viviendas y enterraron a sus deudos. (Plazas et al, 1993). En la zona de media de la cuenca del río san Jorge se tiene 94 puntos registrados, como sitios arqueológicos, mientras que en el alto Sinú, el registro es de 94, como se puede ver en la

Tabla 300. (ICANH, 2017).

Tabla 300 Sitios arqueológicos por cuencas y municipios

Cuenca		Municipio	Sitios arqueológicos	Yacimient os
Rio	San	Puerto libertador	19	29
Jorge		Montelíbano	45	75
		Buenavista	4	9
		Planeta rica	14	15
		Pueblo Nuevo	2	7
		Ayapel	9	10
Río Sir	าบ์	Tierralta	94	

Fuente: Elaboración Equipo Técnico a partir de información del ICANH

Actualmente el ICANH avanza en la refinación de la información sistematizada para los departamentos de Córdoba, Antioquia, Chocó, Caldas, Risaralda, Arauca, Casanare, Vichada, Meta, Guainía, Guaviare, Vaupés, Caquetá, Putumayo y Amazonas, producto del convenio con las Universidades de Caldas, Antioquia y Tecnológica de Pereira. Así mismo, adelanta la actualización del sistema con aquella información que se ha producido a partir de febrero de 2010 para todo el país.

5.7.2. Población humana

El departamento de Córdoba, se divide política y administrativamente en 30 municipios, de ellos, Tuchín y San José de Uré creados por la Asamblea departamental en junio de 2007. Y en localización espacial en cinco subregiones: Alto Sinú, con los municipios de Tierralta y Valencia. Subregión San Jorge conformada por Planeta Rica, Buenavista, Ayapel, Montelíbano, Puerto Libertador, San José de Uré y La Apartada. Subregión Sinú Medio, Montería, Cereté, San Pelayo, Ciénaga de Oro y San Carlos. Subregión bajo Sinú formada por Lorica, Cotorra, Chimá y Momíl. Subregión de Sabana, Chinú, Sahagún, Tuchín, Pueblo Nuevo y San Andrés de Sotavento. Subregión Costera, Canalete, Los Córdobas, Puerto Escondido, Moñitos, San Bernardo del viento y San Antero Con una

población según censo 2005 de 1.472.699 habitantes, de los cuales 743.886 viven en las cabeceras municipales, mientras que 728.813 lo hacen en la zona rural; de lo anterior el 76,10% de la población rural y el 42,47% de población urbana tienen necesidades básicas insatisfechas e indicadores como el desempleo y el analfabetismo con cifras de las más altos del país (Dane, www.dane.gov.co Diagnóstico Departamental Córdoba). El 10,39% de los habitantes son indígenas pertenecientes a los grupos Embera Katío y Zenú y el 13,21% afrocolombianos. (Gobernación de Córdoba, 2016)

5.7.2.1. Localización espacial de los asentamientos humanos

La localización espacial de Córdoba se da a lo largo de las cuencas de los ríos Sinú y San Jorge, en donde se localizan la mayoría de asentamientos del departamento. Sobre la franja costera se ubican seis municipios y los municipios como Chinú, Sahagún, San Carlos, San Andrés de Sotavento y Tuchín, se encuentran localizados en las áreas de la región sabanas localizados en los límites con el departamento de Sucre.

El departamento se puede dividir en dos grandes regiones según su distribución geográfica: la primera, conformada por el norte y el centro de la región, es de tierras planas, donde se localizan los valles de los ríos Sinú y San Jorge y se concentran la mayoría de los municipios. La segunda gran región se ubica al sur del departamento, es montañosa con relieves pertenecientes a las Serranías de Abibe, San Jerónimo y Ayapel, que son prolongaciones de la cordillera Occidental, en donde se encuentra el Parque Natural de Paramillo

Su capital Montería, concentra el 26% de la población total y el PIB departamental constituye el 2,30% del PIB nacional. Córdoba es uno de los 5 departamentos más pobres del país, pues un 28% de su población se encuentra bajo la línea de indigencia y su cobertura en acueducto apenas llega a un 33%5 (Gobernación de Córdoba, 2016).

5.7.2.2. Movilidad y migraciones de la población

La tenencia y concentración de la tierra en Córdoba siempre ha sido un factor de conflicto en el departamento, pues ha originado luchas que dieron origen a manifestaciones de intento de reforma agraria violentas y no violentas en la región. Sin embargo, actualmente según el Instituto Geográfico Agustín Codazzi, el 77.1% de los predios de Córdoba menores de 20 hectáreas ocupan el 15.7% de la superficie, mientras que el 4.5% de los predios mayores de 100 hectáreas ocupan el 51% de la superficie. Así mismo, el Incora, en los 40 años que funcionó en Córdoba (1963–2003) tituló 387.391 hectáreas de baldíos y adjudicó 134.174 hectáreas por otras modalidades, de los cuales cerca del 40% de estas tierras habían sido apropiadas de manera irregular y forzada; el INCODER por su parte recibió del Incora 2.948 solicitudes de familias desplazadas aspirantes a subsidios de tierras, de las cuales 969 (32.8%) dejaron abandonadas 38.738 hectáreas tanto en Córdoba, como en el Urabá antioqueño y chocoano (Gobernación de Córdoba, 2016)

El éxodo en el departamento se ha caracterizado por ser interno y de tipo colectivo. El conflicto armado que se ha vivido en Colombia desde mediados del siglo pasado, ha sido intenso y cruento que ha repercutido en el desplazamiento forzado de comunidades,

familias y personas. Por lo general, el ciclo se realiza a partir de la expulsión de las veredas, caseríos o lugares de fincas; pasan a las cabeceras de corregimientos cercanos, donde una parte se queda y la mayoría avanza hacia la cabecera del municipio o de otros vecinos y un número más pequeño continúa el éxodo a poblaciones más retiradas como Planeta Rica, Montería, Lorica, Cereté o localidades del Bajo Cauca o Sucre.

Tabla 301. Personas afectadas por la violencia en el departamento de Córdoba.

MUNICIPIO	VÍCTIMAS	DESPLAZADOS	INDÍGENAS	AFRODESCENDIENTES
			_	
Ayapel	4731	4439	5	206
Buenavista	2821	2659	14	447
Canalete	3415	3303	0	127
Cereté	7836	7421	229	524
Chima	513	424	1	224
Chinú	2942	2684	34	131
Ciénaga De Oro	2171	1940	276	11 <i>7</i>
Cotorra26	2034	1926	3	165
La Apartada	4807	4632	26	332
Lorica	3405	3058	229	401
Los Córdobas	4414	4307	41	345
Momíl	745	640	14	102
Montelíbano	36326	35565	983	5564
Montería	128382	109622	677	11143
Moñitos	3540	3483	82	876
Planeta Rica	12261	11537	89	1141
Pueblo Nuevo	4012	3890	487	162
Puerto Escondido	2381	2263	4	187
Puerto Libertador	34654	34248	332	3205
Purísima	877	823	10	66
Sahagún	5187	4570	34	291
San Andrés Sotavento	2886	2653	80	237
San Antero	799	669	2	34
San Bernardo Viento	1648	1534	17	295
San Carlos	1817	1702	17	444
San José de Uré	6010	5896	264	235
San Pelayo	5522	5164	9	437
Tierralta	43872	42694	1210	3425
Tuchín	1026	865	97	26
Valencia	24670	24310	58	4774
TOTAL	348673	325291	5155	34600

Fuente: Elaboración equipo técnico a partir de información de la RED NACIONAL DE INFORMACIÓN: RNI-Sistema Nacional de Atención y Reparación de Victimas, 2017

Los municipios que sobresalen como expulsores fueron Tierralta (42694), Puerto Libertador (34248), Montelíbano (35565), Valencia (24310) y Montería (109622). En su conjunto, estas poblaciones representan el 75.57% del total de los desplazados. En los grupos de minorías étnicas se puede observar la afectación en los afro descendientes en 10.6%, en los mismos municipios de afectación que se dio a la población en general. Los grupos indígenas

fueron afectados en especial en los municipios de Tierralta y Montelíbano con 1210 y 983 personas respectivamente, con un 42,6% de la totalidad de indígenas desplazados en el departamento. (Red Nacional de Información . Sistema Nacional de atención y Repación de víctimas, 2017)

En cuanto a la recepción, los municipios que mayor cantidad de personas desplazadas albergaron, está Montería con 31%, Puerto Libertador con 16% y Montelíbano con 12%, que constituyen el 59% de la población desplazada recibida en el departamento. (RED NACIONAL DE INFORMACIÓN: RNI-Sistema Nacional de Atención y Reparación de Victimas, 2017) Se deduce entonces que municipios como Montelíbano y Puerto Libertador son municipios expulsores y receptores al mismo tiempo, donde la tendencia actual pasa del desplazamiento colectivo al individual por causa de la confrontación armada y de factores como el reclutamiento forzado o voluntario de jóvenes; al igual que la capital departamental, que sigue atrayendo desplazados también por calamidades naturales como las inundaciones sufridas en la región desde 2006. A pesar de los programas de reubicación, los retornos y de ser una ciudad de paso para muchos, el número de desplazados sigue en ascenso en la capital; en este sentido existen al menos 31 asentamientos subnormales receptores de población desplazada en Montería (Gobernación de Córdoba, 2016).

5.7.2.3. Tasa de crecimiento demográfico

Estudios demográficos del DANE revelan que la población colombiana entre el 1995 y 2020 crecerá con una tasa media anual de crecimiento exponencial nacional del 1,18% y situando a Córdoba en un crecimiento del 1,50%. Con una tasa bruta de natalidad (por mil) de 24,37 en el departamento, siendo la media nacional es de 19,86 y la tasa bruta de mortalidad (por mil) del 5,81 igual al nacional.

Comparando la información censal de los años 1985, 1993 y 2005 los cambios demográficos muestran para el departamento una ligera disminución entre la población menor de 20 años, e incrementos aunque no muy significativos, entre los mayores de 20 años. No obstante, en el departamento de Córdoba en los últimos años han disminuido las muertes violentas causadas por enfrentamientos entre grupos armados con relación a años anteriores y este factor fue probablemente causa principal de cambios en la estructura demográfica, como se puede observar en la tabla 26, por su impacto en población joven (15 – 30 años) (Gobernación de Córdoba, 2016).

Tabla 302. Población etérea de Córdoba

Rango de edades	Población
0-6	247.178
7-14	269.071
15-17	101.936
18-26	266.238
27-59	580.207
Más de 60	142.889
Total	1.607.519

Fuente: Equipo técnico a partir del Plan de Desarrollo de Córdoba 2016-2019

El Departamento de Córdoba cuenta, según proyección del DANE a 2015 con 1.709.644 habitantes, población proyectada a partir último censo realizado. Ubicados en la zona urbana 903.061 habitantes para un 52,82 % y 806.583 habitantes en el área rural, lo que representa el 47,17%. Invirtiendo la cifra a la observada en el año 2005; en donde la población urbana estaba sobre un 52% y la rural era cercana al 48%. Llevando al departamento a una urbanización marcada a los centros poblados, en especial a su capital en donde se prevé una crecimiento acelerado de acuerdo al estudio de Huellas humanas, adelantado por La Financiera de Desarrollo Territorial, Findeter y la firma Geoadaptive, en donde, una de sus conclusiones es "En 15 años la población de la capital cordobesa se duplicará, es decir que si el número de habitantes según censo Dane de 2005 era de 409.476 personas, sin contar con el aumento demográfico desde que se hizo el conteo hace nueve años, en el 2029 será al menos de 818.952 ciudadanos". (FINDETER, 2014)

5.7.3. Servicios e infraestructura social

5.7.3.1. Salud

La Salud Pública como especialidad sanitaria que depende del estado, se centra por un lado, en el ejercicio y el mantenimiento de la salud de la población, incluyendo tareas de prevención, y por el otro lado, en el control de las enfermedades y en el despliegue de un trabajo especial orientado a la erradicación de las mismas. En definitiva, la salud pública se ocupa de mejorar la salud de su población, niñas, niños, adolescentes, jóvenes, mujeres, hombres, ancianos, pero también de ejecutar diversas acciones que eliminen o manejen y atiendan aquellas enfermedades y/o afecciones que causan mortalidad en la población en general.

En lo referente a la prestación de servicios de salud en el Departamento, la oferta de atención está organizada en seis (6) subregiones: Red del Alto Sinú, Red San Jorge, Red del Medio Sinú, Red del Bajo Sinú, Red de la Sabana y Red de la subregión Costera, con una cobertura poblacional como se muestra en la tabla Tabla 303 (Gobernación de Córdoba, 2016)

Tabla 303 Cobertura Salud departamento de Córdoba

Red	Nombre del municipio	Población cubierta 2014	Población cubierta 2015
Red Del Alto Sinú	Tierralta	97.553	99.991
Montería	Valencia	42.011	42.971
Red de la subregión	Ayapel	50.201	51.164
San Jorge	Buenavista	21.363	21.628
	La Apartada	14.934	15.204
	Montelíbano	79.543	81.341
	Planeta Rica	66.644	67.188
	Puerto Libertador	46.148	47.643
	San José de Uré	10.823	10.993
Red de la subregión	Montería	434.950	441.301
Sinú medio	Cereté	90.785	91.525
	Ciénaga de oro	63.031	64.226
	San Carlos	26.737	27.104
	San Pelayo	43.132	43.584
Red de la Subregión	Cotorra	15.415	15.447

Red	Nombre del municipio	Población cubierta 2014	Población cubierta 2015
bajo Sinú	Chima	14.886	15.018
	Purísima	15.027	15.073
	Lorica	117.439	118.237
	Momíl	14.752	14.864
Red de la Subregión	Sahagún	89.661	89.867
Sabana	San Andrés de Sotavento	41.657	47.747
	Pueblo Nuevo	37.791	38.559
	Chinú	47.792	48.304
	Tuchín	36.860	37.716
Red de la Subregión	Canalete	21.060	21.548
Costera	Moñitos	27.009	27.443
	San Antero	30.798	31.365
	San Bernardo del Viento	34.418	34.782
	Puerto Escondido	28.296	29.141
	Los Córdobas	23.066	23.760
Total departamento	L'action de l'action de la constitute de	1.683.782	1.709.644

Fuente: Elaboración equipo técnico a partir de datos de la Secretaría de Salud departamental - 2016.

Para la atención en salud el Departamento cuenta con una infraestructura de atención de 1.147 prestadores, de los cuales, 31 son Empresas Sociales del Estado (ESE); de estas, 4 son Hospitales de mediana complejidad y 27 de primer nivel de atención o baja complejidad que cubren 30 municipios del departamento. El municipio de San José de Uré no cuenta con hospital público ni privado, a la fecha hay la construcción en curso de una ESE Pública con concepto favorable del Ministerio de Salud y Protección Social mas no incluida en el Plan Bienal, financiada con recursos de la resolución 1608 de 2013. Mientras que el municipio de Tuchín no cuenta con hospital público, si no que la atención se realiza a través de la IPS indígena Manexka (Gobernación de Córdoba, 2016).

La oferta hospitalaria es de 1,29 camas por 1000 habitantes, mostrando una brecha de 0,94, frente al estándar nacional de 2,23. En la actualidad se encuentran habilitadas 31 Instituciones Públicas (ESE) y 345 IPS privadas, la capacidad instalada de estos prestadores registra una distribución de 974 camas adultos, 370 camas pediátricas, 35 camas de cuidados intensivos pediátricas, 132 camas cuidado intensivo adultos, 321 camas para obstetricia, 117 camas intermedio neonatal, 113 camas intensivo neonatal, 60 camas cuidado intermedio pediátrico, 37 camas cuidado intermedio adulto, 78 salas quirófano, 46 salas de parto, 54 camas cuidado agudo mental, 38 camas cuidado básico neonatal, 194 camas psiquiatría, 12 camas unidades de quemados adultos, camas farmacodependencia 15, sillas hemodiálisis 170, sillas quimioterapia 26, camas trasplante progenitores hematopoyéticos 1, camas de institución de pacientes crónico 8, transporte asistencial básico 108 y transporte asistencial medicalizado 36 (Gobernación de Córdoba, 2016).

La red de prestadores del departamento de Córdoba actualmente concentra las actividades en la ESE Hospital San Jerónimo, el mayor Hospital de referencia del Departamento, ubicado en la capital del mismo, que genera concentración de usuarios y la congestión de los servicios de alta complejidad, así mismo, disminuyen la calidad y

desmejoran la oportunidad de los servicios. (Gobernación de Córdoba, Secretaría de Salud, 2017).

Tabla 304. Población registrada en SISBEN por municipios en el departamento de Córdoba

Municipio	SISBEN	-Registro al	oril 2017	Nivel Ré	égimen Su	bsidiado
	Fichas	Hogares	Personas	Nivel 1	Nivel 2	Personas
MONTERÍA	128.939	134.934	410.018	400.479	4.242	404721
AYAPEL	11.480 11.874 44.333		40.845	1.590	42435	
BUENAVISTA	4.212	4.417	20.465	17.208	1.302	18510
CANALETE	5.073	5.307	20.278	19.483	386	19869
CERETÉ	21.574	24.485	89.892	81.493	2.005	83498
CHIMÁ	3.291	4.016	14.493	13.497	415	13912
CHINÚ	11.421	11.504	44.555	41.568	727	42295
CIÉNAGA DE ORO	13.492	15.578	59.079	55.512	806	56318
COTORRA	4.094	5.759	18.245	17.654	250	17904
LA APARTADA	3.899	4.011	14.647	12.840	1.037	13877
LORICA	27.642	29.476	117.055	110.506	1.471	111977
LOS CÓRDOBAS	4.640	4.977	17.530	16.794	412	17206
MOMIL	3.269	3.746	16.914	15.173	502	15675
MONTELÍBANO	19.416	19.788	76.294	66.348	6.051	72399
MOÑITOS	6.148	6.230	26.535	24.904	804	25708
PLANETA RICA	15.834	16.415	72.449	68.383	1.995	70378
PUEBLO NUEVO	8.648	9.130	33.496	31.746	692	32438
PUERTO ESCONDIDO	6.086	6.659	24.032	23.040	377	23417
PUERTO LIBERTADOR	10.986	11.306	40.044	38.728	568	39296
PURÍSIMA DE LA						
CONCEPCIÓN	3.491	3.904	16.161	14.340	682	15022
Sahagún	26.233	27.436	98.424	80.505	5.624	86129
san andrés de						
SOTAVENTO	7.360	7.711	40.544	34.631	2.846	37477
SAN ANTERO	7.130	7.600	30.244	23.266	2.365	25631
SAN BERNARDO DEL						
VIENTO	9.168	9.537	33.466	31.754	616	32370
SAN CARLOS	5.834	6.769	23.373	22.463	506	22969
SAN JOSÉ DE URÉ	2.378	2.505	10.275	10.046	105	10151
SAN PELAYO	9.061	10.912	39.956	36.341	1.592	37933
TIERRALTA	23.050	24.383	89.260	84.429	1.899	86328
TUCHÍN	6.369	7.155	35.435	30.171	2.309	32480
VALENCIA	8.400	9.019	36.267	33.529	1.270	34799

Fuente: Equipo técnico a partir de base certificada nacional datos DNP, 2017

En el departamento de Córdoba, como en gran parte del territorio nacional el sistema Sisbén, se tiene como medio para la identificación de la población en situación de pobreza y vulnerabilidad, indicador que permite al Fondo de solidaridad y garantía

FOSYGA, fijar los valores de cobro en lo contributivo o en el subsidiado de acuerdo al nivel registrado; que en la salud se ha tomado como una guía para la prestación de los servicios. En Córdoba se tiene una población del 88% dentro del régimen subsidiado dadas las condiciones socioeconómicas identificadas en las diversas fichas del Sisben, lo que vemos reflejado en el cuadro anterior (Tabla 304) (DNP, 2017).

5.7.3.2. Sistemas tradicionales de producción y seguridad alimentaria

El Plan departamental de seguridad alimentaria del departamento de Córdoba, evidencia mediante la Encuesta Nacional de la Situación Nutricional- ENSIN 2010 presenta la problemática de inseguridad alimentaria en los diferentes grupos poblacionales, así: niños menores de 5 años, niños y jóvenes de 5 a 17 años, adultos de 18 a 64 años, adultos mayores, madres lactantes y gestantes y discapacitados y con mayor presencia en el área rural y en los niveles 1 y 2 del SISBEN, lo cual ratifica la relación existente entre la pobreza y las condiciones nutricionales de las poblaciones. Córdoba registra niveles de pobreza superior al 70%, de acuerdo con las estadísticas del Programa Nacional de desarrollo humano. Es importante anotar aquí, que si bien los grupos étnicos hicieron parte del proceso de formulación de este plan, la problemática, sus condiciones de vida y de alimentación no tienen documentación reciente, por lo que el desarrollo de planes de seguridad y soberanía alimentaria para estas comunidades, debe ser un tema central en el desarrollo e implementación de las políticas y planes locales de Seguridad Alimentaria Nacional-SAN en el departamento. (Gobernación de Córdoba, 2013)

El departamento de Córdoba durante el año 2012 se reportaron 2.374 casos de bajo peso al nacer, alcanzando un porcentaje de 8,17; en el año 2015 se notificaron 1.994 casos, para un porcentaje departamental del 5,3%. Los municipios que reportan el mayor número de casos fueron Montería, Tierralta, Lorica, Cerete y Montelíbano. En el año 2013 se registraron 10 casos mortalidad por y/o asociada a desnutrición, para una tasa de 5,6 por 100.000 menores de cinco años; en el año 2015 los casos notificados fueron 19 para una tasa de 8,7 por 100.000 menores de cinco años. Los resultados de la encuesta nacional de la situación nutricional –ENSIN- 2010, muestran que en el departamento la duración de la lactancia materna exclusiva fue de 1,1; la duración total de la lactancia materna 15,2 meses y la lactancia materna predominante 3,3 meses; la desnutrición crónica es del 16,6%, la global 3,4%. Los niños entre 6 y 59 meses presentan una prevalencia de anemia del 27,5%, en niños entre 5 y 12 años la prevalencia es de 8,9% (Gobernación de Córdoba, 2016)

5.7.3.3. Tasa de morbilidad

La morbilidad y mortalidad en los adolescentes y jóvenes está asociada al consumo de alcohol, accidentes de tránsito, violencia intrafamiliar y del conflicto armado y con menor frecuencia el suicidio como consecuencia de problemas mentales. El ejercicio de la sexualidad no responsable está generando en este grupo poblacional patologías tales

como el VIH/SIDA, ITS y las asociadas al proceso reproductivo como morbilidad materna extrema y mortalidad materna (Gobernación de Córdoba, 2016).

Por otro lado en el curso de vida primera infancia, las enfermedades no transmisibles, ocupan el segundo lugar entre las grandes causas de morbilidad en el periodo 2009-2012 con cifras de incidencia entre 30.27% y 31.02%. En poblaciones de 12 a 18 años se observaron incidencias entre 45.25 % y 47.29%, en la población de 14 a 26 años la incidencia varió entre un valor mínimo de 47.3 y 48.2%, en tanto que en la población de 27 a 59 años se presentaron tasas de 54.86 y 57.03%; finalmente en la población mayor de 60 años se establece el mayor riesgo dada la incidencia observada entre 60.09 y 63.07% (Gobernación de Córdoba, 2016).

5.7.3.4. Educación y analfabetismo

En lo referente a la asequibilidad o disponibilidad de la Infraestructura educativa, en los 27 municipios no certificados en educación del departamento prestan el servicio 429 Instituciones educativas, la Entidad Territorial Certificada en Córdoba dispone de 367 instituciones oficiales (86%) para la prestación del servicio educativo, de las cuales el 15% están ubicadas en el área urbana y el 71% en el área rural y el sector privado 62 instituciones (14%), de las cuales 11% están en el área urbana y 3% en el rural. Existe un total de 1.359 sedes oficiales en los 27 municipios como se observa en la Tabla 305.

Las nuevas Instituciones educativas del departamento vienen siendo diseñadas, construidas y dotadas de acuerdo a los parámetros establecidos para garantizar la seguridad de los estudiantes, el proceso educativo, las actividades recreativas y el acceso a los estudiantes con discapacidad, sin embargo, las instituciones educativas en un 80% aproximadamente presentan limitaciones por algún de los parámetros anteriormente citados, lo cual amerita la elaboración de un diagnóstico de la real situación de infraestructura y dotación de cada institución educativa y cada una de sus sedes con la finalidad de formular proyectos para la gestión y ejecución de recursos en la vigencia 2016 y siguientes. (Gobernación de Córdoba, 2016)

Tabla 305. Instituciones Educativas En La Entidad Territorial Certificada de Córdoba, Proyección Año 2014

INSTITUCIONES SEGÚN AREA	NÚMERO DE INSTITUCIONES	%
Públicas-área urbana	64	15
Públicas área rural	303	71
Privadas área urbana	48	11
Privadas área rural	14	3
Total Instituciones Educativas	429	100
Total de número sedes oficiales	1.359	

Fuente: Equipo de trabajo a partir de datos del Ministerio de Educación Nacional – SIMAT

5.7.3.5. Cultura y recreación

2.7.3.5.1. Cultura

En Córdoba se tiene un sinnúmero de expresiones culturales que muestran la diversidad de su pueblo en lo étnico, costumbres, tradiciones y formas de vida, además de su riqueza natural y paisajista, entre otros que hace del pueblo cordobés una manifestación

continúa de cordialidad, alegría y festejo (Sistema Nacional de información Cultural, 2016). Manifestaciones estas que se ven reflejadas en:

<u>Artesanías</u>

Córdoba es cuna de artesanos tradicionales fabricantes de productos que han ganado reconocimiento en todo el mundo. Los productos del llamado "circuito artesanal", provenientes de los municipios de San Andrés de Sotavento, Momíl, Chinú, Lorica, Ciénaga de Oro, Sahagún, Chimá, Cereté y Montería, no sólo son abundantes y variados, también cuentan con una gran calidad artística.

El Sombrero vueltiao, nombre que alude a las vueltas que en su fabricación se le da a la fibra vegetal, es sin duda la artesanía por excelencia de Córdoba y uno de los símbolos populares más conocidos de Colombia. Se produce principalmente en el resguardo indígena de San Andrés de Sotavento, en el municipio de Tuchín, y los corregimientos de Vidales y Bellavista entre otros.

Luego de un complejo proceso de raspado, pulimento, clasificación, deshidratación, cocción y coloración de la fibra de caña flecha, los artesanos proceden al trenzado, costumbre originada hace muchos siglos en las labores de cestería aborigen, que consiste en combinar de manera armónica las fibras negras y blancas para formar figuras geométricas o pintas. Estos dibujos simbolizan elementos totémicos o religiosos de la cultura zenú.

Con fibras de iraca, enea, cepa de plátano, caña flecha, junco y bejuco, las manos ágiles de los artesanos, expertos en diversas técnicas de trenzado, elaboran incontables productos de cestería como hermosas canastas, petacas, balayes, cestos, hamacas, petates, esteras y muebles.

Danza

Las manifestaciones coreográficas más tradicionales del departamento de Córdoba son el bullerengue, el baile cantado, la cumbia, el fandango, el porro y la puya.

Bullerengue: Se trata de un ritmo y danza ejecutado con tambores (macho y hembra), guaches y tablillas, acompañado por voces femeninas. La coreografía consiste en una mezcla de arrebatado sensualismo y alocada alegría.

El Porro: En su versión original se amenizaba con conjuntos de pitos atravesados que a partir del siglo XX empezaron a ser sustituidos por bandas de música.

El Fandango: Involucra tres significados: fiesta, ritmo y danza. Cada componente tiene características definidas y logran fusionarse en la "Gran Rueda del Trópico". Allí se materializa un ritmo alegre, dinámico y eterno. (Banco de la República, 2009)

Gastronomía

La cocina cordobesa es muy variada y elaborada; emplea productos de raigambre indígena como el maíz y la yuca que se han complementado con otros ingredientes como la berenjena y la almendra de los árabes, y el arroz, el plátano y el ñame de las culturas africana y asiática. Estos alimentos, junto con el pescado, la carne de res y de cerdo, conforman la esencia de la cocina de Córdoba.

Cuando los ríos Sinú, San Jorge y Cauca empiezan a bajar de cauce como consecuencia del verano, se produce el fenómeno de "la subienda". Es la invasión anual de millones de peces que se conocen como el popular de bocachico, bagres, barbul, dorada y liseta

<u>Ritmos</u>

El Porro: Es un ritmo cadencioso, sereno, contundente y bailable, parecido al son y al paseo. Se enmarca en un compás 2 x 4, llamado también "compás binario" o "compás partido". El porro tiene dos modalidades: porro tapao o sabanero y porro palitiao o pelayero. El porro tapao o sabanero llegó a Córdoba procedente de las sabanas de lo que se conoce como el Bolívar Grande. El palitiao es autóctono de las tierras del Sinú, específicamente del municipio de San Pelayo. El porro palitiao o pelayero está conformado por la introducción, la danza, el diálogo instrumental entre las trompetas, clarinetes y bombardinos, y el nexo preparatorio o introducción a la "bozá" o amarre del porro

Bandas de viento: Se denominan así porque utilizan instrumentos metálicos, cuyo sonido se deriva de la vibración que produce una columna de aire al recorrer el tubo de cobre. Por lo general, las bandas folclóricas están integradas por dieciséis músicos, pero algunas refuerzan las trompetas con cinco unidades, los bombardinos o eufonios con tres y los trombones con cuatro, teniendo a veces hasta 20 músicos

<u>Sociedad</u>

A la llegada de los españoles, los zenúes estaban divididos politécnicamente en tres cacicazgos: panzenú (región del San Jorge), zenúfana (valles de Henchí y del bajo Cauca) y finzenú (valles del medio y bajo Sinú).

La colonización española de esta comarca se dio fundamentalmente durante el siglo XVIII y se concentró en la búsqueda del oro indígena, la fundación de unos pocos poblados y el establecimiento de haciendas dispersas.

Con el arribo de los conquistadores hispánicos y de los negros africanos, Córdoba comienza a ser tierra de encuentros y cruces culturales, al igual que toda la zona de la costa caribe colombiana. En épocas más recientes, una importante corriente migratoria siria libanesa aportó otras manifestaciones a la ya mestiza cultura cordobesa. También han contribuido, en menor escala, franceses, italianos y norteamericanos, creando fecundos mestizajes. Es en esta creciente diversidad donde se halla la riqueza étnica del departamento.

Arqueología

Los primeros pobladores de esta región fueron los **zenúes**, de la familia caribe, famosos por su orfebrería y cerámica. Este pueblo desarrolló un estilo propio caracterizado por la falsa filigrana. Emplearon la técnica de la orfebrería, que combina hilos fundidos por el sistema de cera perdida o molde de corazón y el martillado del metal. Sus obras representan la fauna de la región: felinos, saurios, ranas, aves y reptiles. Numerosas y exóticas narigueras, pectorales, pendientes, alfileres y cabezas de bastón en oro de esta cultura, asombraron a los conquistadores convirtiéndose en objeto de la primera leyenda de El Dorado.

La cerámica zenú se caracteriza por la excelencia plástica de las figuras antropomorfas y zoomorfas, trabajadas como si fueran esculturas. Es variada en materiales, técnicas y formas de uso doméstico y ceremonial. En la decoración de su cerámica sobresalen dos tipos: la decoración incisa y punteada y la pintura de figuras geométricas en rojo y negro sobre fondo crema.

Son representativas de esta cultura copas de bases altas y acampanadas con figuras de mujeres que llevaban tatuados los hombros y los senos y usaban una falda larga hasta los tobillos. También se han encontrado cascabeles, silbatos zoomorfos y figuras de mujeres embarazadas entre otras representaciones. (Sistema Nacional de información Cultural, 2016)

2.7.3.5.2. Recreación

Para el desarrollo de actividades recreativas y de actividad física, en el departamento existen 854 escenarios deportivos, 45% en Montería y 55% en el resto de municipios, 46% en zona urbana, 36% en centros poblados y 18% en zona rural. Distribuidos así: Estadios: 16, Coliseos 27, Campos de juego 404, parques 20, pistas 2. Según frecuencia de uso: Escenarios de recreación 21, para competencia 30. (Gobernación de Córdoba, 2016)

5.7.3.6. Servicios públicos e infraestructura física

El Plan de Desarrollo Departamental se articula con el Plan Regional de Competitividad concebido por la Comisión Regional de Competitividad de Córdoba, de esta forma se incluyen proyectos claves como son; Infraestructura, el fortalecimiento y desarrollo de la agroindustria, el turismo, los biocombustibles, el programa de Ciencia Tecnología e Innovación, TIC que permitan el desarrollo integral y sostenible empresarial en procesos de intercambio comercial y logística, así como la transformación agropecuaria, en el que se estimule a la inversión privada en la creación de empresas sanas, eficientes, innovadoras generadoras de fuentes de empleo y con responsabilidad social. (Banco de la República, 2009)

La posición geográfica del departamento, permite dinámicas en materia de competitividad para la puesta en marcha el diseño, viabilización y la construcción de un puerto marítimo, que integraría a Córdoba con los demás departamentos de la zona, permitiendo la reducción de tiempos en el desplazamiento para la comercialización de productos, así mismo apoyar a los empresarios y la inversión extranjera para avanzar en materia de inversión en infraestructura de una zona franca, así como proyectos de generación de energía alternativas para las zonas rurales y urbanas y contribuir a que se

disminuyan las diferencias territoriales en materia de desarrollo de las subregiones en el Departamento. Para una adecuada competitividad se necesita la articulación de gestión e inversión, priorizando las diferentes problemáticas que requieren solución y para ello se han identificado en las subregiones necesidades en materia de saneamiento ambiental, como la carencia de contar con varios rellenos sanitarios, que puedan abastecer el volumen que se están generando en la disposición de residuos sólidos, otro factor es la falta de infraestructura adecuada para la planta de beneficio animal, que mejore las condiciones de salubridad, genere empleo y desarrollo.

Las definiciones de las apuestas productivas del Departamento están dadas de acuerdo a su económica actual como son encadenamientos agroindustriales y turismo, en sus principales necesidades para fortalecerlas y consolidarlas. Por otro lado, el sector minero constituye un renglón importante de la economía regional. Por esto, Córdoba incluyó en sus apuestas la extracción y transformación de ferroníquel. Aunque esta región tiene experiencia en la producción de este mineral, considera necesario mejorar aspectos relacionados con la adecuación y ampliación de la infraestructura de transporte terrestre y portuario. En el sector servicios como única apuesta se identifica al turismo. El Departamento posee riqueza en sitios naturales y en la oferta cultural, expresada en la diversidad de fiestas y ferias y en los múltiples destinos de interés arqueológico, artesanal y gastronómico. La formación técnica en guía e información turística de los prestadores de estos servicios, sumada a la existencia de una infraestructura adecuada para la actividad y al apoyo de las entidades gubernamentales son fortalezas para el desarrollo de esta Apuesta. (Gobernación de Córdoba, 2016)

En el tema agropecuario, las dificultades en la comercialización de los productos agropecuarios y la organización y distribución de los mismos, son problemas que oprimen a este sector por el desconocimiento, desactualización tecnológica en la producción, la escasa asistencia técnica y el regular estado de las vías de acceso en algunos sectores del departamento. (Banco de la República, 2009)

5.7.3.7. Saneamiento básico

En lo que concerniente a la calidad del agua – Índice de Riesgo de Calidad del Agua (IRCA), se cuenta con 17 municipios, con niveles de riesgo en la calidad del agua bajo, suministrando así para el consumo humano. El índice de riesgo por abastecimiento de agua para consumo humano, en el departamento de Córdoba es bajo en los municipios de: Chimá, Lorica - Los Morales, Moñitos, Puerto Libertador, Sahagún, Chinú, Tierralta y Tuchín; Es Medio en: Puerto Escondido, San Andrés De Sotavento, San Pelayo Y Valencia; Es Alto en: Buenavista, Canalete, La Apartada, Los Córdobas, Pueblo Nuevo Y San Bernardo del Viento; Inviable San José de Uré. De otra parte, cabe resaltar que actualmente se encuentran en ejecución dos proyectos a nivel departamental que son: el Acueducto Regional Costero que beneficiará a los municipios de Canalete, Los Córdobas y Puerto Escondido; y el Acueducto Regional San Jorge que beneficiará a los municipios de La Apartada, Buenavista, Planeta Rica y Pueblo Nuevo, y cubrirá una población de 189.388 habitantes, suministrando agua potable apta para el consumo humano y con una continuidad en el servicio de 24 horas/día (Gobernación de Córdoba, Secretaría de Salud, 2017).

El servicio de alcantarillado en el 22% de los municipios disponen sus aguas residuales a través de pozos sépticos, el 78% de los municipios cuentan con alcantarillado, el cual un 42% hacen vertimientos sin ningún tipo de tratamiento y un 36% utilizan lagunas de oxidación como sistemas de tratamiento. En cuanto al servicio de aseo en la zona urbana tiene una cobertura del 100%, pero en la zona rural es del 0% y la gran mayoría de las familias en la zona rural realizan quemas a cielo abierto. Frente a la infraestructura de alcantarillado se puede observar que, en las cabeceras municipales, presentaba un promedio del 53% de cobertura en el 2015, en la actualidad el 83% de los municipios cuentan con algún tipo de sistema de tratamiento de aguas residuales discreteadas de la siguiente forma: 23 se encuentran en funcionamiento, 1 en proceso de construcción 1 (Cotorra), 3 no están en funcionamiento (La Apartada, Montelíbano y Ciénaga de oro), y 3 municipios no tienen sistema de tratamiento: Cereté, San Carlos y Puerto Escondido.

La recolección de los residuos sólidos domiciliarios del departamento, es estimada en un promedio de 522.09 toneladas/mes. El 84% de los municipios realizan una disposición final adecuada en relleno sanitario, de los cuales el 57% lo realizan en el único relleno existente en el departamento de Córdoba que es el Relleno de Loma Grande localizado en el municipio de Montería. Lo anterior evidencia que se deben recorrer grandes tramos excedentes para poder realizar la disposición final, debido a las largas distancias desde los diferentes municipios para disponer adecuadamente sus residuos en este relleno sanitario. (Gobernación de Córdoba, 2016)

5.7.3.8. Energía Eléctrica de Córdoba

El departamento de Córdoba, es un departamento generador de energía, conectado al sistema eléctrico nacional. Generación de energía que se obtiene de varias modalidades:

- 1. Por las plantas hidroeléctricas, a partir del aprovechamiento de la energía potencial del agua embalsada en represas.
- 2. Por plantas térmicas en donde la energía eléctrica se obtiene a partir del poder calorífico de la combustión de elementos fósiles (gas natural diésel carbón).
- 3. Por generación Ciclo Combinado, significa producción de energía haciendo uso tanto de gas natural como de vapor de agua de manera conjunta. (Tabla 306)

Tabla 306. Infraestructura generadora de Energía en Córdoba

Municipio	Nombre	Capacidad Generación	Tipo		
Tierralta	Urrá	340 MW	Hidroeléctrica		
Puerto Libertador	Gelceca 3	164 MW	Térmica		
Puerto Libertador	Gelceca 3.2	250 MW	Térmica		
Chinú	Subestación de transmisión				

Fuente: Elaboración equipo técnico

El sistema de interconexión nacional se encuentra dividido en 5 grandes zonas. La Costa Caribe se encuentra ubicada en la zona No. 1 del sistema, porque es la de mayor demanda de energía, la misma está conectado al resto del país a través de tres líneas de transmisión, dos de ellas vienen de la subestación de San Carlos en Antioquia, luego va a la subestación Cerromatoso hasta subestación Chinú en Córdoba y de allí a Sabanalarga

en Atlántico. Desde Chinú, Electricaribe distribuye la energía para Córdoba, Sucre y Bolívar.

En Gelceca 3 y 3,2 con el uso del carbón sub-bituminoso (pese a su alto poder calorífico, no es atractivo para los mercados internacionales por su calidad) se viene generando energía eléctrica. Importante anotar que en la región cordobesa del Alto San Jorge hay reservas probadas de 720 millones de toneladas de este tipo de mineral.

Electricaribe S.A. E.S.P., desarrolla las actividades de distribución y comercialización de energía eléctrica en los siete departamentos de la costa Caribe. La Compañía, desarrolla su actividad comercial consiente de las necesidades del entorno y de la diversidad cultural de la región, con el fin de atender las necesidades del mercado, Electricaribe presta el servicio a través de las siguientes empresas:

- Energía Empresarial de la Costa S.A. E.S.P., que atiende parte del mercado liberalizado
 Fundación Electricaribe Social, Gestión Social de la Compañía.
- Energía Social de la Costa S.A. E.S.P. que se orienta a atender el mercado eléctrico subnormal.

La cobertura en el departamento de Córdoba para el año 2016 se refleja la Tabla 307 siguiente, en donde se tiene la cobertura por municipio en la zona urbana, rural y usuarios subnormales

Tabla 307. Cobertura de energía eléctrica en el departamento de Córdoba

MUNICIPIO	Usuarios cabecera municipal SIN	Usuarios resto SIN	Usuario Subnormal SIN	Usuarios Total SIN
Ayapel	6091	1380	486	7957
Buenavista	6147	1649	580	8376
Canalete	1437	2600	31	4068
Cereté	11922	9041	0	20963
Chima	19321	2202	0	21523
Chinú	4237	4245	98	8580
Ciénaga De Oro	5336	6468	283	12087
Cotorra	4948	5553	0	10501
La Apartada	2186	1560	356	4102
Lorica	15139	18730	5205	39074
Los Córdobas	19686	11905	691	32282
Momíl	2405	1875	35	4315
Montelíbano	14203	3741	1427	19371
Montería	79913	23498	4959	108370
Moñitos	1813	2232	495	4540
Planeta Rica	9422	7846	301	17569
Pueblo Nuevo	2505	3025	155	5685
Puerto Escondido	884	2732	187	3803

Puerto Libertador	2847	4344	1305	8496
Purísima	1539	1665	65	3269
Sahagún	11377	7654	856	19887
San Andrés Sotavento	2149	6225	47	8421
San Antero	4599	3061	283	7943
San Bernardo Viento	3117	4025	488	7630
San Carlos	1459	3104	0	4563
San José de Uré	977	862	0	1839
San Pelayo	1812	4339	61	6212
Tierralta	2597	1600	0	4197
Tuchín	1109	4207	0	5316
Valencia	4979	3100	0	8079

Fuente: Equipo Técnico a partir del (IPSE, , 2016)

5.7.3.9. Comunicaciones

5.7.3.9.1. Vías

El Gobierno Nacional, cumpliendo con los principios de descentralización definidos en la ley 105 de 1993, transfirió la red vial a su cargo a los Entes Territoriales, de manera que la administración y gestión de la Red Vial Secundaria y Red Vial Terciaria estén a cargo de los departamentos y municipios, respectivamente. A pesar que la transferencia de la Red Vial Secundaria se completó en 1997, por razones de orden público y escasez de recursos de algunos Entes Territoriales, el Gobierno Nacional interesado en la conservación del patrimonio vial continua realizando programas de mejoramiento y rehabilitación de la red vial a cargo de los departamentos, a través de programas tales como el Plan Vías para la Paz y el Plan de Infraestructura Vial de Integración y de Desarrollo Regional (Plan 2500); para el caso del departamento de Córdoba la red vial secundaria fue transferida mediante resolución de 1995.

La red de carreteras inicia su desarrollo a partir del principio de este siglo y por su naturaleza llega a los lugares de más difícil topografía convirtiéndose en Córdoba la más utilizada por sus pobladores sin embargo, en la cobertura transversal del Departamento, se presentan obstáculos para atravesar la serranías San Jerónimo y se puede afirmar que no existe una adecuada articulación de la malla vial en esta dirección. La comunicación entre las diferentes regiones del departamento presenta dificultad especialmente de las subregiones del Alto Sinú, San Jorge y Costera, a causa de la topografía del terreno lo que hace costosa la construcción y el mantenimiento de las vías. (Instituto Nacional de Vías-INVIAS, 2008)

5.7.3.9.1.1. Red primaria

El departamento de Córdoba posee cerca de 7.030 Km. de carreteras, distribuidas por su nivel de jerarquía en primarias, secundaria y terciarias como se ilustra en la Tabla 31. Las vías de la red primaria, con un total de 1.148.2 kilómetros, están a cargo del Ministerio de Vías y transporte, como se puede observar en la Tabla 308.

Tabla 308. Red Vial de Vías Primarias que atraviesan el Departamento

Municipio	Trai	mo	Longitud	Red	paviment	ada	Red en afirmado		
	Desde	Hasta	Kms	В	R	M	В	R	M
La Apartada, Buenavista, Planeta Rica	Caucasia Rica	- Planeta	62,40	31,34	28,03	3,03			
Planeta Rica, Pueblo Nuevo, Sahagún, Chinú	Planeta Ric		99,40	86,17	13,23				
Planeta Rica, Montería	Planeta Montería	Rica -	49,2	36,10	13,10				
Montería, Los Córdobas	Puerto Rey	- Montería	64,0	24,90	33,08	6,02			
Montería, San Pelayo, Lorica, Moñitos	Santa Lucia	- Moñitos	54,9	1,00				37,12	16,78
Moñitos, San Bernardo del Viento	Moñitos Bernardo de	- San el Viento	27,9	26,27			1,63		
San Bernardo del Viento, Lorica	San Bern Viento - Lori		20,8		14,05	6,75			
Cereté, San Pelayo, Cotorra, Lorica	Cereté - Lor	ica	42,6	42,60					
Lorica, Purísima, Momíl, Chimá, San Andrés de Sotavento	Lorica - Chi	nú	51,2	20,09	26,11	5,00			
Lorica, San Antero	Lorica - Cov	⁄eñas	29,2	9,75	13,26	6,19			
Montería, Cereté, Ciénaga de Oro, Sahagún	Montería - Ciénaga de Ye (Cruce R	e Oro - La Ruta 25)	51,4	46,65	4,75				
Sahagún	El Viajano -	Guayepo	21,1	13,54	5,53	2,03			
TOTAL RED PRIMARI.	Α		574,10	338,41	151,14	29,02	1,63	37,12	16,78

Fuente: Equipo Técnico a partir de información del Instituto Nacional de Vías-INVIAS, 2008

5.7.3.9.1.2. Red secundaria

La red vial secundaria está compuesta por 589.6 Km (Tabla 309) de los cuales el 38.25% se encuentra pavimentado, el 61.78% en afirmado. Esta red corresponde al 8.45% de la red total de carreteras del Departamento. El 38.25% de vías pavimentadas se encuentran el 65.29% en buen estado (338.41km), el 29.15% en regular estado (151.14 Km.) y el 5.60% en mal estado (29.02km).

Esta red se encuentra conformada básicamente por aquellas vías que comunican a cabeceras municipales entre sí y aquellas que comunican a cabeceras municipales con vías nacionales, así mismo están incluidos los 141.7 Km. de red transferida por la nación en cumplimiento a la Ley 188/95, mediante decreto 2128 de 1995.

Tabla 309. Red Vial Secundaria - Distribución por Subregiones

SUBREGIONES DE	PAVIMENTADO	AFIRMADO	TIERRA	LONGITUD
CÓRDOBA	Subtotal	Subtotal	Subtotal	TOTAL (KM)
ESTADO DE LAS VÍAS				
SUBREGIÓN ALTO SINÚ	37,73	36,32	0,00	74,05
SUBREGIÓN CENTRAL	61,52	50,83	0,00	112,35
SUBREGIÓN CIÉNAGA	19,70	13,76	0,00	33,46
SUBREGIÓN SABANA	7,99	29,48	0,00	37,47
SUBREGIÓN SAN JORGE	61,57	112,53	0,00	174,10
Subregión sinú medio	11,60	53,59	0,00	65,19
TOTAL RED VIAL	225,54	364,06	0,00	589,60
SECUNDARIA				

Fuente: Secretaría de Infraestructura de Córdoba

5.7.3.9.1.3. Red terciaria

Las vías Terciarias son aquellas vías suburbanas o veredales que se comunican con las cabeceras Municipales y/o centros poblados, vías secundarias o vías Nacionales.

La red vial terciaria en Córdoba se encuentra en las tres superficies de rodadura: pavimento, afirmado, tierra y en algunos casos trochas de muy baja transitabilidad. Esta representa aproximadamente 5.816 Km. lo que equivale al 83.33% del total de la red de carreteras en el Departamento, de los cuales administra 959 Km. el Instituto Nacional de Vías - INVIAS y 4.857 Km. los administran los municipios. La administración departamental no tiene a cargo red vial terciaria.

La Gobernación de Córdoba cuenta con un inventarío de la red vial terciaria a cargo de los municipios que fue actualizado en el año 2004. Las cuales son las siguientes:

CERETÉ – LORICA: Tiene su inicio en la cabecera municipal de Cereté en la Intersección con la vía Montería – Cereté – La Yee y termina en el Puente sobre Caño Aguas Prietas en la cabecera municipal de Lorica. Se caracteriza por ser una vía construida en terreno plano y totalmente pavimentada, su administración se encuentra a cargo de Instituto Nacional de Vías-INVIAS.

PLANETA RICA – MONTERÍA: Tiene su inicio en la cabecera municipal de Planeta Rica en la Intersección con la vía Planeta Rica - Chinú y termina en la ciudad de Montería. Se caracteriza por ser una vía construida en terreno plano y ondulado y totalmente pavimentada, su administración se encuentra a cargo de Instituto Nacional de Vías-INVIAS.

CAUCASIA - PLANETA RICA: Tiene su inicio en los límites con el Departamento de Antioquia (Corregimiento Campo Alegre, Municipio de La Apartada) y termina en la cabecera municipal de Planeta Rica en el cruce con la vía Planeta Rica - Montería. Se caracteriza por ser una vía construida en terreno plano y ondulado y totalmente pavimentada, su administración se encuentra a cargo de Instituto Nacional de Vías-INVIAS y se proyecta ampliarla a doble calzada.

PLANETA RICA - CHINÚ: Tiene su inicio en la cabecera municipal de Planeta Rica en la Intersección con la vía Planeta Rica – Montería y termina en los límites con el Departamento de Sucre. Se caracteriza por ser una vía construida en terreno plano y

ondulado y totalmente pavimentada, su administración se encuentra a cargo de Instituto Nacional de Vías-INVIAS y se proyecta ampliarla a doble calzada.

MONTERÍA - CERETÉ - LA YEE: Tiene su inicio en la ciudad de Montería frente a las instalaciones de la fábrica de Gaseosas Postobón y termina en el corregimiento La Yee, municipio de Sahagún. Se caracteriza por ser una vía construida en terreno plano y ondulado y totalmente pavimentada, su administración se encuentra a cargo de Instituto Nacional de Concesiones INCO, actualmente se está realizando la ampliación a doble calzada, en el sector Montería – Ciénaga de Oro y ampliación de bermas en el sector Ciénaga de Oro – La Yee.

EL VIAJANO - SAN MARCOS - GUAYEPO: Tiene su inicio en el corregimiento El Viajano, Municipio de Sahagún (Intersección con la vía Planeta Rica - Chinú) y termina en los límites con el Departamento de Sucre. Se caracteriza por ser una vía construida en terreno plano y ondulado y totalmente pavimentada, su administración se encuentra a cargo de Instituto Nacional de Vías-INVIAS.

LORICA – CHINÚ: Tiene su inicio en la cabecera municipal de Lorica (Intersección con la vía Lorica – Coveñas) y termina en la cabecera municipal de Chinú (Intersección con la vía Planeta Rica – Chinú). Se caracteriza por ser una vía construida en terreno plano y ondulado y totalmente pavimentada, su administración se encuentra a cargo de Instituto Nacional de Vías-INVIAS.

ÁRBOLETES – PUERTO REY – MONTERÍA: Tiene su inicio en el Corregimiento Puerto Rey, Municipio de Los Córdobas (límites con el Departamento de Antioquia) y termina en la ciudad de Montería (Puente Metálico sobre el río Sinú). Se caracteriza por ser una vía construida en terreno plano y ondulado y totalmente pavimentada, su administración se encuentra a cargo de Instituto Nacional de Vías-INVIAS.

SAN BERNARDO DEL VIENTO – LORICA: Tiene su inicio en la cabecera municipal de San Bernardo del Viento y termina en la cabecera municipal de Lorica en la Intersección con la vía Lorica - Coveñas. Se caracteriza por ser una vía construida en terreno plano y totalmente pavimentada, su administración se encuentra a cargo de Instituto Nacional de Vías-INVIAS.

LORICA – COVEÑAS: Tiene su inicio en la cabecera municipal de Lorica en el Puente sobre Caño Aguas Prietas Viento y termina en el Corregimiento El Porvenir, Municipio de San Antero (límites con el Departamento de Sucre). Se caracteriza por ser una vía construida en terreno plano y totalmente pavimentada, su administración se encuentra a cargo de Instituto Nacional de Vías-INVIAS.

SANTA LUCÍA - MOÑITOS: Tiene su inicio en la Intersección con la vía Arboletes – Puerto Rey – Montería, en el corregimiento Santa Lucía, Municipio de Montería y termina en la cabecera municipal de Moñitos. Es una vía construida sobre terreno plano y ondulado, con bajas especificaciones técnicas y en malas condiciones de transitabilidad, con solo 1,0 kilómetro pavimentado, o sea 98,18% sin pavimentar. Su Administración se encuentra a cargo de Instituto Nacional de Vías-INVIAS.

MOÑITOS – SAN BERNARDO DEL VIENTO: Tiene su inicio en la cabecera municipal de Moñitos en la Intersección con la vía Santa Lucía - Moñitos y termina en la cabecera municipal de San Bernardo del Viento. La vía se encuentra construida sobre terreno plano y ondulado, con regulares especificaciones técnicas y con un 94,16% pavimentado, faltando solo 1,63 kilómetros por pavimentar. Su Administración se encuentra a cargo de Instituto Nacional de Vías-INVIAS.

5.7.3.10. Transporte aéreo

El transporte aéreo en el departamento de Córdoba se limita al aeropuerto Los Garzones, localizado en los Límites de los municipios de Montería y Cereté, el único en operación en la actualidad. Este aeropuerto en concesión es de tipo nacional, con un tipo de avión (máximo permisible) MD84 y C130 (Hércules). Con una frecuencia de 28 vuelos diarios.

La pista está construida en concreto asfáltico, tiene 45 metros de ancho y 2.160 metros de longitud. (Aeronautica Civil, 2017)

Adicionalmente existe en el Corregimiento de Berástegui, Municipio de Ciénaga de Oro un aeropuerto de tipo local. El tipo de avión se limita a Avionetas de Fumigación. La pista está construida en material Granular, tiene 27 metros de ancho y 1,450 metros de longitud.

5.7.3.11. Conectividad digital

El departamento de Córdoba continúa con la estrategia del Ministerio de Tecnologías de la Información y las Comunicaciones - MINTIC inscrita en el Plan Vive Digital, orientada a reducir la brecha digital expandiendo el conocimiento de las nuevas tecnologías -y específicamente de Internet-, de aquellos miembros de nuestras comunidades que por diferentes razones no han ingresado aún en el camino digital.

En donde se tiene con los Kioscos Vive Digital, que son puntos de acceso comunitario a Internet para los niños, jóvenes y adultos de 5.524 zonas rurales de más de 100 habitantes, ubicados en las zonas más alejadas de Colombia, donde pueden conectarse a internet y recibir capacitaciones gratuitas en uso y apropiación de las TIC.

Los Kioscos Vive Digital son puntos de acceso comunitario a Internet para los niños, jóvenes y adultos en zonas rurales de más de 100 habitantes, ubicados en las zonas más alejadas de Colombia, donde pueden conectarse a internet y recibir capacitaciones gratuitas en uso y apropiación de las TIC. En el departamento de córdoba se tienen establecidos 443 Kioscos Vive Digital, localizados en instituciones educativas rurales del departamento y distribuidos en la mayoría de municipios del departamento excepto en Chimá, San Pelayo, Chinú y Tuchín; como se puede ver en la Tabla 310.

Tabla 310. Distribución de Áreas Digitales, Programa Vive Digital, por subregiones

Regiones	MUNICIPIOS	Punto vive digital	Kioscos vive digital
San Jorge 81	Ayapel	1	12
	Buenavista	1	10
	La Apartada		3
	Montelíbano	1	10
	Planeta Rica		22

Regiones	MUNICIPIOS	Punto vive digital	Kioscos vive digital
	Puerto Libertador		17
	San José de Uré		6
Bajo Sinú 71	Cotorra	1	9
	Chimá		0
	Momíl	1	13
	Purísima	1	5
	Lorica	1	44
Sinú Medio86	San Carlos	1	8
	Montería	7	27
	Cereté	1	15
	Ciénaga de Oro	1	20
	San Pelayo	1	16
Costera84	San Bernardo del viento	1	14
	Puerto Escondido	1	12
	Los Córdobas		13
	San Antero	2	18
	Moñitos		17
	Canalete		10
Sabana 63	Sahagún	1	12
	Pueblo Nuevo	1	20
	Chinú	2	17
	San Andrés de Sotavento		8
	Tuchín	1	6
Alto Sinú58	Tierralta	2	44
	Valencia	1	14
TOTAL		30	443

Fuente: Equipo técnico a partir de información del MINTIC

Los Puntos Vive Digital para la Gente, son espacios donde se facilitan herramientas tecnológicas y se brindan capacitaciones técnicas para realizar actividades de emprendimiento digital enfocados en aplicaciones y contenidos digitales. Buscan continuar con la estrategia nacional para el fortalecimiento y promoción del sector de las Tecnologías de Información y las Comunicaciones en contenidos digitales. Para el departamento de Córdoba se han instalado 30 puntos digitales, localizados como se ven en el cuadro anterior. (MINTIC, 2017)

5.7.3.12. Emisoras

En el departamento de Córdoba se localizan 45 emisoras, en 23 municipios y en su gran mayoría son FM (37) en total y ocho en AM. Estas se distribuyen, tal como se observa en la Tabla 311, en comerciales, comunitarias y de interés público; categoría que ubica las emisoras de FFAA, Policía Nacional, Radio Nacional, Universidad de Córdoba y una indígena del Reguardo Zenú Córdoba - Sucre. Se puede decir que hay un cubrimiento total en el área del departamento, con alguna deficiencia en la parte alta (subregión Alto Sinú) y en la zona costera.

Tabla 311. Distribución de Áreas Digitales, Programa Vive Digital, por subregiones

				publico	
San Jorge	6	11	6		5
San Jorge Bajo Sinú	4	4	2	2	
Sinú medio	5	17	11	3	3
Costera	3	4			4
Sabana	4	6	1	2	3
Alto Sinú	1	3	1	1	1
Montería	1	12	9	2	1
	23	45	21	8	16

Fuente: Elaboración Equipo técnico PGOF

Como se puede observar, en la ciudad de Montería se centra el 26,7% de emisoras de la subregión Sinú medio, con 9 emisoras comerciales de las 21 del departamento, las cuales en su mayoría se encuentran conectadas a las cadenas radiales nacionales. (MINTIC, 2017)

5.7.3.13. Índice de Necesidades Básicas insatisfechas

Para analizar este indicador, vemos al departamento de Córdoba con un promedio NBI del 59,1%, En donde se nos muestra municipios con NBI superiores al 80% en Puerto Escondido, Los Córdobas, Canalete (en la subregión Costera) y a San Andrés de Sotavento con Tuchín en la subregión de Sabana, municipios estos con alta población indígena. Aún preocupa más los NBI de los sectores rurales que se pueden apreciar en la Tabla 312 de los municipios de Canalete y San Andrés de Sotavento que muestran niveles por encima del 92%; teniendo la zona de Tuchín con casi el 97% de NBI. Situaciones similares a la Zona rural de la Guajira que tiene un NBI del 91,9%

De igual forma podemos tener como punto de comparación en la zona central, subregión Sinú medio, a los municipios de Montería, capital del departamento y a Cereté con NBI relativamente bajos, en las cabeceras municipales (34,29% y 36,87% respectivamente), debido a que se cuenta con mayores oportunidades, mejores servicios y al desarrollo urbanístico y comercial. (DANE, 2005)

Tabla 312. NBI municipios de Córdoba por subregiones.

Municipio	Cabecera	Resto	%NBI	SUBREGION
AYAPEL	49,08	73,61	61,55	
BUENAVISTA	49,36	68,06	61,34	
LA APARTADA	52,40	58,59	53,65	
MONTELIBANO (1)	41,14	68,94	45,11	SAN JORGE
PLANETA RICA	43,81	82,60	58,45	3AN JORGE
PUERTO LIBERTADOR	51,20	73,14	64,41	
SAN JOSE DE URE (1)	68,55	81,99	72,53	
COTORRA	71,34	58,30	61,27	
CHIMA (3)	60,99	63,36	62,87	
MOMIL	62,21	65,60	63,47	
PURISIMA	53,66	77,68	67,63	BAJO SINÚ

Municipio	Cabecera	Resto	%NBI	SUBREGION
LORICA	51,05	74,18	64,70	
CERETE	36,87	67,69	50,43	
SAN CARLOS	50,97	69,85	66,22	
MONTERIA	34,29	75,94	44,51	SINÚ MEDIO
CIENAGA DE ORO	47,00	71,34	61,84	SINO MEDIO
SAN PELAYO	42,15	68,00	63,40	
SAN BERNARDO DEL VIENTO	45,16	79,70	70,71	
PUERTO ESCONDIDO	58,43	89,53	84,60	
LOS CORDOBAS	73,11	88,19	85,38	
CANALETE	65,32	92,45	85,95	COSTERA
MOÑITOS	54,04	84,00	77,14	
SAN ANTERO	60,46	71,98	65,64	
SAHAGUN	41,55	67,09	53,80	
PUEBLO NUEVO	46,14	72,48	63,04	
CHINU	39,66	67,04	53,78	SABANA
SAN ANDRES SOTAVENTO (3)	53,68	92,80	82,47	SADAINA
TUCHÍN (3)	63,96	96,89	92,26	
TIERRALTA	52,78	88,29	73,29	,
VALENCIA	58,00	86,41	76,17	alto sinú

Fuente: Elaboración equipo técnico Funsostenible a partir de información del DANE

Igualmente podemos apreciar que NBI es igual o superior al 60% en cinco de las seis subregiones, y con cifras preocupantes en dos de ellas (Alto Sinú y Costera) en donde se tiene valores por encima del 75%, producto a la baja coberturas de educación, cubrimiento de servicios deficiente y déficits de acueducto y vivienda, tal como se aprecia en la siguiente (Tabla 313)

Tabla 313. Índices de Necesidades Básicas Insatisfechas NBI/ respecto a servicios

Subregión	Hab.	Extensión	Mpios.	NBI	CE	D SA	DΥ	Α
Alto Sinú	142.882	5.856.90	2	75%	29%	56%	73%	
San Jorge	333.720	7.967.68	7	60%	27%	57%	66%	27%
Sabana	218.634	2.753.58	5	71%	39%	57%	53%	35%
Medio Sinú	405.078	4.456.17	5	52%	41%	42%	49%	16%
Bajo Sinú	178.639	1.639.45	5	64%	44%	48%	69%	22%
Costeras	168.029	1.924.56	6	79%	28%	65%	71%	
Montería	441.301	3.043	1	44,5%	43%	33%	38%	10%

NBI: Necesidades Básicas Insatisfecha. CE: Cobertura Educación. DSA: Déficit Servicio Acueducto. DV: Déficit Vivienda. A: Analfabetismo.

Fuente: Elaboración equipo técnico a partir de datos Gobernación de Córdoba

5.7.4. Presencia y coordinación institucional

La institucionalidad forestal en Colombia estuvo desarticulada y atomizada en las entidades encargadas de la gestión ambiental hasta 1993, ya que las competencias estaban repartidas entre el Ministerio de Agricultura (INDERENA), Departamento Nacional de Planeación (Corporaciones), Ministerio de Salud, Ministerio de Minas, INGEOMINAS, HIMAT, entre otros. En este año el IDERENA pertenecía al Ministerio de Agricultura creándose antagonismos entre ambas instituciones ya que la primera formulaba las políticas ambientales, que no siempre eran aceptadas por este ministerio. La debilidad presupuestal, la coordinación, articulación de las políticas y la falta de fuerza legal en las fuentes de financiación se reflejaba en el cumplimiento de la misma. La poca especialización de las entidades existentes (a excepción del INDERENA) generaba dispersión en la gestión ambiental y por ende el deterioro de los recursos naturales del país (Comisión Europea & FAO, 2002).

En 1991, la Constitución Nacional del mismo año, elevó a rango constitucional el tema ambiental, recogiendo principios y derechos consagrados en el Código Nacional de los Recursos Naturales Renovables y del Ambiente (primer código en América Latina). En este sentido surgió la Ley 99 de 1993 con la cual se crea el Sistema Nacional Ambiental (SINA), como un conjunto de orientaciones, normas, actividades, recursos, programas e instituciones que permiten la puesta en marcha de los principios generales consagrados en la Ley. Como ente rector del SINA, se creó el Ministerio del Medio Ambiente (MMA) y cinco institutos de investigación de apoyo técnico investigación (Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM; Instituto de investigación de Recursos Biológicos Alexander von Humboldt; Instituto Amazónico de Investigaciones Científicas SINCHI; Instituto de Investigaciones Ambientales del Pacifico Jhon von Neumann; el Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" Invemar), y como ejecutoras de las políticas ambientales y administradoras de los recursos naturales renovables en su respectiva jurisdicción, a las Corporaciones Autónomas Regionales y de Desarrollo sostenible (Comisión Europea & FAO, 2002).

A pesar de la importancia del Sistema Nacional Ambiental en el manejo y gestión de los recursos del país, el presupuesto de recursos asignado por el gobierno se ha visto disminuido de manera progresiva. Este presupuesto gubernamental se constituye en un soporte estratégico para el mantenimiento de una estructura institucional que le permite al país garantizar la sostenibilidad de recursos naturales básicos para el proceso de desarrollo sostenible de las diferentes regiones (Comisión Europea & FAO, 2002).

5.7.4.1. Autoridades nacionales

5.7.4.1.1. Ministerio del Medio Ambiente.

Es el organismo rector de la gestión pública ambiental, encargado de impulsar una relación de respeto y armonía del hombre con la naturaleza y definir las políticas y regulaciones para recuperar, conservar, proteger, ordenar, manejar, usar y aprovechar los recursos naturales renovables y el medio ambiente de manera que se garantice el

derecho de todas las personas a gozar de una mejor calidad de vida y proteger el patrimonio natural y la soberanía de la nación.

5.7.4.1.2. Instituto de hidrología, meteorología y estudios ambientales (IDEAM).

El Instituto de Hidrología, Meteorología y Estudios Ambientales como establecimiento público del orden nacional presta un servicio público esencial en buena parte privativo del estado colombiano, a través de la producción de información y conocimientos en forma oportuna, consistente, confiable y periódica que permita garantizar la renovabilidad, sostenibilidad y calidad de los recursos naturales y del medio ambiente, como apoyo básico para orientar la formulación de políticas, la planeación del desarrollo, la expedición de normas, los procesos de toma de decisiones, el ordenamiento ambiental del territorio, la seguridad de la población y la operación del aparato productivo del país.

El IDEAM, levanta y maneja la información científica y técnica sobre los ecosistemas del país y emite las bases para clasificar y zonificar el uso del suelo cuyo fin es facilitar la Planificación y ordenamiento del Territorio nacional.

Suministrar los conocimientos, datos y la información ambiental requerida por el Ministerio del Medio Ambiente (MMA) y las entidades del Sistema Nacional Ambiental (SINA), especialmente a las Corporaciones autónomas regionales y de Desarrollo Sostenible.

Para el manejo y aprovechamiento de los recursos biofísicos de la Nación, obtiene, analiza, estudia, procesa y divulga la información básica sobre hidrología, meteorología, geomorfología, suelos y cobertura vegetal. Tiene a su cuidado el funcionamiento de la infraestructura meteorológica e hidrológica nacional, que le permita informar a la comunidad de manera oportuna sobre estos aspectos.

5.7.4.1.3. Unidad administrativa especial del sistema de parques naturales nacionales.

Sin personería jurídica, con autonomía administrativa y financiera, con jurisdicción en todo el territorio nacional, en los términos del artículo 67 de la Ley 489 de 1998. La entidad está encargada de la administración y manejo del Sistema de Parques Nacionales Naturales y la coordinación del Sistema Nacional de Áreas Protegidas.

Con el proceso de reestructuración del Estado en 2011, mediante Decreto No. 3572 de 2011 se creó Parques Nacionales Naturales de Colombia como una Unidad Administrativa Especial.

5.7.4.1.4. Instituto amazónico de investigaciones científicas "SINCHI".

Se organiza como una corporación civil sin ánimo de lucro, de carácter público pero sometido a las reglas de derecho privado, vinculada al Ministerio del Medio Ambiente, con autonomía administrativa, personería jurídica y patrimonio propio. El instituto tiene por objeto la realización y divulgación de estudios e investigaciones científicas de alto nivel relacionados con la realidad biológica, social y ecológica de la región amazónica. Podrán asociarse al Sinchi las entidades públicas, corporaciones y fundaciones sin ánimo de lucro, organizaciones no gubernamentales nacionales e internacionales, universidades

y centros de investigación científica, interesados en la investigación del medio amazónico.

5.7.4.1.5. Instituto de investigación de recursos biológicos "ALEXANDER VON HUMBOLDT".

Tiene como misión promover, coordinar y realizar investigación que contribuya a la conservación y uso sostenible de la biodiversidad biológica de Colombia. El instituto tendrá a su cargo la investigación científica y aplicada de los recursos bióticos y de los hidrobiológicos en el territorio continental de la Nación. Además deberá crear, en las regiones no cubiertas por otras entidades especializadas de investigación de que trata la Ley 99 de 1993, estaciones de investigación de los macroecosistemas nacionales y apoyar con asesoría técnica y transferencia de tecnología a las Corporaciones Autónomas Regionales, los departamentos, los distritos, los municipios y demás entidades encargadas de la gestión del medio ambiente y los recursos naturales renovables. Las investigaciones que el instituto adelante y el banco de información que de ellas resulte, serán la base para el levantamiento y formación del inventario nacional de la biodiversidad.

5.7.4.1.6. Instituto de investigaciones marinas y costeras, José Benito Vives de Andréis (INVEMAR).

Es un establecimiento público, sin ánimo de lucro y con autonomía administrativa. El Invemar tiene como fin la investigación ambiental básica de los recursos naturales renovables, los ecosistemas costeros y oceánicos de los mares adyacentes al territorio nacional. El Invemar debe emitir conceptos técnicos sobre la conservación y aprovechamiento sostenible de los recursos marinos, y prestar asesoría y apoyo científico y técnico al Ministerio, a las entidades territoriales y a las Corporaciones Autónomas Regionales.

5.7.4.1.7. Instituto de investigaciones ambientales del pacífico (IIAP).

Tiene como misión la identificación de opciones para el mejoramiento de las condiciones de vida de la población, surgidas de la oferta natural de la región. Además, coordina y apoya la investigación científica del Litoral Pacífico y del Chocó Biogeográfico

5.7.4.1.8. Corporaciones autónomas regionales y de desarrollo sostenible.

La Corporación tiene como objeto propender por el desarrollo sostenible y la protección del medio ambiente en su jurisdicción, a través de la ejecución de las políticas, planes, programas y proyectos sobre el medio ambiente y recursos naturales renovables, así como dar cumplida y oportuna aplicación a las disposiciones legales vigentes y futuras, sobre su disposición, administración, manejo y aprovechamiento, conforme a las regulaciones, pautas y directrices expedidas por el Ministerio del Medio Ambiente. Igualmente y de conformidad con la Ley 99 de 1993, podrá promover y desarrollar las obras y programas de manejo de aguas, adecuación de tierras y servicios complementarios que permitan intensificar el uso de los suelos y asegurar su mayor productividad, todo ello bajo el criterio de desarrollo sostenible.

5.7.4.1.9. Corporaciones autónomas para el desarrollo sostenible.

Como primera autoridad ambiental regional es la de administrar y manejar los recursos naturales y la oferta ambiental en su jurisprudencia; fundamentando su gestión en el contexto de la política nacional ambiental y del desarrollo humano sostenible, para mejorar la calidad de vida de las comunidades. Por otro lado en el marco de Desarrollo Humano Sostenible estas zonas deben garantizar la preservación de la biodiversidad del área, patrimonio ecológico de Colombia y la Humanidad, mediante la acción participativa y concertada de todos los actores involucrados que permitan el mejoramiento de la calidad de vida de los habitantes.

5.7.4.1.10. Departamento técnico administrativo del medio ambiente (DAMA) Aquí se presenta un ejemplo tipo de los cuatro Departamentos Administrativos del recurso forestal en Municipios de 1.000.000 de habitantes.

Es una entidad pública comprometida con el desarrollo sostenible del Distrito Capital, que busca mejorar la calidad ambiental y por tanto, la calidad de vida de los habitantes de Bogotá, con el apoyo de entidades públicas y privadas y la sociedad civil.

- 5.7.4.2. Autoridades departamentales
- 5.7.4.2.1. Gobernación del departamento de Córdoba.

Los Gobiernos departamentales, las asambleas y las Corporaciones Regionales desarrollan un papel importante como eje intermedio entre lo nacional y lo municipal, ante todo como coordinadores y ejecutores de políticas que tocan lo local con repercusiones regionales. Páginas como las de Gobernaciones donde presentan informes de gestión, los Planes de Desarrollo, Programas y Proyectos ejecutados por las Secretarias departamentales entre otros hacen parte de este nivel.

5.7.4.2.2. Asamblea departamental.

Las Asambleas Departamentales son corporaciones de elección popular —por un periodo de cuatro años—, que ejercen control político sobre los actos de los gobernadores, secretarios del despacho, gerentes y directores de institutos descentralizados. Según lo establece el artículo 300 de la Constitución colombiana, los diputados o miembros de Asambleas Departamentales.

5.7.4.2.3. Corporación Autónoma Regional de los Valles del Sinú y del San Jorge (CVS).

La Corporación Autónoma Regional de los Valles del Sinú y del San Jorge, CVS tiene claro que el objetivo a lograr es el desarrollo sostenible, conociendo la lógica de la naturaleza para servirnos de ella sin violentar sus procesos.

5.7.4.2.4. Parque Nacional Natural Paramillo.

El Parque Nacional Natural Paramillo cuenta con 460.000 hectáreas, es la décima área protegida más grande del país, representa un 4% del área del territorio nacional y tiene una importancia geoestratégica gracias a la influencia que tienen sobre ella las regiones naturales del Caribe, Andina y Pacífica. Su ubicación privilegiada favorece la conectividad ecológica y la conservación de varios ecosistemas que le aportan a la biodiversidad y servicios ecosistémicos locales, regionales y nacionales.

El Parque es un gran reservorio de biodiversidad y se estima que en un área no menor al 10% de su extensión, pueden encontrarse hasta 1436 especies de flora y fauna y al menos 20 de ellas, se encuentran en la categoría de amenaza a nivel mundial. Adicional a ello, el Área Protegida alimenta la red hídrica de cuatro grandes cuencas del noroccidente colombiano como son el río Sinú, el río San Jorge, el río Cauca y el río Sucio.

El interés nacional en este Parque no solo se deriva de sus potenciales servicios ecosistémicos, sino también por ser uno de los más complejos escenarios en los cuales se ha venido desarrollando el conflicto armado colombiano.

5.7.4.3. Autoridades municipales

5.7.4.3.1. Alcaldías

En Colombia, el Alcalde es la primera autoridad de policía de la jurisdicción y el responsable de "conservar el orden público en el municipio, de conformidad con la ley y las órdenes que reciba del Presidente de la República y del respectivo gobernador" (Constitución Política de Colombia, Artículo 315).

5.7.4.3.2. Concejos municipales

Son actores claves en la gestión del desarrollo de los municipios. Son el órgano deliberante de la gestión pública local, la institución que representa a la comunidad ante el Gobierno y ante la sociedad, y es la corporación político-administrativa encargada del cumplimiento de funciones y el desarrollo de actividades de interés público en el municipio. La representación popular que ejerce el Concejo Municipal, se refiere a la relación que existe entre éste y los ciudadanos como resultado de una delegación de poder, donde el concejo está autorizado para tomar decisiones en nombre de los ciudadanos, velando por el bienestar colectivo.

Es una de las autoridades públicas más importantes en el nivel municipal. Es el órgano deliberante de la gestión pública local, la institución que representa a la comunidad ante el Gobierno y ante la sociedad y es la corporación político-administrativa encargada del cumplimiento de funciones y del desarrollo de actividades de interés público en el municipio (República de Colombia, DNP, Escuela Superior de Administración Pública, & USAID, 2011).

El departamento de Córdoba actualmente cuenta con el siguiente número de curules y alcaldes por municipio (Tabla 314).

Tabla 314. autoridades municipales del departamento de córdoba.

AUTORIDAD	ES MUNICIPALES DEL DEPARTAMENTO DE CÓRDOBA	
MUNICIPIOS	ALCALDE	CONCEJO MUNICIPAL NÚMERO DE CURULES
AYAPEL	MARICEL NADER NADER	13
BUENAVISTA	MIGUEL EMIRO GUZMÁN MIELES	11
CANALETE	ARMANDO JOSÉ LAMBERTINEZ BOLAÑO	11
CERETE	elber Chagüi Saker	15
CHIMA	JUAN PASCUAL CUSTODE VIVANCO	11
CHINÚ	teresa maría salamanca de áviles	13
CIÉNAGA DE ORO	ALEJANDRO JAVIER MEJÍA CASTAÑO	15
COTORRA	LUIS ALEJANDRO DORIA LLORENTE	11
LA APARTADA	NELYS PIEDAD ROMERO DE AGUAS	11
los córdobas	JUAN CARLOS YANCES PADILLA	11
MOMIL	ERIKA PATRICIA DÍAZ MEZQUIDA	11
MONTELIBANO	FRANCISCO DANIEL ALEAN MARTÍNEZ	15
MONTERÍA	marcos daniel pineda garcía	19
MOÑITOS	ÁLVARO JOSÉ CASSERES MATOZA	13
PLANETA RICA	GILBERTO RAMIRO MONTES VILLALBA	15
PUEBLO NUEVO	OVIDIO MIGUEL HOYOS PATERNINA	13
PUERTO ESCONDIDO	CRISTILDA MARÍA MARSIGLIA HERNÁNDEZ	13
PUERTO LIBERTADOR	ESPEDITO MANUEL DUQUE CUADRADO	13
PURÍSIMA	DANIEL EDUARDO LÓPEZ PALENCIA	11
SAHAGÚN	BALDOMERO JOSÉ VILLADIEGO CARRASCAL	15
SAN ANDRÉS DE SOTAVENTO	SERGIO RAFAEL ROMERO BASILIO	15
SAN ANTERO	DENNYS CHICA FUENTE S	13
SAN BERNARDO DEL VIENTO	ELBER LUIS LÓPEZ LÓPEZ	13
SAN CARLOS	VÍCTOR MANUEL VALVERDE PÉREZ	13
SAN JOSÉ DE URÉ	LUIS JOSÉ GONZÁLEZ ACOSTA	11
SAN PELAYO	MARÍA ALEJANDRA FORERO PAREJA	13
SANTA CRUZ DE LORICA	nancy sofía jattin martínez	17
TIERRALTA	FABIO LEONARDO OTERO ÁVILES	15
TUCHÍN	noris del carmen hernández velásquez	11
VALENCIA	JOSÉ IGNACIO GÓMEZ RAMOS	13

Fuente: Elaborado por equipo técnico a partir de Registraduría Nacional del Estado Civil de Colombia, 2015.

5.7.4.4.1. ALTO SINÚ

En la subregión del Alto Sinú se encuentran grupos Étnicos tales como población indígena, población afrocolombiana, población raizal y de acuerdo con las proyecciones del censo de DANE realizado en el 2005, existen aproximadamente 6813 indígenas, los cuales se encuentran en los resguardos y/o comunidades de la Tabla 315. (Municipio de Tierralta, 2016).

En el municipio de Tierralta se encuentra el resguardo Embera Katío del Alto Sinú conformado por 28 comunidades indígenas, 26 de las cuales se encuentran dentro del resguardo, mientras que otras tres (3) están localizadas por fuera cerca de los linderos en las poblaciones de Crucito, Antadó y Zarandó, sentadas a lo largo de los ríos Sinú, Verde y Esmeralda, 10 que se relacionan como alejadas del resguardo tienen población ubicadas en veredas y barrios del casco urbano, para un total de 39 localidades indígenas (Municipio de Tierralta, 2016).

Tabla 315. Comunidades Indígenas en la Subregión del Alto Sinú.

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (HOY EMBERA KATIO DEL ALTO SINU)	ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (HOY EMBERA KATIO DEL ALTO SINU)	TIERRALTA ITUANGO	RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	DOZA (CRISTO)- RIO VERDE	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	TUNDO (FORTUNA)-RIO VERDE	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	PAWARANDO (PANICO)-RIO VERDE	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	ARIZA (BRIGIDO)- RIO VERDE	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	PORREMIA (CHOCO)- RIO VERDE	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	IMAMADO (TIGRE)-RIO VERDE	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	ZORANDO (ISLETA)-RIO VERDE	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	amborromia- sinu	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	NAWA -SINU	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	MONGARATATADO (MUTATA)-SINU	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	zambudo (totuma)- Sinu	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	KOREDO (CAIMAN)- SINU	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	KAPUPUDO (CANDELARIA)-SINU	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	CHANGARA (SOCORRO)-SINU	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	KIPARADO (CRUZ GRANDE)-QUEBRADA CRUZ GRANDE	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ	BEGUIDO - ESMERALDA	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)				
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	KACHICHI (CACHICHI)- ESMERALDA	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	WIDO -SINU	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	KARACARADO (CARACAS)- VERDE	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	Junkarado (Pita)- Esmeralda	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	KANYIDO- ESMERALDA	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	ANTADO- MANSO	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	CAMPOALEGRE	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	nawa nuevo- Sinu	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	NEJODO- SINU	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL	ESMERALDA- SINU	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
ALTO SINU)				
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	CHANZANDO	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO
ALTO SINU, ESMERALDA CRUZ GRANDE E IWAGADO (EMBERA KATIO DEL ALTO SINU)	KARAKARADO	TIERRALTA ITUANGO	COMUNIDAD/RESGUARDO	EMBERA KATIO

Fuente: Elaboración equipo técnico a partir de Ministerio del Interior, 2016.

Las comunidades Indígenas del municipio de Tierralta gozan de una indemnización por parte de la empresa Urrá S.A. como medida para contrarrestar los perjuicios causados a esta población, ya que estos fueron obligados a salir de su hábitat natural por la inundación de la Hidroeléctrica. Pese a esto, estas comunidades presentan grandes roblemática como lo es la falta de seguridad alimentaria, la desnutrición infantil, déficit de vivienda, falta de territorios que garanticen su economía (Municipio de Tierralta, 2016).

5.7.4.4.2. SINÚ MEDIO

De acuerdo al censo del DANE del 2005 en esta subregión se encuentran aproximadamente 1970 indígenas de las comunidades pertenecientes al Resguardo Indígena de San Andrés de Sotavento; los cabildos son: Bugre, Barro Prieto, La Arena y San Antonio del Táchira (Tabla 316).

En el municipio de Ciénaga de Oro registra una formalización de un gran segmento de población indígena distribuida en 24 cabildos que se encuentran en proceso de legalización (Municipio de Ciéaga de Oro, 2016)

Tabla 316. Comunidades indígenas de la Subregión Sinú Medio.

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
ARENA	ARENA	CIENAGA DE		
		ORO	COMUNIDAD	ZENU
BARRO PRIETO	BARRO PRIETO	CIENAGA DE		
		ORO	COMUNIDAD	ZENU
EL BUGRE	EL BUGRE	CIENAGA DE		
		ORO	COMUNIDAD	ZENU
SAN ANTONIO DE	SAN ANTONIO DE	CIENAGA DE		
TACHIRA	TACHIRA	ORO	COMUNIDAD	ZENU
TRES MARIAS	TRES MARIAS	CERETE	COMUNIDAD	ZENU
	RETIRO DE LOS			
RETIRO DE LOS INDIOS	INDIOS	CERETE	COMUNIDAD	ZENU

Fuente: Elaboración equipo técnico a partir de Ministerio del Interior, 2016.

5.7.4.4.3. BAJO SINÚ

De acuerdo a os datos poblacionales según grupos étnicos establecidos por el DANE en el Censo 2005 y traídos a colación por el Departamento Nacional de Planeación, se conoce que en esta subregión habitan aproximadamente 17744 indígenas, pertenecientes a los resguardos de San Andrés de Sotavento, Arenal, Aserradero, Chimá Urbanos, Momil Urbano entre otros (

Tabla 317) (DANE, 2005). Además el Ministerio del Interior reporta que es una de las subregiones más pobladas del departamento (Ministerio del Interior, 2015).

Tabla 317. Comunidades indígenas de la Subregión del Bajo Sinú.

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
SAN ANDRES DE SOTAVENTO	SAN ANDRES DE SOTAVENTO	CHIMA	RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	17 DE JUNIO	CHIMA	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	ARACHE	CHIMA	COMUNIDAD/RESGUARDO	ZENU
ARENAL	ARENAL	PURISIMA	COMUNIDAD	ZENU
ASERRADERO	ASERRADERO	PURISIMA	COMUNIDAD	ZENU
BOCON BETULIA	BOCON BETULIA	MOMIL	COMUNIDAD	ZENU
CALLE RALITA	CALLE RALITA	PURISIMA	COMUNIDAD	ZENU
SAN ANDRES DE SOTAVENTO	CAMPO BELLO	CHIMA	COMUNIDAD/RESGUARDO	ZENU
CHIMA URBANO	CHIMA URBANO	CHIMA	COMUNIDAD	ZENU
SAN ANDRES DE SOTAVENTO	SAN ANDRES DE SOTAVENTO	PURISIMA	RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	COMEJEN	PURISIMA	COMUNIDAD/RESGUARDO	ZENU
HUESO	HUESO	PURISIMA	COMUNIDAD	ZENU
SAN ANDRES DE SOTAVENTO	MALEMBA	CHIMA	COMUNIDAD/RESGUARDO	ZENU
MOHAN CUATRO VIENTOS	MOHAN CUATRO VIENTOS	MOMIL	COMUNIDAD	ZENU
MOMIL URBANO	MOMIL URBANO	MOMIL	COMUNIDAD	ZENU
PEREIRA	PEREIRA	MOMIL	COMUNIDAD	ZENU
SABANETA	SABANETA	MOMIL	COMUNIDAD	ZENU
SACANA	SACANA	MOMIL	COMUNIDAD	ZENU
SAN JOSE CERRO MOHAN	SAN JOSE CERRO MOHAN	MOMIL	COMUNIDAD	ZENU

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
SAN JUAN DE LAS PALMAS	SAN JUAN DE LAS PALMAS	PURISIMA	COMUNIDAD	ZENU
SAN PEDRO URBANO DE SANTA CRUZ DE LORICA	SAN PEDRO URBANO DE SANTA CRUZ DE LORICA	SANTA CRUZ DE LORICA	COMUNIDAD	ZENU
SAN ANDRES DE SOTAVENTO	SANTERO	CHIMA	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	TAMBOR	CHIMA	COMUNIDAD/RESGUARDO	ZENU
TREMENTINO	TREMENTINO	MOMIL	COMUNIDAD	ZENU
PURISIMA	PURISIMA	PURISIMA	COMUNIDAD	ZENU
SAN ANDRES DE SOTAVENTO	SABANA COSTA	CHIMA	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	SITIO VIEJO	CHIMA	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	COROZALITO	CHIMA	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	BOCA DE CATABRE	CHIMA	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	SANTO DOMINGO	CHIMA	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	PIMENTAL	CHIMA	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	LAS MARIAS	CHIMA	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	PUNTA VERDE	CHIMA	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	CAROLINA	CHIMA	COMUNIDAD/RESGUARDO	ZENU
FINZENU DE SAN SEBASTIAN	FINZENU DE SAN SEBASTIAN	SANTA CRUZ DE LORICA	COMUNIDAD	ZENU
SAN NICOLAS DE BARI	SAN NICOLAS DE BARI	SANTA CRUZ DE LORICA	COMUNIDAD	ZENU
EL BOLAO-LAS ESTANCIAS	EL BOLAO-LAS ESTANCIAS	SANTA CRUZ DE LORICA	COMUNIDAD	ZENU
NUEVO CAMPO ALEGRE	NUEVO CAMPO ALEGRE	SANTA CRUZ DE LORICA	COMUNIDAD	ZENU
EL CAMPANO DE LOS INDIOS	EL CAMPANO DE LOS INDIOS	SANTA CRUZ DE LORICA	COMUNIDAD	ZENU
EL CARITO	EL CARITO	SANTA CRUZ DE LORICA	COMUNIDAD	ZENU
LORICA ZENU VEREDA NUEVA ESPERANZA	LORICA ZENU VEREDA NUEVA ESPERANZA	SANTA CRUZ DE LORICA	COMUNIDAD	ZENU

Fuente: Elaboración equipo técnico a partir de Ministerio del Interior, 2016.

En esta subregión se reportan aproximadamente 5000 indígenas de acuerdo al DANE 2005 (DANE, 2005). En el municipio de Puerto Escondido La población indígena representa el 4,70% de acuerdo con información del Plan de Desarrollo Municipal 2016-2019. Según información de la Secretaría de Gobierno en el municipio se encuentran legalizados ante el Ministerio del Interior tres (3) cabildos indígenas que son: Tuchinsito, Villa Esther y Martín Roqueme a los cuales pertenecen varias comunidades; estos cabildos no tienen territorio delimitado ni cuentan con la formulación de sus planes de vida (Municipio de Puerto Escondido, 2016).

Otros resguardos que se encuentran constituidos legalmente en el Ministerio del Interior, son: Bajo Grande, Planada Villero, Porvenir, Urbano de San Antero, Cañaveral entre otros (Tabla 318).

Tabla 318. Comunidad Indígena de la Subregión Costera.

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
BAJO GRANDE	BAJO GRANDE	SAN ANTERO	COMUNIDAD	ZENU
PLANADA VILLERO	PLANADA VILLERO	SAN ANTERO	COMUNIDAD	ZENU
PORVENIR	PORVENIR	SAN ANTERO	COMUNIDAD	ZENU
URBANO DE SAN ANTERO	URBANO DE SAN ANTERO	SAN ANTERO	COMUNIDAD	ZENU
MARTIN ROQUEME	MARTIN ROQUEME	PUERTO ESCONDIDO	COMUNIDAD	ZENU
TUCHINCITO	TUCHINCITO	PUERTO ESCONDIDO	COMUNIDAD	ZENU
CAÑAVERAL	CAÑAVERAL	CANALETE	COMUNIDAD	ZENU
EL MAIZAL	EL MAIZAL	CANALETE	COMUNIDAD	ZENU

Fuente: Elaboración equipo técnico a partir de Ministerio del Interior, 2016.

5.7.4.4.5. SABANA

Esta zona está conformada por los municipios de: Pueblo Nuevo, Sahagún, Chinú, San Andrés de Sotavento y Tuchín; y de acuerdo a la base de datos del Ministerio del interior en esta subregión se ubican mayor cantidad de población indígena y de acuerdo a la información del DANE 2005 aproximadamente hay 75118 indígenas (Ministerio del Interior, 2015).

La comunidad que más sobresale es la de San Andrés de Sotavento como se observa en la Tabla 319.

Tabla 319. Comunidad indígena de la Subregión Sabana.

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
EL CONTENTO	EL CONTENTO	PUEBLO NUEVO	COMUNIDAD	ZENU
EL CORRAL	EL CORRAL	PUEBLO NUEVO	COMUNIDAD	ZENU
AGUAS VIVAS	AGUAS VIVAS	CHINU	COMUNIDAD	ZENU

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
BLEO BERDINAL	BLEO BERDINAL	CHINU	COMUNIDAD	ZENU
CACAOTAL	CACAOTAL	CHINU	COMUNIDAD	ZENU
CAPIRRA	CAPIRRA	CHINU	COMUNIDAD	ZENU
CARRANZO	CARRANZO	CHINU	COMUNIDAD	ZENU
CHINU URBANO	CHINU URBANO	CHINU	COMUNIDAD	ZENU
EL PITAL	EL PITAL	CHINU	COMUNIDAD	ZENU
ESCOBALITO	ESCOBALITO	SAHAGUN	COMUNIDAD	ZENU
FLECHA CEVILLA	FLECHA CEVILLA	CHINU	COMUNIDAD	ZENU
LAS LOMAS	LAS LOMAS	CHINU	COMUNIDAD	ZENU
PALMITAL	PALMITAL	CHINU	COMUNIDAD	ZENU
RETIRO DE LOS PEREZ	RETIRO DE LOS PEREZ	CHINU	COMUNIDAD	ZENU
SAHAGUN URBANO	SAHAGUN URBANO	SAHAGUN	COMUNIDAD	ZENU
SAN ANDRES DE SOTAVENTO	SAN ANDRES DE SOTAVENTO	SAN ANDRES DE SOTAVENTO	RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	ANDES RECUPERACION	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	BAJO GRANDE	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	SAN ANDRES DE SOTAVENTO	TUCHIN	RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	BARBACOA	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	BELLA ISLA	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	BELLAVISTA RECUPERACION	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	BERLIN	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	CARTAGENITA	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	CASITAS ARGENTINA	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	CELESTE IMPERIO	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	CENEGAL	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	CERRO VIDALES	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	CERRO BOMBA	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	COSTA RICA	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	CRUZ DEL GUAYABO	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	CUESTA ABAJO	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	EL CARMEN	TUCHIN	COMUNIDAD/RESGUARDO	ZENU

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
SAN ANDRES DE SOTAVENTO	EL MORA	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	esmeralda Norte	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	ESMERALDA SUR	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	FLECHA	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	FLORES DE MOCHA	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	GARDENIAS	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	JEJEN	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	GUAIMARAL	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	GUAYABO SUR	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	GUAYACANES SUR	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	LA GLORIA	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	LA SIRIA	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	LA TAMBORA	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	LAS CASITAS SUR	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	LOS CASTILLOS	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	LOS CORREA	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	MAJAGUAL No 1	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	MOLINA	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	MORA ALEMANIA	San andres de Sotavento	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	NUEVA COLOMBIA	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	NUEVA FORTUNA	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	NUEVA VICTORIA	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	PARAISO	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	PETACA	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	SAN FRANCISCO	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE	SAN ISIDRO No. 1	SAN ANDRES DE	COMUNIDAD/RESGUARDO	ZENU

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
SOTAVENTO		SOTAVENTO		
SAN ANDRES DE SOTAVENTO	SAN ISIDRO No. 2	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	SAN JUAN DE LA CRUZ	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	SANTA ISABEL NORTE	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	SANTA ISABEL SUR	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	TOLIMA	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	VENECIA	SAN ANDRES DE SOTAVENTO	COMUNIDAD/RESGUARDO	ZENU
SAN ANDRES DE SOTAVENTO	VIDALITO	TUCHIN	COMUNIDAD/RESGUARDO	ZENU
SAN BENITO	SAN BENITO	TUCHIN	COMUNIDAD	ZENU
ARROYO DEL MEDIO	ARROYO DEL MEDIO	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
SAN GREGORIO	SAN GREGORIO	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
SAN JOSE LA JULIA	SAN JOSE LA JULIA	TUCHIN	COMUNIDAD	ZENU
SANTANDER DE LA CRUZ	SANTANDER DE LA CRUZ	TUCHIN	COMUNIDAD	ZENU
SITIO NUEVO	SITIO NUEVO	TUCHIN	COMUNIDAD	ZENU
TAMARINDO	TAMARINDO	TUCHIN	COMUNIDAD	ZENU
TUCHIN URBANO	TUCHIN URBANO	TUCHIN	COMUNIDAD	ZENU
VENECIA	VENECIA	SAHAGUN	COMUNIDAD	ZENU
VILLA FATIMA	VILLA FATIMA	CHINU	COMUNIDAD	ZENU
URBANO DE SAN ANDRES DE SOTAVENTO	URBANO DE SAN ANDRES DE SOTAVENTO	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
ALTA RIVERA ROMA	ALTA RIVERA ROMA	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
BAJO NORTE	BAJO NORTE	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
BAJO PALMITAL	BAJO PALMITAL	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
EL BRILLANTE NORTE	EL BRILLANTE NORTE	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
CALLE LARGA	CALLE LARGA	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
CONTENTO	CONTENTO	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
EL BANCO	EL BANCO	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
EL MAMON	EL MAMON	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
EL PEINE	EL PEINE	San andres de Sotavento	COMUNIDAD	ZENU
LOS GAVIRIA	LOS GAVIRIA	SAN ANDRES DE	COMUNIDAD	ZENU

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
		SOTAVENTO		
PALMAS VERDES	PALMAS VERDES	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
PALMITO SUR	PALMITO SUR	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
PATIO BONITO NORTE	PATIO BONITO NORTE	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
PATIO BONITO SUR	PATIO BONITO SUR	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
PLAZA BONITA	PLAZA BONITA	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
BELLA VISTA	BELLA VISTA	TUCHIN	COMUNIDAD	ZENU
CALLE DEL MEDIO	CALLE DEL MEDIO	TUCHIN	COMUNIDAD	ZENU
CARRETAL	CARRETAL	TUCHIN	COMUNIDAD	ZENU
CASTILLERAL	CASTILLERAL	TUCHIN	COMUNIDAD	ZENU
CERRO DE PAJA	CERRO DE PAJA	TUCHIN	COMUNIDAD	ZENU
CRUZ CHIQUITA	CRUZ CHIQUITA	TUCHIN	COMUNIDAD	ZENU
EL PIÑAL	EL PIÑAL	TUCHIN	COMUNIDAD	ZENU
LOVERAN	LOVERAN	TUCHIN	COMUNIDAD	ZENU
MATA DE CAÑA	MATA DE CAÑA	TUCHIN	COMUNIDAD	ZENU
NUEVA ESPERANZA	NUEVA ESPERANZA	TUCHIN	COMUNIDAD	ZENU
NUEVA ESTACION	NUEVA ESTACION	TUCHIN	COMUNIDAD	ZENU
NUEVA ESTRELLA	NUEVA ESTRELLA	TUCHIN	COMUNIDAD	ZENU
SABANA COSTA	SABANA COSTA	TUCHIN	COMUNIDAD	ZENU
LOS ANGELES	LOS ANGELES	PUEBLO NUEVO	COMUNIDAD	ZENU
CAFÉ PISAO	CAFÉ PISAO	PUEBLO NUEVO	COMUNIDAD	ZENU
SAN CARLOS	SAN CARLOS	SAHAGUN Y SAN MARCOS (SUCRE)	COMUNIDAD	ZENU
TEVIS	TEVIS	Sahagun	COMUNIDAD	ZENU
EL TIGRE	EL TIGRE	CHINU	COMUNIDAD	ZENU
RAICERO	RAICERO	CHINU	COMUNIDAD	ZENU
LOS ALGARROBOS	LOS ALGARROBOS	CHINU	COMUNIDAD	ZENU
TERMOELECTRICA	TERMOELECTRICA	CHINU	COMUNIDAD	ZENU
SAN MATEO PAJONAL	SAN MATEO PAJONAL	CHINU	COMUNIDAD	ZENU
CHORRILLO	CHORRILLO	CHINU	COMUNIDAD	ZENU
SANTA ROSA	SANTA ROSA	CHINU	COMUNIDAD	ZENU
NUEVO ORIENTE	NUEVO ORIENTE	CHINU	COMUNIDAD	ZENU
BECARPIGAR	BECARPIGAR	CHINU	COMUNIDAD	ZENU
SANTA CLARA	SANTA CLARA	TUCHIN	COMUNIDAD	ZENU
EL PORVENIR	EL PORVENIR	TUCHIN	COMUNIDAD	ZENU
LAS PALOMAS EL OLIVO	LAS PALOMAS EL OLIVO	TUCHIN	COMUNIDAD	ZENU
PISA BONITO	PISA BONITO	TUCHIN	COMUNIDAD	ZENU
NUEVA VIDA	NUEVA VIDA	TUCHIN	COMUNIDAD	ZENU
LA LAGUNA	LA LAGUNA	TUCHIN	COMUNIDAD	ZENU
PIJIGUAY	PIJIGUAY	TUCHIN	COMUNIDAD	ZENU
BELEN	BELEN	TUCHIN	COMUNIDAD	ZENU

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
EL CARMEN DE PETACA	EL CARMEN DE PETACA	TUCHIN	COMUNIDAD	ZENU
EL BRILLANTE LA BALASTRERA	EL BRILLANTE LA BALASTRERA	TUCHIN	COMUNIDAD	ZENU
ANDES NORTE	ANDES NORTE	TUCHIN	COMUNIDAD	ZENU
GUAYACANES NORTE	CUAYACANES NORTE	TUCHIN	COMUNIDAD	ZENU
EL ROBLE	EL ROBLE	TUCHIN	COMUNIDAD	ZENU
CERRITO DEL TAMARINDO	CERRITO DEL TAMARINDO	TUCHIN	COMUNIDAD	ZENU
LAS CRUCES	LAS CRUCES	TUCHIN	COMUNIDAD	ZENU
BUENOS AIRES NORTE EL CHUZO	BUENOS AIRES NORTE EL CHUZO	TUCHIN	COMUNIDAD	ZENU
ARAUCA	ARAUCA	TUCHIN	COMUNIDAD	ZENU
SANTO DOMINGO	SANTO DOMINGO	TUCHIN	COMUNIDAD	ZENU
MOMPOX	MOMPOX	TUCHIN	COMUNIDAD	ZENU
CARIÑITO	CARIÑITO	TUCHIN	COMUNIDAD	ZENU
CUATRO VIENTOS	CUATRO VIENTOS	TUCHIN	COMUNIDAD	ZENU
PLAZA BONITA CUATRO	PLAZA BONITA CUATRO	TUCHIN	COMUNIDAD	ZENU
SABANA NUEVA	CAMINOS	TUCHIN	COMUNIDAD	7ENII I
	SABANA NUEVA	TUCHIN	COMUNIDAD	ZENU ZENU
SABANAL	SABANAL		COMUNIDAD	
MAJAGUAL LAS PEÑITAS	MAJAGUAL	TUCHIN	COMUNIDAD	ZENU
TIERRA ALTICA	LAS PEÑITAS TIERRA ALTICA	TUCHIN TUCHIN	COMUNIDAD	ZENU
			COMUNIDAD	ZENU
EL MANGUITO	EL MANGUITO	TUCHIN	COMUNIDAD	ZENU
VILLA NUEVA	VILLA NUEVA	TUCHIN	COMUNIDAD	ZENU
NUEVO PARAISO LA BALASTRERA	NUEVO PARAISO LA BALASTRERA	TUCHIN	COMUNIDAD	ZENU
CENTRO ALEGRE	CENTRO ALEGRE	TUCHIN	COMUNIDAD	ZENU
ALTO SANTANA	ALTO SANTANA	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
BAJO DE LATA	BAJO DE LATA	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
BOCA DE JARRO	BOCA DE JARRO	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
BUENOS AIRES SUR	BUENOS AIRES SUR	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
CRUZ DE MAYO	CRUZ DE MAYO	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
EL CHARCON	EL CHARCON	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
EL DIVIDIVI	EL DIVIDIVI	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
EL HOYAL	EL HOYAL	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
HOJA ANCHA	HOJA ANCHA	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
LOS CARRETOS	LOS CARRETOS	SAN ANDRES DE	COMUNIDAD	ZENU

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
		SOTAVENTO		
MAJAGUAL No. 2	MAJAGUAL No. 2	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
MALA NOCHE	MALA NOCHE	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
NUEVA UNION	NUEVA UNION	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
PARAISO PLAZA BONITA	PARAISO PLAZA BONITA	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
PROVIDENCIA SUR	PROVIDENCIA SUR	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
PUEBLECITO SUR	PUEBLECITO SUR	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
RECUPERACION	RECUPERACION	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
SANTA FE DE LA CRUZ	SANTA FE DE LA CRUZ	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
TIERRA GRATA	TIERRA GRATA	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
VILLA ROSITA ARRIBA	VILLA ROSITA ARRIBA	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
VILLA ROSITA SUR	VILLA ROSITA SUR	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
EL DELIRIO	EL DELIRIO	SAN ANDRES DE SOTAVENTO	COMUNIDAD	ZENU
SAN MATIAS	SAN MATIAS	SAHAGUN	COMUNIDAD	ZENU
SANTIAGO ABAJO	SANTIAGO ABAJO	SAHAGUN	COMUNIDAD	ZENU
LA FLORESTA	LA FLORESTA	CHINU	COMUNIDAD	ZENU

Fuente: Elaboración equipo técnico a partir de Ministerio del Interior, 2016.

Los municipios que más resaltan por las comunidades, son:

El municipio de Pueblo Nuevo, de acuerdo a la información suministrada por la ficha de caracterización territorial del DNP cuenta con una población indígena de 11.921, sin embargo, de acuerdo a la información suministrada por la Secretaria del Interior el municipio cuenta con solo cuatro cabildos indígenas legalmente constituidos y reconocidos por el Ministerio del Interior, que a continuación se señalan: Cabildo Indígena menor de Café Pisao con 548 personas; Cabildo Indígena menor El Contento con 305 personas; Cabildo menor rural El Corral con 58 personas; Cabildo menor indígena Los Ángeles con 95 personas. Los demás cabildos Indígenas que se encuentran en proceso de reconocimiento por parte del Ministerio del Interior, son: Cabildo menor indígena Caivar, Cabildo Menor indígena Peniel, Cabildo Menor Indígena de El Agua del Oso. Así mismo, se encuentran en proceso de organización otros cabildos como: Balastera Uno, Balastera Dos, Relumbre, El Chipal y Cabecera Municipal (Municipio de Pueblo Nuevo, 2016)

En el municipio de Sahagún existen siete (7) comunidades indígenas registradas ante el Ministerio del Interior: Sahagún Urbano, Venecia, Tevis, San Carlos, San Matías y Santiago Abajo. Con listado censal a (2015) de 6.500 personas aproximadas registradas ante el Ministerio del Interior. En proceso existen tres (3) comunidades en estudios etnológicos

para la certificación ante el Ministerio las cuales son: La Ye, Guayabal La Y, Venao. Las fluctuaciones o variaciones poblacionales de las comunidades indígenas año a año son registradas ante el Ministerio (Municipio de Sahagún, 2016).

La población indígena del municipio de Chinú está conformada por 22 cabildos rurales y uno urbano distribuidos en 3.776 familias las cuales tienen un total de 17.167 personas los cuales su mayoría se encuentran en el sector rural, viven de los cultivos, pero son afectados por las épocas de invierno o el intenso verano que actualmente se presenta en la región como el fenómeno del niño, esta población requiere ser atendida con proyectos productivos agropecuarios y formación para el trabajo asociativo para producir para el sustento diario y vender sus productos a los comercializadores a través de alianzas productivas. Según datos que estas comunidades reportaron a la Secretaría de Planeación Municipal como lo demuestra la Tabla 320 (Municipio de Chinú, 2012).

Tabla 320. Cabildos indígenas del municipio de Chinú.

CABILDOS	NÚMERO DE FAMILIAS	PERSONAS
URBANO	260	1218
TERMOELÉCTRICA	96	473
BECARPIGAR	236	1259
EL CHIRRILLO	115	580
NUEVO ORIENTE	192	838
CAPIRRA	183	915
LA FLORESTA	161	713
SANTA ROSA	237	1108
CACAOTAL	338	1590
SAN MATEO	231	956
PALMITAL	199	920
ALGARROBO	253	1073
LAS LOMAS	191	826
EL TIGRE	120	432
AGUAS VIVAS	93	445
RAICERO	80	325
RETIRO DE LOS PÉREZ	268	1185
FLECHA SEVILLA	145	573
EL PITAL	87	362
VILLA FÁTIMA	110	469
BLEO VERDINAL	67	328
CARRANZO	104	579
TOTAL	3766	17167

Fuente: Plan de desarrollo Planeta Rica 2016-2019.

El auto censo se realizó el Departamento de Córdoba, Municipios de San Andrés de Sotavento y Tuchín con una cobertura del 100% de los cabildos y Familias residentes, de igual manera en el Departamento de Sucre fue censado el Municipio de San Antonio de Palmito, este último en 89%, arrojando los resultados presentados en la Tabla 321 (Autocenso poblacional Indígena, 2011):

Tabla 321. Distribución de la población indígena en el Municipio de San Andrés de Sotavento.

<u></u>		
CABILDO	No. DE FAMILIAS CENSADAS	No. PERSONAS
ALTA RIVERA ROMA	171	715
ALTO SANTANA	59	282
ANDES RECUPERACIÓN	68	292
ARROYO DEL MEDIO	75	319
BAJO GRANDE	130	557
BAJO LATA	51	161
BAJO NORTE	80	360
BAJO PALMITAL	102	346
BELLA VISTA RECUPERACIÓN	51	214
BERLÍN	141	637
BOCA DE JARRO	57	214
BRILLANTE NORTE	69	315
BUENOS AIRES SUR	92	330
CALLE LARGA	202	821
CARRETO	201	823
CARTAGENITA	46	201
CASITAS ARGENTINA	62	251
CELESTE IMPERIO	136	572
CENEGAL	72	344
CONTENTO	217	1003
COSTA RICA	188	849
CRUZ DE MAYO	154	707
CABILDO RECUPERACIÓN	50	212
CUESTA ABAJO	106	457
EL DELIRIO	115	568
EL BANCO	162	618
EL CHARCÓN	43	172
EL DIVIDIVI	148	651
EL HOYAL	201	744
EL MAMÓN	92	453
EL MORA	66	301
EL PEINE	87	330
FLORES DE MOCHA	83	356
GARDENIAS	213	859
JEJEN	103	503
GUAYABO SUR	149	606
NUEVA FORTUNA	49	144
NUEVA UNIÓN	66	277
PALMAS VERDES	153	685
PALMITO SUR	105	405
PARAÍSO PLAZA BONITA	68	297
PATIO BONITO NORTE	100	398
PATIO BONITO SUR	186	782
PROVIDENCIA	115	489
PUEBLECITO SUR	133	552

CABILDO	No. DE FAMILIAS CENSADAS	No. PERSONAS
SAN ANDRÉS DE SOTAVENTO	1923	7213
SAN FRANCISCO	66	306
SAN GREGORIO	122	459
SAN ISIDRO	44	179
SAN ISIDRO N° 1	35	158
SANTA FE DE LA CRUZ	85	344
SANTA ISABEL NORTE	88	396
SANTA ISABEL SUR	115	532
TIERRA GRATA	77	316
VENECIA	128	594
VILLA ROSITA ABAJO	89	412
VILLA ROSITA ARRIBA	122	528
TOTAL	9380	38552

Fuente: Elaboración equipo técnico a partir de Informe y análisis estadístico autocenso poblacional indígena, 2011.

Tabla 322. Composición Porcentual de Población Indígena censada por sexo e índice de masculinidad.

				SEXO	
DEPARTAMENTO	MUNICIPIO	PERSONAS/MPIO	M	F	IM
CÓRDOBA	SAN ANDRÉS DE SOTAVENTO	38552	19957	18595	107
CÓRDOBA	TUCHÍN	35526	18373	17153	107
SUCRE	PALMITO	7613	3977	3636	109
TOTAL	GENERAL	81691	42307	39384	107

Fuente: Elaboración equipo técnico a partir de Informe y análisis estadístico autocenso poblacional indígena, 2011.

5.7.4.4.6. SAN JORGE

De acuerdo a os datos poblacionales según grupos étnicos establecidos por el DANE en el Censo 2005, se conoce que en esta subregión habitan aproximadamente 1600 indígenas, pertenecientes a los resguardos de Zenú del Alto San Jorge, Pica Pica Nuevo, Las Flores de Córdoba y Margarita, entre otros (Tabla 323) (DANE, 2005)

Tabla 323. Comunidad indígena de la Subregión del San Jorge.

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
BANGARA DANTA	BANGARA DANTA	MONTELIBANO	COMUNIDAD	EMBERA
BATATAL	BATATAL	MONTELIBANO	COMUNIDAD	EMBERA
BELLO HORIZONTE DORADA	BELLO HORIZONTE DORADA	SAN JOSE DE URÉ	COMUNIDAD	ZENU
BOCAS DE URE	BOCAS DE URE	SAN JOSE DE URÉ	COMUNIDAD	ZENU

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
QUEBRADA CAÑAVERAL-RIO SAN JORGE	QUEBRADA CAÑAVERAL-RIO SAN JORGE	PUERTO LIBERTADOR	RESGUARDO	EMBERA KATIO
BUENOS AIRES ABAJO	BUENOS AIRES ABAJO	PUERTO LIBERTADOR	COMUNIDAD	ZENU
CANDELARIA	CANDELARIA	PUERTO LIBERTADOR	COMUNIDAD	ZENU
CARACOLI	CARACOLI	PUERTO LIBERTADOR	COMUNIDAD	ZENU
CENTROAMERICA	CENTROAMERICA	PUERTO LIBERTADOR	COMUNIDAD	ZENU
EL PORVENIR LA RICA	EL PORVENIR LA RICA	PUERTO LIBERTADOR	COMUNIDAD	ZENU
EL SANTUARIO	EL SANTUARIO	PUERTO LIBERTADOR	COMUNIDAD	ZENU
EL TAMBO	EL TAMBO	PUERTO LIBERTADOR	COMUNIDAD	ZENU
GUACARI	GUACARI	PUERTO LIBERTADOR	COMUNIDAD	ZENU
LA ESPERANZA	LA ESPERANZA	MONTELIBANO	COMUNIDAD	ZENU
LA LIBERTAD PICA PICA VIEJO	LA LIBERTAD PICA PICA VIEJO	PUERTO LIBERTADOR	COMUNIDAD	ZENU
LA LIBORIA	LA LIBORIA	PUERTO LIBERTADOR	COMUNIDAD	ZENU
LA LUCHA	LA LUCHA	PUERTO LIBERTADOR	COMUNIDAD	ZENU
LA UNION MORROCOY	LA UNION MORROCOY	PUERTO LIBERTADOR	COMUNIDAD	ZENU
LAS FLORES DE CORDOBA Y MARGARITAS	LAS FLORES DE CORDOBA Y MARGARITAS	MONTELIBANO	COMUNIDAD	ZENU
MIRAFLOR	MIRAFLOR	PUERTO LIBERTADOR	COMUNIDAD	ZENU
PUERTO NUEVO	PUERTO NUEVO	MONTELIBANO	COMUNIDAD	ZENU
PICA PICA NUEVO	PICA PICA NUEVO	MONTELIBANO	COMUNIDAD	ZENU
PIEDRAS VIVAS URE	PIEDRAS VIVAS URE	SAN JOSE DE URÉ	COMUNIDAD	ZENU
PUERTO NUEVO	PUERTO NUEVO	SAN JOSE DE URÉ	COMUNIDAD	ZENU
RANCHO GRANDE	RANCHO GRANDE	PUERTO LIBERTADOR	COMUNIDAD	ZENU
SANTA FE LAS CLARAS	SANTA FE LAS CLARAS	PUERTO LIBERTADOR	COMUNIDAD	ZENU
TORNO ROJO	TORNO ROJO	PUERTO LIBERTADOR	COMUNIDAD	ZENU
VENDE AGUJAS	VENDE AGUJAS	PUERTO LIBERTADOR	COMUNIDAD	ZENU
VIDA NUEVA	VIDA NUEVA	SAN JOSE DE URÉ	COMUNIDAD	ZENU

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
VILLA CARMINIA	VILLA CARMINIA	MONTELIBANO	COMUNIDAD	ZENU
VILLA NUEVA	VILLA NUEVA	PUERTO LIBERTADOR	COMUNIDAD	ZENU
VILLA PORVENIR	VILLA PORVENIR	MONTELIBANO	COMUNIDAD	ZENU
SANTA FE ALTO SAN JORGE	SANTA FE ALTO SAN JORGE	PUERTO LIBERTADOR	COMUNIDAD	ZENU
IBUDO BOSQUE	IBUDO BOSQUE	MONTELIBANO	COMUNIDAD	EMBERA
KIPARA	KIPARA	MONTELIBANO	COMUNIDAD	EMBERA
SITIO NUEVO	SITIO NUEVO	LA APARTADA	COMUNIDAD	ZENU
TOADO	TOADO	MONTELIBANO	COMUNIDAD	EMBERA
PUENTE URE	PUENTE URE	SAN JOSE DE URÉ	COMUNIDAD	ZENU
ALMENDRO	ALMENDRO	PLANETA RICA	COMUNIDAD	ZENU
LOMA DE PIEDRA	LOMA DE PIEDRA	PLANETA RICA	COMUNIDAD	ZENU
PROVIDENCIA	PROVIDENCIA	PLANETA RICA	COMUNIDAD	ZENU
EL REDENTOR DEL MARAÑONAL	EL REDENTOR DEL MARAÑONAL	PLANETA RICA	COMUNIDAD	ZENU
EL ROSARIO DE PLAZA BONITA	EL ROSARIO DE PLAZA BONITA	PLANETA RICA	COMUNIDAD	ZENU
SAN JUAN DE DIOS DE LAS PELONAS	SAN JUAN DE DIOS DE LAS PELONAS	PLANETA RICA	COMUNIDAD	ZENU
PUNTA VERDE	PUNTA VERDE	PLANETA RICA	COMUNIDAD	ZENU
UNION MATOSO	UNION MATOSO	SAN JOSE DE URÉ	COMUNIDAD	ZENU
ZENU DEL ALTO SAN JORGE	ZENU DEL ALTO SAN JORGE	PUERTO LIBERTADOR Y MONTELIBANO	resguardo	ZENU
ZENU DEL ALTO SAN JORGE	BUENAVISTA	PUERTO LIBERTADOR	COMUNIDAD/RESGUARD O	ZENU
ZENU DEL ALTO SAN JORGE	BUENOS AIRES GILGAL	PUERTO LIBERTADOR	COMUNIDAD/RESGUARD O	ZENU
ZENU DEL ALTO SAN JORGE	SAN PEDRO	PUERTO LIBERTADOR	COMUNIDAD/RESGUARD O	ZENU
ZENU DEL ALTO SAN JORGE	SAN ANTONIO ABAJO	PUERTO LIBERTADOR	COMUNIDAD/RESGUARD O	ZENU
ZENU DEL ALTO SAN JORGE	META TERRITORIAL	MONTELIBANO	COMUNIDAD/RESGUARD O	ZENU
ZENU DEL ALTO SAN JORGE	SAN ANTONIO	MONTELIBANO	COMUNIDAD/RESGUARD O	ZENU
LA UNION DEL ALGODÓN	LA UNION DEL ALGODÓN	PLANETA RICA	COMUNIDAD	ZENU
LOS CERROS	LOS CERROS	PLANETA RICA	COMUNIDAD	ZENU
LA LIBERTAD	LA LIBERTAD	SAN JOSE DE URÉ	COMUNIDAD	ZENU
DANDADO	DANDADO	SAN JOSE DE URÉ	COMUNIDAD	EMBERA KATIO

NOMBRE RESGUARDO Y/O COMUNIDAD	NOMBRE COMUNIDAD	LOCALIZACIÓN	TIPO	PUEBLO O ÉTNIA
BATATADO	BATATADO	SAN JOSE DE URÉ	COMUNIDAD	EMBERA KATIO
IBUDO BOSQUE	IBUDO BOSQUE	SAN JOSE DE URÉ	COMUNIDAD	EMBERA KATIO

Fuente: Elaboración equipo técnico a partir de Ministerio del Interior, 2016.

En el municipio de Montelibano se conoce que en el área rural del municipio existen asentamientos indígenas, uno de ellos muy cerca del casco urbano, en el sector del meandro del Pindo (Municipio de Montelíbano, 2016).

Existe en el municipio población afro e indígena de la etnia Embera-Katío del meandro del Pindo que tiene un entorno ambiental y social especial, que lleva a que se formulen programas específicos de gestión en armonía con los proyectos ambientales del municipio. Este asentamiento indígena está integrado por aproximadamente 35 familias (Municipio de Montelíbano, 2016).

El municipio de Montelíbano no tiene un censo o ejercicio estadístico que permita conocer concretamente a cuánto asciende la población afro e indígena del municipio, ni las características detalladas del entorno. Hasta la fecha, se tienen como punto de referencia los datos estadísticos producto del Censo del año 2005, realizado por el DANE (Municipio de Montelíbano, 2016).

En cambio en el municipio de Puerto Libertador se encuentran varios grupos étnicos reconocidos. El porcentaje promedio de personas del municipio que pertenecen a algún grupo étnico es del 20% lo que hace muy importante este tipo de población, el grupo étnico más numeroso es el de los Embera Katios siendo estos un 10% de la población total del municipio. Este grupo reside en el sur del municipio, en zonas selváticas y a orillas de los ríos San Pedro y Rio Uré, también en los corregimientos de Pica Pica, Juan José, Belén y Carepa (Municipio de Puerto Libertador, 2016).

En el municipio se encuentran también los Zenúes, un grupo indígenas más pequeño en población ya que tiene un promedio de población del 5% en relación con la población total del municipio. Este grupo se dedica principalmente a la agricultura, la pesca y artesanías (Municipio de Puerto Libertador, 2016).

5.7.4.5. Consejos comunitarios

De acuerdo a la información recopilada el municipio de Moñitos es el que tiene datos actualizados de los consejos comunitarios, ahí existen once (11) organizaciones de base y tres (3) consejos comunitarios legalmente constituidos en concordancia con la Ley 70 de 1993 y sus decretos reglamentarios, estas organizaciones ocupan territorios urbanos y rurales, en donde desempeñan un papel importante en la preservación de la identidad, auto reconocimiento y cultura de la población afrocolombiana. Se cuenta con un estudio de caracterización y un Plan de Etnodesarrollo, en donde se conocen las problemáticas y

necesidades de este importante grupo poblacional, en la construcción de los programas que se deben establecer en el Plan Estratégico (Municipio de Moñitos, 2012).

5.7.5. Planificación regional y ambiental

5.7.5.1. Planes de desarrollo

El plan de desarrollo se puede definir como el instrumento rector de la planeación nacional y territorial, que sirve como fundamento normativo de las políticas económicas, sociales, culturales y ambientales necesarias para el desarrollo integral y sustentable del país, que responden a los compromisos adquiridos en los programas de gobierno (DNP, ESAP & MINISTERIO DE CULTURA, 2008).

De acuerdo con la Corte Constitucional, el plan de desarrollo es un medio para "ordenar la política estatal hacia el logro de los objetivos que incorpora la noción del Estado Social de Derecho, que no podría entenderse ni alcanzar la plenitud de sus objetivos ni tampoco realizar lo que es de su esencia sino sobre la base de que el orden jurídico y la actividad pública están ordenados a satisfacer los intereses de quienes integran la sociedad civil" (DNP, ESAP & MINISTERIO DE CULTURA, 2008).

Tabla 324. Planes de desarrollo

MUNICIPIOS	PLANES DE DESARROLLO	PERÍODO
AYAPEL	"UN GOBIERNO AL SERVICIO DE LA GENTE"	2016-2019
BUENAVISTA	"TU BIENESTAR, MI COMPROMISO"	2016-2019
CANALETE	"POR LA SENDA DE LA PROSPERIDAD"	2012-2015
CERETE	"CERETE PROGRESA"	2016-2019
CHIMA	"TODO POR CHIMÁ"	2016-2019
CHINÚ	"PORQUE CHINÚ ES DE TODOS"	2012-2015
CIÉNAGA DE ORO	"TODO POR CIÉNAGA DE ORO"	2012-2015
COTORRA	"EL PROGRESO DE COTORRA EN BUENAS MANOS"	2012-2015
LA APARTADA	"EL CAMBIO ES AHORA"	2016-2019
LOS CÓRDOBAS	"DE CORAZÓN CON MI PUEBLO"	2016-2019
MOMIL	"MÁS CERCA DE LA GENTE, EL CAMBIO SE SIENTE"	2012-2015
MONTELIBANO	"LA EDUCACIÓN Y EL CAMPO, SON NUESTRO CAMPO"	2016-2019
MONTERÍA	"MONTERÍA ADELANTE"	2016-2019
MOÑITOS	"UNIDOS POR LA DIGNIDAD Y LA PROSPERIDAD"	2012-2015
PLANETA RICA	"AVANZAR MÁS, CRECER MÁS, VIVIR MEJOR"	2016-2019
PUEBLO NUEVO	"PUEBLO NUEVO, PRÓSPERO Y SOCIALMENTE JUSTO"	2016-2019
PUERTO ESCONDIDO	"TODOS GANAMOS"	2016-2019
PUERTO LIBERTADOR	"PARA SEGUIR AVANZANDO"	2012-2015
PURÍSIMA	"UNIDOS PARA PROGRESAR"	2016-2019

MUNICIPIOS	PLANES DE DESARROLLO	PERÍODO
SAHAGÚN	"más oportunidad, más progreso"	2016-2019
SAN ANDRÉS DE SOTAVENTO	"UNIDOS POR EL CAMBIO QUE QUEREMOS"	2012-2015
SAN ANTERO	"HACIENDO DE SAN ANTERO EL MEJOR LUGAR DE COLOMBIA"	2012-2015
SAN BERNARDO DEL VIENTO	"UN VIENTO DE OPORTUNIDADES"	2012-2015
SAN CARLOS	"FIRMEZA CON COMPROMISO SOCIAL"	2016-2019
SAN JOSÉ DE URÉ	PLAN DE DESARROLLO	2012-2015
SAN PELAYO	"más progreso, más prosperidad"	2016-2019
SANTA CRUZ DE LORICA	"CIUDAD DE TODOS"	2016-2019
TIERRALTA	"POR USTEDES"	2012-2015
TUCHÍN	"POR NUESTRA GENTE"	2012-2015
VALENCIA	"VALENCIA, PROSPERIDAD PARA TODOS"	2012-2015

Fuente: Elaboración equipo técnico a partir de Secretarias de Planeación del Departamento de Córdoba, 2017.

5.7.5.2. Planes de Ordenamiento Territorial

El Plan de Ordenamiento Territorial (POT) es un instrumento técnico y normativo de planeación y gestión de largo plazo; es el conjunto de acciones y políticas, administrativas y de planeación física, que orientarán el desarrollo del territorio municipal por los próximos años y que regularán la utilización, ocupación y transformación del espacio físico urbano y rural. Un POT es en esencia, el pacto social de una población con su territorio (Dirección de Desarrollo Territorial, 2004)

El departamento de Córdoba se encuentra desactualizado con respect a los Planes de Ordenamiento Territorial, de los 30 municipios que lo constituyen solo 12 se encuentran actualizados (Ayapel, Cereté, Ciénaga de Oro, La Apartada, Lorica, Los Córdobas, Planeta Rica, Sahagún, San Carlos, San José de Uré, Tierralta, y Tuchín) (Tabla 325) (Secretaria de Planeación CVS, 2017).

Tabla 325. PLANES DE ORDENAMIENTO TERRITORIAL DEL DEPARTAMENTO DE CÓRDOBA.

ALCALDIA	PAGINA WEB	POT EN ACTUALIZACI ON
ALCALDÍA DE AYAPEL	WWW.AYAPEL-CORDOBA.GOV.CO	х
ALCALDÍA DE BUENAVISTA	www.buenavista-cordoba.gov.co/	
ALCALDÍA DE CANALETE	www.canalete-cordoba.gov.co/	
ALCALDÍA DE CERETÉ	WWW.CERETE-CORDOBA.GOV.CO/	Х
ALCALDÍA DE CHIMÁ	WWW.CHIMA-CORDOBA.GOV.CO/	
ALCALDÍA DE CHINÚ	WWW.CHINU-CORDOBA.GOV.CO/	
ALCALDÍA DE CIÉNAGA DE ORO	WWW.CIENAGADEORO-CORDOBA.GOV.CO/	Х

ALCALDIA	PAGINA WEB	POT EN ACTUALIZACI ON
ALCALDÍA DE COTORRA	WWW.COTORRA-CORDOBA.GOV.CO/	
ALCALDÍA DE LA APARTADA	WWW.LAAPARTADA-CORDOBA.GOV.CO	х
ALCALDÍA DE LORICA	WWW.SANTACRUZDELORICA- CORDOBA.GOV.CO/	х
ALCALDÍA DE LOS CÓRDOBAS	WWW.LOSCORDOBAS-CORDOBA.GOV.CO/	X
ALCALDÍA DE MOMIL	www.momil-cordoba.gov.co	
ALCALDÍA DE MONTELIBANO	www.montelibano-cordoba.gov.co/	
ALCALDÍA DE MONTERÍA	www.monteria-cordoba.gov.co	
ALCALDÍA DE MOÑITOS	www.monitos-cordoba.gov.co/	
ALCALDÍA DE PLANETA RICA	www.planetarica-cordoba.gov.co/	Х
ALCALDÍA DE PUEBLO NUEVO	WWW.PUEBLONUEVO-CORDOBA.GOV.CO/	
ALCALDÍA DE PUERTO ESCONDIDO	WWW.PUERTOESCONDIDO- CORDOBA.GOV.CO/	
ALCALDÍA DE PUERTO LIBERTADOR	WWW.PUERTOLIBERTADOR- CORDOBA.GOV.CO	
ALCALDÍA DE PURÍSIMA	www.purisima-cordoba.gov.co/	
ALCALDÍA DE SAHAGÚN	www.sahagun-cordoba.gov.co	Х
ALCALDÍA DE SAN ANDRÉS DE SOTAVENTO	WWW.SANANDRESDESOTAVENTO- CORDOBA.GOV.CO/	
ALCALDÍA DE SAN ANTERO	www.sanantero-cordoba.gov.co/	
ALCALDÍA DE SAN BERNARDO DEL VIENTO	WWW.SANBERNARDODELVIENTO- CORDOBA.GOV.CO/	
ALCALDÍA DE SAN CARLOS	www.sancarlos-cordoba.gov.co/	X
ALCALDÍA DE SAN JOSÉ DE URÉ	www.sanjosedeure-cordoba.gov.co/	X
ALCALDÍA DE SAN PELAYO	www.sanpelayo-cordoba.gov.co/	
ALCALDÍA DE TIERRALTA	WWW.TIERRALTA-CORDOBA.GOV.CO/	х
ALCALDÍA DE TUCHÍN	WWW.TUCHIN-CORDOBA.GOV.CO	X
ALCALDÍA DE VALENCIA	WWW.VALENCIA-CORDOBA.GOV.CO/	

Fuente: Elaboración equipo técnico a partir de Secretarias de Planeación del Departamento de Córdoba, 2017.

5.7.6. <u>Planes, programas y/o proyectos institucionales que apoyan la ordenación forestal sostenible</u>

5.7.6.1. Instituciones gubernamentales

- REPÚBLICA DE COLOMBIA. DEPARTAMENTO NACIONAL DE PLANEACIÓN. Plan Nacional de Desarrollo (2010-2014). "Prosperidad para Todos". Capítulo III: Crecimiento Sostenible y Competitividad.
- CONVENIO FAO CONIF. Programas Forestales Nacionales. "Plan de Desarrollo Forestal del departamento de Córdoba". Primera Edición. Enero de 2006. Montería, Córdoba.

- CORPORACIÓN NACIONAL DE INVESTIGACIÓN Y FOMENTO FORESTAL (CONIF). "Propuesta Plan de Reforestación Nacional". (2010-2014).
- MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL, MINISTERIO DEL MEDIO AMBIENTE, MIN. DESARROLLO, HINCONES COLOMBIA, DEPARTAMENTO NACIONAL DE PLANEACIÓN. "Plan Nacional de Desarrollo Forestal". Agosto de 2003.

5.7.6.2. Instituciones no gubernamentales

FORCARIBE - CADENA FORESTAL DE CÓRDOBA. Base de Datos. (2011).

5.7.6.3. Inversión regional

Marco Programático

Plan Nacional de Desarrollo "prosperidad para todos" (2010-2014): Este Plan macro ha propuesto incrementar la competitividad de la producción agropecuaria, aumentar la productividad y reducir los costos de producción; promover el uso eficiente del suelo; incrementar la productividad de la mano de obra rural: promoción de formas colectivas, asociativas y conglomerados productivos que aprovechen el potencial de las regiones sobre la base de un ordenamiento y planificación adecuada del territorio. Promover los encadenamientos y la agregación de valor en la producción agropecuaria, forestal y pesquera.

Plan Nacional de Desarrollo Forestal (2003): En su programa Desarrollo de Cadenas Forestales Productivas subprogramas de Zonificación de Áreas para plantaciones, se refiere al propósito de disminuir la alta dispersión e inadecuada ubicación de las áreas dedicadas a la producción forestal e incrementar la oferta de materias primas forestales. Así mismo plantea los subprogramas de Ampliación de la Oferta Forestal Productiva mediante un vigoroso plan de siembras y el aumento de la base forestal para el incremento de áreas plantadas con fines industriales y de Manejo y Aprovechamiento del Bosque Natural.

Plan de Desarrollo Forestal de Córdoba (2006): Se propone fomentar el establecimiento y manejo de sistemas de producción agroindustriales sostenibles que involucren el componente forestal asociado al cultivo de productos alternativos no maderables de ciclo corto y a la actividad ganadera; recuperar, Conservar y manejar en forma sostenible los recursos forestales en áreas de importancia ambiental y ecosistemas estratégicos; Promover y el desarrollo institucional público, privado y comunitario del sector forestal; Fortalecer y apoyar la conformación de formas asociativas de trabajo, para la transformación primaria y secundaria de productos forestales; establecer y manejar adecuadamente plantaciones forestales para aumentar la oferta maderable en el Departamento de Córdoba.

Propuesta Plan de Reforestación Nacional (CONIF, 2010-2014): Plantea el Fortalecimiento y Articulación de la política y la institucionalidad relacionada con la reforestación; Monitoreo y generación de indicadores; focalización de áreas productivas, empresas y productos; fomento a la investigación y la generación de conocimiento; generación de centros industriales e infraestructura logística; estímulos a la inversión en reforestación; generación de empleo y capacitación hacia una cultura forestal.

5.7.6.3.1. <u>Investigación y transferencia de tecnología</u>

La Alianza Academia-Sector productivo ha tenido importantes logros en la investigación del sector forestal en Córdoba. Ha contado con la participación activa de entidades

como Universidad de Córdoba, SENA, CVS y centros de investigación como CORPOICA, CONIF desarrollando proyectos de cofinanciación con Ministerio de Agricultura y Desarrollo Rural y COLCIENCIAS, que han propiciado el desarrollo conjunto de la presente Agenda, que se resume en los siguientes programas de investigación:

Programa Regional de Mejoramiento y Recursos Genéticos Forestales (2011-2021):

- Identificación y Caracterización del potencial genético de especies forestales.
- Implementación de técnicas de conservación in situ y ex situ de recurso genético forestal
- Selección y Ampliación de Base Genética de árboles plus y ensayos de progenie
- Desarrollo y Aplicación de Técnicas Moleculares para la selección de progenitores superiores.

Programa de Multiplicación Masiva de Especies forestales (2011-2021):

- Establecimiento y Certificación de huertos clonales y/o semilleros de especies priorizadas.
- Estandarización de protocolos de propagación vegetativa.

Programa de Ecofisiología y Bioquímica Forestal (2011-2021):

- Determinación de Crecimiento y Desarrollo por subnúcleos
- Evaluación a la Adaptación de especies a condiciones de estrés por cambio climático.
- Determinación de la Capacidad de Captura y Fijación de CO2.

Programa de Manejo Sostenible de Suelos y Aguas (2011-2021):

- Sistemas Agroforestales y Forestería Comunitaria con pequeños y medianos productores
- Recuperación de Suelos Degradados
- Uso de Microorganismos Eficientes asociados a la nutrición y crecimiento forestal
- Determinación de Parámetros Básicos para la regulación del régimen hídrico en sistemas forestales y Agroforestales.

Programa de Protección Fitosanitaria Forestal (2011-2021):

- Identificación de insectos plaga y enemigos naturales en los subnúcleos productivos
- Identificación y Crecimiento de las principales enfermedades por subnúcleo
- Implementación del Manejo Integrado de Plagas y Enfermedades.

Programa de Silvicultura de Precisión y Gestión por modelos (2011-2021):

- Diseño de Núcleos Productivos Forestales a partir de simulación de cambio climático
- Aplicación de técnicas de Teledetección y sensores remotos en la Planificación Forestal por subnúcleos.
- Identificación y Selección de Clon y Fertilidad por sitio específico.

Programa de Utilización de la biomasa forestal como alternativa energética y Mitigación del Cambio Climático (2010-2021):

Identificación de especies forestales y subproductos de cosecha para el aprovechamiento energético de su biomasa dentro del proceso de producción industrial, agroindustrial y de cocción de alimentos en Colombia. CORPOICA.

Programa de Investigación en Tecnología de la Madera (2011-2016):

- Determinación de propiedades físico-mecánicas y de trabajo con especies nativas.
- Diversificación y Alternativas de Utilización de productos manufacturados a partir de especies priorizadas en Córdoba.

Programa de Empoderamiento y Adopción de Tecnologías (2011-2016):

Identificación de mecanismos de Adopción de tecnologías y empoderamiento por el pequeño productor. Estos programas están estructurados por proyectos donde la Alianza Academia-Empresa actúa conjuntamente en la búsqueda de recursos en convocatorias a nivel nacional e internacional.

De acuerdo al Sistema electrónico para la contratación pública SECOP, desde el año 2005 diferentes entidades han realizado proyectos enmarcados en la ordenación forestal en el departamento de Córdoba, estos son (Tabla 326).

Tabla 326. proyectos de inversión regional en el área forestal

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
Ayapel	REHABILITACIÓN ECOLÓGICA PARTICIPATIVA CON BIOINGENERIA EN RONDAS HIDRICAS DE LA CIENAGA DE AYAPEL DEL DEPARTAMENTO DE CORDOBA	2017	6 meses	ASOCIACIÓN DE MUNICIPIOS DEL ALTO SINÚ Y SAN JORGE TVP MUNICIPIOS	Gobernación de Córdoba
Ayapel	ESTABLECIMIENTO AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN ÁREA DE CIENTO TREINTA Y CINCO (135) HECTAREAS, EN LAS MICROCUENCAS CAÑO MUÑOZ, CAÑO SAN MATIAS Y QUEBRADA DE TREJOS, UBICADAS EN EL MUNICIPIO DE AYAPEL, DEPARTAMENTO DE CÓRDOBA	2006	8 meses	OSWALDO GONZALEZ NEGRETE	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Ayapel	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE 584.5 HECTÁREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE PUERTO LIBERTADOR, MONTELIBANO, AYAPEL, LA APARTADA BUENAVISTA Y PUEBLO NUEVO, DEPARTAMENTO DE CÓRDOBA	2006	8 meses	UNIÓN TEMPORAL LA ESMERALDA	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Ayapel	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS CON PARTICIPACION COMUNITARIA EN UN AREA DE DOSCIENTAS OCHENTA Y CINCO (285) HECTAREAS EN LA MICROCUENCA QUEBRADA LA QUEBRADONA MUNICIPIO DE AYAPEL, DEPARTAMENTO DE CORDOBA	2004	10 meses	EUSEBIO CANABAL SALAZAR	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Buenavista	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE 584.5 HECTÁREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE PUERTO LIBERTADOR, MONTELIBANO, AYAPEL, LA APARTADA BUENAVISTA Y PUEBLO NUEVO, DEPARTAMENTO DE CÓRDOBA	2006	8 meses	UNIÓN TEMPORAL LA ESMERALDA	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
Canalete	REHABILITACIÓN ECOLÓGICA PARTICIPATIVA EN ZONAS DE APTITUD AMBIENTAL Y FORESTAL DE LA CUENCA DEL RIO CANALETE, EN LOS MUNICIPIOS DE CANALETE, PUERTO ESCONDIDO Y LOS CORDOBAS, DEPARTAMENTO DE CÓRDOBA	2016	9 meses	CONSORCIO RIO CANALETE	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Canalete	ESTABLECIMIENTO AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN ÁREA DE CIENTO CINCUENTA Y SIETE Y MEDIA (157.5) HECTÁREAS EN LAS MICROCUENCAS QUEBRADA URANGO, QUEBRADA NUEVO NARIÑO, QUEBRADA EL GUINEO Y QUEBRADA BOCA AL REVES, UBICADAS EN EL MUNICIPIO DE CANALETE, DEPARTAMENTO DE CÓRDOBA	2006	8 meses	LUIS CARLOS LUNA AYALA	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Canalete	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 90 HECTAREAS EN LA MICROCUENCA QUEBRADA SIETE VUELTAS (50) HECTAREAS MUNICIPIO DE LOS CORDOBAS	2005	8 meses	UNIÓN TEMPORAL CIELO AZUL	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Canalete	ESTABLECIMIENTO AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE OCHENTA (80) HECTAREAS EN LA MICROCUENCA RIO CANALETE MUNICIPIO DE CANALETE, DEPARTAMENTO DE CORDOBA	2005	9 meses	UNIÓN TEMPORAL CIELO AZUL	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Cereté	PRIMERO Y SEGUNDO MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS - PRODUCTORAS EN UN AREA DE 57.5 HECTAREAS EN LA MICROCUENCA ARROYO EL COCO, MUNICIPIO DE CERETE Y UN MANTENIMIENTO Y CONSERVACION DE 50 HECTAREAS EN LA MICROCUENCA ARROYO PUEBLO SECO, MUNICIPIO DE MONTERIA, DEPARTAMENTO DE CORDOBA	2005	8 meses	ROSARIO GANEM DIAZ	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
Cereté	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE MIL CIENTO NOVENTA Y DOS (1.192) HECTAREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE SAN CARLOS, CERETE, SAHAGUN, PURISIMA, MOMIL, LORICA, MONTERIA, LOS CORDOBAS Y MOÑITOS EN EL DEPARTAMENTO DE CORDOBA	2006	8 meses	OSWALDO JOSE GONZALEZ NEGRETE	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Ciénaga de Oro	PRIMERO Y SEGUNDO MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 35.5 HECTAREAS EN LA MICROCUENCA ARROYO CATALINA, MUNICIPIO DE SAHAGUN Y UN MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 135 HECTAREAS EN LA MICROCUENCA ARROYO MOCHA, MUNICIPIO DE SAN ANDRES (50 HAS), ARROYO VENAO, MUNICIPIO DE CIENAGA DE ORO 42 (HAS) Y ARROYO SANTA ROSA EL RECREO, MUNICIPIO DE SAN CARLOS 43 HAS, DEPARTAMENTO DE CORDOBA	2005	8 meses	UNIÓN TEMPORAL CIELO AZUL	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Ciénaga de Oro	AISLAMIENTO, ESTABLECIMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN ÁREA DE CUARENTA Y CINCO (45) HECTÁREAS EN LA MICROCUENCA DEL CAÑO DE AGUAS PRIETAS UBICADA EN EL CIENAGA DE ORO, DEPARTAMENTO DE CÓRDOBA	2006	8 meses	RODRIGO GARCES GUTIERREZ	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
La Apartada	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE 584.5 HECTÁREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE PUERTO LIBERTADOR, MONTELIBANO, AYAPEL, LA APARTADA BUENAVISTA Y PUEBLO NUEVO, DEPARTAMENTO DE CÓRDOBA	2006	8 meses	UNIÓN TEMPORAL LA ESMERALDA	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
Lorica	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN ÁREA DE 1192 HECTÁREAS, ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE SAN CARLOS, CERETÉ, SAHAGUN, PURÍSIMA, MOMIL, LÓRICA, MONTERÍA, LOS CÓRDOBAS Y MOÑITOS EN EL DEPARTAMENTO DE CÓRDOBA	2006	8 meses OSWALDO GONZALEZ NEGRETE		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Los Córdobas	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 90 HECTAREAS EN LA MICROCUENCA QUEBRADA SIETE VUELTAS (50) HECTAREAS MUNICIPIO DE LOS CORDOBAS	2005	8 meses	UNIÓN TEMPORAL CIELO AZUL	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Los Córdobas	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE MIL CIENTO NOVENTA Y DOS (1.192) HECTAREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE SAN CARLOS, CERETE, SAHAGUN, PURISIMA, MOMIL, LORICA, MONTERIA, LOS CORDOBAS Y MOÑITOS EN EL DEPARTAMENTO DE CORDOBA	2006	8 meses	OSWALDO JOSE GONZALEZ NEGRETE	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Momil	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE MIL CIENTO NOVENTA Y DOS (1.192) HECTAREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE SAN CARLOS, CERETE, SAHAGUN, PURISIMA, MOMIL, LORICA, MONTERIA, LOS CORDOBAS Y MOÑITOS EN EL DEPARTAMENTO DE CORDOBA	2006	8 meses	OSWALDO JOSE GONZALEZ NEGRETE	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Montelíbano	CONSERVACIÓN Y APROVECHAMIENTO DEL RECURSO FORESTAL EN EL DEPARTAMENTO DE CÓRDOBA	2007	60 meses	CONSORCIO BOSQUE TROPICAL	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
Montelíbano	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE 584.5 HECTÁREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE PUERTO LIBERTADOR, MONTELIBANO, AYAPEL, LA APARTADA BUENAVISTA Y PUEBLO NUEVO, DEPARTAMENTO DE CÓRDOBA	2006	8 meses	UNIÓN TEMPORAL LA ESMERALDA	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Montelíbano	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 34.5 HECTAREAS EN LA MICROCUENCA QUEBRADA BLANCO, MUNICIPIO DE MONTELIBANO DEPARTAMENTO DE CORODBA	2005	9 meses	OSWALDO JOSE GONZALEZ NEGRETE	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Montelíbano	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 267 HECTAREAS EN LA MICROCUENCA QUEBRADA LOS CARACOLES Y QUEBRADA EL CAN, MUNICIPIO DE MONTELIBANO, DEPARTAMENTO DE CORDOBA	2005	3 meses	LUIS CABRALES BUELVAS	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Montería	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN ÁREA DE 49,5 HECTÁREAS EN LA MICROCUENCA CAÑO LA CAIMANERA Y CUERPOS DE AGUA ASOCIADOS, UBICADA EN EL MUNICIPIO DE MONTERÍA, DEPARTAMENTO DE CÓRDOBA	2006	1 mes	ROBINZON MENDOZA GONZALEZ	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Montería	ESTABLECIMIENTO AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE SETENTA Y NUEVE (79) HECTAREAS EN LAS MICROCUENCAS QUEBRADA LA MORA Y QUEBRADA SAN JERONIMO UBICADAS EN EL MUNICIPIO DE MONTERIA DEPARTAMENTO DE CORDOBA	2006	8 meses	LUIS CABRALES BUELVAS	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
Montería	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 34.5 HECTAREAS EN LA MICROCUENCA QUEBRADA BLANCO, MUNICIPIO DE MONTELIBANO DEPARTAMENTO DE CORODBA	2005	OSWALDO JOSE GONZALEZ NEGRETE		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Montería	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE CIENTO VEINTE (120) HECTAREAS EN LA MICROCUENCA ARROYO EL VUELTOSO, MUNICIPIO DE MONTERIA, DEPARTAMENTO DE CORDOBA	2005	5 9 meses NEGRETE		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Montería	PRIMERO Y SEGUNDO MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS- PRODUCTORAS EN UN AREA DE DOSCIENTAS (200) HECTAREAS EN LA MICROCUENCA ARROYO VUELTOSO, MUNICIPIO DE MONTERIA, DEPARTAMENTO DE CORDOBA	2005	8 meses		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Montería	PRIMERO Y SEGUNDO MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS - PRODUCTORAS EN UN AREA DE 57.5 HECTAREAS EN LA MICROCUENCA ARROYO EL COCO, MUNICIPIO DE CERETE Y UN MANTENIMIENTO Y CONSERVACION DE 50 HECTAREAS EN LA MICROCUENCA ARROYO PUEBLO SECO, MUNICIPIO DE MONTERIA, DEPARTAMENTO DE CORDOBA	2005	8 meses AZUL		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Moñitos	REFORESTACIÓN DE AREAS DEGRADADAS DE BOSQUES DE MANGLE EN LA CUENCA DEL RIO BROQUELES DEL MUNICIPIO DE MOÑITOS CÓRDOBA	2015	1 mes	UNDACIÓN PARA LA INNOVACIÓN SOCIAL HACIA EL DESARROLLO FISDESA	CÓRDOBA - ALCALDÍA MUNICIPIO DE MOÑITOS

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante	
Moñitos	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 34.5 HECTAREAS EN LA MICROCUENCA QUEBRADA BLANCO, MUNICIPIO DE MONTELIBANO DEPARTAMENTO DE CORODBA	2005	5 9 meses OSWALDO JOSE GONZALEZ NEGRETE		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE	
Planeta Rica	Reforestación por parte de la administración municipal, en el corregimiento Carolina (arroyo Carolina) y vereda El Cielo.	2010- 2011	5 meses	Municipio de Planeta Rica	CÓRDOBA-ALCALDÍA DE PLANETA RICA	
Pueblo Nuevo	RESTAURACION Y REFORESTACION CON FINES PROTECTORES DE LAS CUENCAS Y MICROCUENCAS QUE SURTEN AL SISTEMA DE ACUEDUCTO DE PUEBLO NUEVO, MANTENIMIENTO DE PARQUE INFANTIL EXISTENTE Y CONSTRUCCION DE PUENTE PEATONAL EN MADERA	2017	1 mes HERSA CONSTRUCTORES SAS		CÓRDOBA - AGUAS DE CÓRDOBA S.A. E.S.P.	
Pueblo Nuevo	AISLAMIENTO Y ESTABLECIMIENTO DE 16 HECTAREAS PLANTACIONES FORESTALES PROTECTORAS.	2009	12 meses	MUNICIPIO DE PUEBLO NUEVO - CORDOBA	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE	
Pueblo Nuevo	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE 584.5 HECTÁREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE PUERTO LIBERTADOR, MONTELIBANO, AYAPEL, LA APARTADA BUENAVISTA Y PUEBLO NUEVO, DEPARTAMENTO DE CÓRDOBA	2006	8 meses	UNIÓN TEMPORAL LA ESMERALDA	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE	
Puerto Escondido	AISLAMIENTO Y ESTABLECIMIENTO DE PLANTACIONES FORESTALES - PROTECTORAS EN LA MICROCUENCA QUEBRADA YUCA EN UN ÁREA DE CIEN (100 Ha.) HECTAREAS EN EL MUNICIPIO DE PUERTO ESCONDIDO - DEPARTAMENTO DE CÓRDOBA	2008	4 meses	JORGE KAOR ECHEVERRY BERASTEGUI	CÓRDOBA - ALCALDÍA MUNICIPIO DE PUERTO ESCONDIDO	

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
Puerto Escondido	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE CIENTO VEINTE (120) HECTAREAS EN LA MICROCUENCA RIO MANGLE, MUNICIPIO DE PUERTO ESCONDIDO, DEPARTAMENTO DE CORDOBA	2005	2005 9 meses UNIÓN TEMPORAL CIELO AZUL		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Puerto Libertador	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE 584.5 HECTÁREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE PUERTO LIBERTADOR, MONTELIBANO, AYAPEL, LA APARTADA BUENAVISTA Y PUEBLO NUEVO, DEPARTAMENTO DE CÓRDOBA	2006	8 meses UNIÓN TEMPORAL LA ESMERALDA OSWALDO JOSE		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Purísima	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE MIL CIENTO NOVENTA Y DOS (1.192) HECTAREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE SAN CARLOS, CERETE, SAHAGUN, PURISIMA, MOMIL, LORICA, MONTERIA, LOS CORDOBAS Y MOÑITOS EN EL DEPARTAMENTO DE CORDOBA	2006	8 meses	OSWALDO JOSE GONZALEZ NEGRETE	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Sahagún	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE MIL CIENTO NOVENTA Y DOS (1.192) HECTAREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE SAN CARLOS, CERETE, SAHAGUN, PURISIMA, MOMIL, LORICA, MONTERIA, LOS CORDOBAS Y MOÑITOS EN EL DEPARTAMENTO DE CORDOBA	2006	8 meses	OSWALDO JOSE GONZALEZ NEGRETE	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
Sahagún	PRIMERO Y SEGUNDO MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 35.5 HECTAREAS EN LA MICROCUENCA ARROYO CATALINA, MUNICIPIO DE SAHAGUN Y UN MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 135 HECTAREAS EN LA MICROCUENCA ARROYO MOCHA, MUNICIPIO DE SAN ANDRES (50 HAS), ARROYO VENAO, MUNICIPIO DE CIENAGA DE ORO 42 (HAS) Y ARROYO SANTA ROSA EL RECREO, MUNICIPIO DE SAN CARLOS 43 HAS, DEPARTAMENTO DE CORDOBA	2005	8 meses	UNIÓN TEMPORAL CIELO AZUL	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
San Andrés de Sotavento	PRIMERO Y SEGUNDO MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 35.5 HECTAREAS EN LA MICROCUENCA ARROYO CATALINA, MUNICIPIO DE SAHAGUN Y UN MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 135 HECTAREAS EN LA MICROCUENCA ARROYO MOCHA, MUNICIPIO DE SAN ANDRES (50 HAS), ARROYO VENAO, MUNICIPIO DE CIENAGA DE ORO 42 (HAS) Y ARROYO SANTA ROSA EL RECREO, MUNICIPIO DE SAN CARLOS 43 HAS, DEPARTAMENTO DE CORDOBA	2005	005 8 meses UNIÓN TEMPORAL CIELO AZUL		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
San Antero	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN ÁREA DE DOSCIENTAS CINCUENTA Y OCHO 258 HECTAREAS, EN LAS MICROCUENCAS CAÑO VILLERO, ARROYO AMANZAGUAPO, ARROYO GRANDE Y ARROYO DON DIEGO, UBICADAS EN EL MUNICIPIO DE SAN ANTERO, DEPARTAMENTO DE CÓRDOBA	2006	8 meses	U.T CAOBA	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
San Bernardo del viento	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE SESENTA Y NUEVE (69) HECTAREAS EN LA MICROCUENCA CA?O EL CORRENTOSO, MUNICIPIO DE SAN BERNARDO DEL VIENTO, DEPARTAMENTO DE CORDOBA	2005	9 meses UNIÓN TEMPORAL CIELO AZUL		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
San Carlos	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN AREA DE MIL CIENTO NOVENTA Y DOS (1.192) HECTAREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE SAN CARLOS, CERETE, SAHAGUN, PURISIMA, MOMIL, LORICA, MONTERIA, LOS CORDOBAS Y MOÑITOS EN EL DEPARTAMENTO DE CORDOBA	2006	8 meses OSWALDO JOSE GONZALEZ NEGRETE		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
San Carlos	PRIMERO Y SEGUNDO MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 35.5 HECTAREAS EN LA MICROCUENCA ARROYO CATALINA, MUNICIPIO DE SAHAGUN Y UN MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 135 HECTAREAS EN LA MICROCUENCA ARROYO MOCHA, MUNICIPIO DE SAN ANDRES (50 HAS), ARROYO VENAO, MUNICIPIO DE CIENAGA DE ORO 42 (HAS) Y ARROYO SANTA ROSA EL RECREO, MUNICIPIO DE SAN CARLOS 43 HAS, DEPARTAMENTO DE CORDOBA	2005	8 meses	UNIÓN TEMPORAL CIELO AZUL	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
San José de Uré	REFORESTACION DE LA QUEBRADA SAN LEON QUE ABASTECE EL ACUEDUCTO MUNICIPAL DEL CASCO URBANO DEL MUNICIPIO DE SAN JOSÉ DE URÉ - CÓRDOBA	2015	2 meses	CORPORACIÓN PARA EL DESARROLLO SOSTENIBLE DE LA CUENCA DEL SAN JORGE	CÓRDOBA - ALCALDÍA MUNICIPIO DE SAN JOSÉ DE URE

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
San José de Uré	RECUPERACIÓN Y REFORESTACION DE LA RIVERA DE LA QUEBRADA REMOLINOS DEL CORREGIMIENTO DE VERSALLES DEL MUNICIO DE SAN JOSE DE URE ¿ DEPARTAMENTO DE CORDOBA	2015	2015 1 mes CORPORACIÓN PARA EL DESARROLLO SOSTENIBLE DE LA CUENCA DEL SAN JORGE		CÓRDOBA - ALCALDÍA MUNICIPIO DE SAN JOSÉ DE URE
San José de Uré	REFORESTACIÓN DE SIETE (7) HECTÁREAS CON ESPECIES NATIVAS PARA LA PROTECCIÓN DE LAS MARGENES DERECHA E IZQUIERDA DE LA QUEBRADA DORADA EN EL MUNICIPIO DE SAN JOSE DE URE	2015	2 meses	CORPORACIÓN PARA EL DESARROLLO SOSTENIBLE DE LA CUENCA DEL SAN JORGE	CÓRDOBA - ALCALDÍA MUNICIPIO DE SAN JOSÉ DE URE
San José de Uré	ESTABLECIMIENTO, AISLAMIENTO, MANTENIMIENTO Y GEOPOSICIÓN DE 12 HECTAREAS DE PLANTACIÓN FORESTAL DENTRO DEL PROYECTO RESTAURACIÓN Y REFORESTACIÓN DE LAS CUENCAS Y MICROCUENCAS DE LA QUEBRADA URÉ DEL MUNICIPIO DE SAN JOSE DE URÉ- CORDOBA	2015	FUNDACIÓN SOCIAL PARA EL DESARROLLO CULTURAL, TECNOLÓGICO Y ECOLÓGICO DE COLOMBIA-FUNTECOL		CÓRDOBA - ALCALDÍA MUNICIPIO DE SAN JOSÉ DE URE
San José de Uré	RECUPERACIÓN DE LA RIVERA DE LA QUEBRADA LEÓN: REFORESTACIÓN Y DESARROLLO AMBIENTAL COMUNITARIO DEL MUNICIPIO DE SAN JOSÉ DE URÉ- CÓRDOBA	2013	ECOLÓGICO DE COLOMBIA-FUNTECOL		CÓRDOBA - ALCALDÍA MUNICIPIO DE SAN JOSÉ DE URE
Tierralta	REFORESTACIÓN CON ESPECIES NATIVAS PROTECTORAS CON EL FIN DE AUMENTAR LAS RECARGAS HÍDRICAS DE LAS QUEBRADAS QUIMARI, QUEBRADA EL MEDIO, QUEBRADA JUI, Y TUCURA EN EL MUNICIPIO DE TIERRALTA DEL DEPARTAMENTO DE CÓRDOBA	2017	13 2 meses FUNDACIÓN CREANDO HABITAT-FUNCRHABIT INGENIAR DE LA COSTA		CÓRDOBA - GOBERNACIÓN
Tierralta	REHABILITACIÓN ECOLÓGICA PARTICIPATIVA EN AREAS DE APTITUD AMBIENTAL Y FORESTAL EN LA SUBCUENCA LAS FLORES DEL MUNICIPIO DE TIERRALTA CÓRDOBA	2017	6,5 meses	CONSORCIO LAS FLORES	CÓRDOBA - GOBERNACIÓN
Tierralta	REHABILITACIÓN ECOLÓGICA PARTICIPATIVA EN ZONAS DE APTITUD AMBIENTAL Y FORESTAL DE LA CUENCA ALTA DEL RIO SINÚ EN LOS MUNICIPIOS DE TIERRALTA Y VALENCIA, DEPARTAMENTO DE CÓRDOBA.	2016	9 meses	TVP ASOCIACIÓN DE MUNICIPIOS	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
Tierralta	ESTABLECIMIENTO Y AISLAMIENTO DE PLANTACIONES FORESTALES PROTECTORAS EN MICROCUENCAS UBICADAS ARRIBA DE LA REPRESA URRA EN EL MUNICIPIO DE TIERRALTA, DEPARTAMENTO DE CORDOBA	2009	8 meses CONSORCIO ALTO VERDE		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Tierralta	REALIZAR EL AISLAMIENTO Y ESTABLECIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS, EN UN ÁREA DE CUATROCIENTAS OCHENTA Y CINCO (485) HÉCTAREAS, EN MICROCUENCAS UBICADAS ARRIBA DE LA REPRESA DE URRA, MUNICIPIO DE TIERRALTA, DEPARTAMENTO DE CÓRDOBA	2008	8 meses	CONSORCIO BRISALIA	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Tierralta	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE CIENTO VEINTE (120) HECTÁREAS EN MICROCUENCAS UBICADAS ARRIBA DE LA REPRESA DE URRA EN EL MUNICIPIO DE TIERRALTA, DEPARTAMENTO DE CÓRDOBA	2006	5 meses UNIÓN TEMPORAL LA MONTAÑITA 3 meses UNIÓN TEMPORAL		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Tierralta	MANTENIMIENTO Y CONSERVACIÓN DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN ÁREA DE OCHOCIENTOS CUATRO (804) HECTÁREAS EN MICROCUENCAS UBICADAS ARRIBA DE LA REPRESA DE URRA, MUNICIPIO DE TIERRALTA, DEPARTAMENTO DE CORDOBA	2006	3 meses	UNIÓN TEMPORAL REFORESTACIONES 2006	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Tierralta	MANTENIMIENTO Y CONSERVACIÓN DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN ÁREA DE 320 HECTÁREAS EN MICROCUENCAS UBICADAS EN LOS MUNICIPIOS DE TIERRALTA Y VALENCIA, DEPARTAMENTO DE CÓRDOBA	2006	1 mes	UNIÓN TEMPORAL EL LORO	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Tierralta	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS PRODUCTORAS EN UN ÁREA DE DOSCIENTAS VEINTE (220 HAS) EN LA MICROCUENCA QUEBRADA QUIMARI EN EL MUNICIPIO DE TIERRALTA, DEPARTAMENTO DE CÓRDOBA	2006	8 meses	UNIÓN TEMPORAL QUIMARI	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
Tierralta	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN ÁREA DE MIL DOSCIENTOS CATORCE (1214) HECTÁREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE TIERRALTA Y VALENCIA EN EL DEPARTAMENTO DE CÓRDOBA	2006	2006 8 meses UNIÓN TEMPORAL CAMPO VERDE		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Tierralta	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRIDUCTORAS EN UN AREA DE NOVENTA (90) HECTAREAS EN LAS MICROCUENCAS QUEBRADAS GUARUMAL Y TAY, MUNICIPIO DE TIERRALTA, DEPARTAMENTO DE CORDOBA	2005	9 meses	OSWALDO GONZALEZ NEGRETE	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Tierralta	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 427 HECTAREAS EN LAS MICROCUENCAS QUEBRADA TUCURA, VEREDA LA OSA Y QUEBRADA URRA, VEREDA LAS NUBES, MUNICIPIO DE TIERRALTA, DEPARTAMENTO DE CORDOBA	2005	3 meses	UNIÓN TEMPORAL CIELO AZUL	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Tierralta	PRIMERO Y SEGUNDO MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE 180.5 HECTAREAS EN LAS MICROCUENCAS QUEBRADA TUCURA VEREDA LA OSA, MUNICIPIO DE TIERRALTA, DEPARTAMENTO DE CORDOBA	2005	8 meses	LUIS CABRALES BUELVAS	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Tierralta	PRIMERO Y SEGUNDO MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS- PRODUCTORAS EN UN AREA DE 150 HECTAREAS EN LA MICROCUENCA QUEBRADA JUI, MUNICIPIO DE TIERRALTA, DEPARTAMENTO DE CORDOBA	2005 8 meses		LUIS LUNA AYALA	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Tierralta	ESTABLECIMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS- PRODUCTORAS EN UN AREA DE CUARENTA Y CINCO (45) HECTAREAS EN LA MICROCUENCA QUEBRADA TUCURA, VEREDA LA OSA EN EL MUNICIPIO DE TIERRALTA, DEPARTAMENTO DE CORDOBA	2004	9 meses	ROSARIO GANEM DIAZ	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE

Municipio	Objetivo	Año	Tiempo	Ejecutor	Contratante
Valencia	REFORESTACION DE 9KM LINEALES DE AMBOS LADOS DE LA VIA RIO NUEVO - VALENCIA CON PLANTULAS DE POLVILLO (TABEBUIA CHRYSANTHA), MANGO TOMMY (MANGIFERA INDICAL) Y NISPERO (ERIOBOTRYA JAPONICA). DEL MUNICIPIO DE VALENCIA	2016	1 mes ASOCIACIÓN DE MUNICIPIOS DEL ALTO SINÚ Y SAN JORGE TVP MUNICIPIOS		CÓRDOBA - ALCALDÍA MUNICIPIO DE VALENCIA
Valencia	REHABILITACIÓN ECOLÓGICA PARTICIPATIVA EN ZONAS DE APTITUD AMBIENTAL Y FORESTAL DE LA CUENCA ALTA DEL RIO SINÚ EN LOS MUNICIPIOS DE TIERRALTA Y VALENCIA, DEPARTAMENTO DE CÓRDOBA.	2016	y meses MUNICIPIOS		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Valencia	CONSERVACIÓN Y APROVECHAMIENTO DEL RECURSO FORESTAL EN EL DEPARTAMENTO DE CÓRDOBA	2008	60 meses		CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Valencia	MANTENIMIENTO Y CONSERVACIÓN DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN ÁREA DE 320 HECTÁREAS EN MICROCUENCAS UBICADAS EN LOS MUNICIPIOS DE TIERRALTA Y VALENCIA, DEPARTAMENTO DE CÓRDOBA	2006	1 mes	UNIÓN TEMPORAL EL LORO	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Valencia	MANTENIMIENTO Y CONSERVACION DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN ÁREA DE MIL DOSCIENTOS CATORCE (1214) HECTÁREAS ESTABLECIDAS EN MICROCUENCAS DE LOS MUNICIPIOS DE TIERRALTA Y VALENCIA EN EL DEPARTAMENTO DE CÓRDOBA	2006	8 meses	UNIÓN TEMPORAL CAMPO VERDE	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE
Valencia	ESTABLECIMIENTO, AISLAMIENTO Y PRIMER MANTENIMIENTO DE PLANTACIONES FORESTALES PROTECTORAS-PRODUCTORAS EN UN AREA DE CIENTO TREINTA Y DOS (132) HECTAREAS EN LA MICROCUENCA QUEBRADA EL PIRU, MUNICIPIO DE VALENCIA, DEPARTAMENTO DE CORDOBA	2005	9 meses	UNIÓN TEMPORAL MONTEBELLO	CVS - CORPORACIÓN AUTÓNOMA REGIONAL DE LOS VALLES DEL SINÚ Y DEL SAN JORGE

Fuente: Elaboración equipo técnico a partir de SECOP, 2017.

5.8. Aspectos económicos

5.8.1. Producción forestal

5.8.1.1. Antecedentes

De acuerdo al Decreto 1076 del 2015, las industrias forestales se consideran empresas que realizan actividades de plantación, manejo, aprovechamiento, transformación o comercialización de productos primarios o secundarios del bosque o de la Flora silvestre.

Específicamente las empresas de transformación primaria se refieren a aquellas que poseen la finalidad de transformación, tratamiento o conversión mecánica o química de productos extraídos de troza y obtiene productos forestales semitransformados como madera simple escuadrada, bloques, bancos, tablones, tablas, postes y madera inmunizada, chapas y astillas (Decreto 1076, 2015).

Las empresas de transformación secundaria tienen como propósito la obtención de productos a partir de procesos o grados de elaboración y mayor valor agregado tales como: molduras, parquet, listones, puertas, muebles, tableros aglomerados, contrachapados, pulpas, papeles, cartones y afines (Decreto 1076, 2015).

Teniendo en cuenta la falta de información efectiva y de confiabilidad en la temática de producción forestal, el registro y análisis de información que se describe en esta sección, es el resultado de la aplicación de un cuestionario a una muestra estadística representativa de las empresas que transforman el material forestal que, según cifras de la cámara de comercio 2016, asciende a 320. Para el cálculo de la muestra representativa se empleó la siguiente fórmula para población finita (dos colas):

$$n = \frac{z^2 Npq}{(N-1)e^2 + z^2 pq}$$
 , en donde:

p= Probabilidad de que un fenómeno ocurra.

q= Probabilidad de que un fenómeno no ocurra

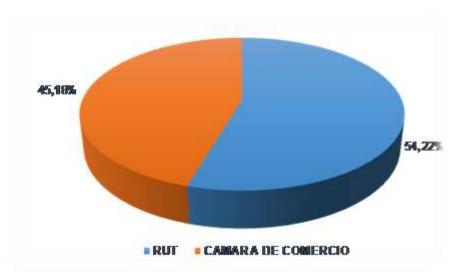
N= Tamaño de la población

n= Tamaño de la muestra

Z= Correspondiente al nivel de confianza elegido

e= Error muestral permitido

Se estableció un intervalo de confianza del 95%, que da un valor de Z= 1,96 y un error muestral permitido del e = 5%. En este estudio, los parámetros p y q se asignan los valores



p = 0,5 y q = 0,5. Los resultados del cálculo de la muestra, de acuerdo a los parámetros previamente definidos, arrojaron que el cuestionario sea aplicado a un total de 166.

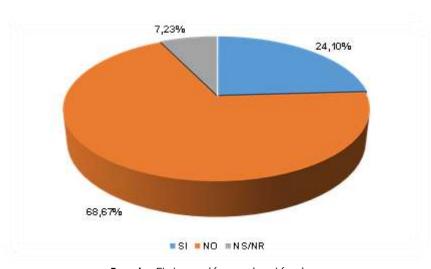
5.8.1.2. Información general en las empresas forestales

De acuerdo a los resultados obtenidos, el 45,18% de las empresas forestales encuestadas en el departamento de Córdoba, se encuentran legalmente constituidas mediante el registro en cámara de comercio y tan solo un 54,22% están inscritos ante la Dirección de Impuestos y Aduanas Nacionales – DIAN, mediante el Registro Único Tributario – RUT (Figura 194).

Figura 194. Porcentaje de empresas forestales que cuentan con Rut y Cámara de Comercio en el departamento de Córdoba.

Fuente: Elaboración equipo técnico.

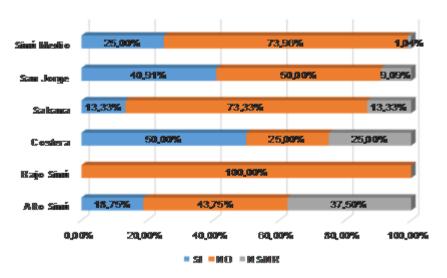
Realizando un análisis de la información por subregión, se pudo evidenciar que la Subregión costera es donde la mayoría de las empresas forestales cuentan tanto con registro en cámara de comercio como con RUT (75%). En la subregión del Sinú Medio, es en donde se presenta el menor número de empresas con registro en cámara de comercio con un 36,46% y en la subregión del Alto Sinú, se encuentran las empresas forestales que menor registro en el RUT presentan con el 50% (Figura 195).


Figura 195. Empresas forestales que cuentan con Rut y Cámara de Comercio por subregión en el departamento de Córdoba.

Fuente: Elaboración equipo técnico.

Cabe resaltar que el 68,67% de las empresas forestales no cuentan con libro de operaciones, lo cual indica que dichos establecimientos no poseen un registro de sus entradas y salidas, de tal manera que se permita controlar la legalidad del sector. Sin embargo, el 24,1% de las empresas si manifestó contar con este libro de registro.

Figura 196. Empresas forestales que cuentan con libro de operaciones es el departamento de Córdoba.

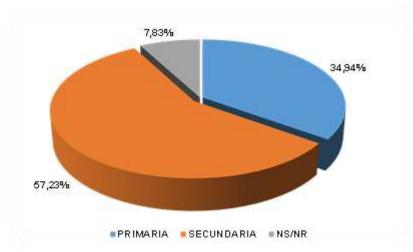

Fuente: Elaboración equipo técnico.

Si se analizan los resultados obtenidos por subregión, en particular se evidencia que el bajo Sinú, el 100% de las empresas encuestadas no cuentan con libro de operación, le sigue la subregión del Sinú medio con 73,96% y La Sabana con el 73,33%. La subregión que por el contrario presento el mayor número de empresas que cuentan con libro de operación fue la Costera con el 50% (Figura 197).

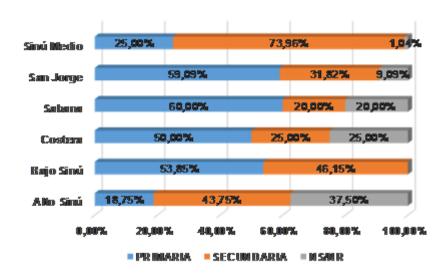
Figura 197. Empresas forestales que cuentan con libro de operaciones por subregión en el departamento de Córdoba

Fuente: Elaboración equipo técnico.

Es importante mencionar que estadisticamente se puede comprobar una asociación significativa entre la subregión y la clasificiación de las empresas transformadoras del producto forestal (prueba X², con un nivel de significancia del 5% y g-l= 10; P-valor =0,00003).


5.8.1.3. Industrias forestales de transformación primaria y secundaria

El 57,23% de las empresas forestales se encuentran clasificadas en procesos de transformación secundaria y tan solo el 34,94% en transformación primaria (Figura 198). Lo anterior indica que la mayor parte del producto forestal utilizado en el departamento de Córdoba, pasa por un proceso de transformación a nivel semi-industrial mediante la utilización de algún tipo de maquinaria y una menor proporción de dicho material es transformado directamente en un producto final sin la aplicación de técnicas industriales que generen un valor agregado a los productos.


Figura 198. Empresas forestales de acuerdo a su clasificación.

Fuente: Elaboración equipo técnico.

Las empresas clasificadas como de producción primaria se registraron en mayor número en la subregión de la sabana con 60%, por el contrario, fue en el alto Sinú en donde este número fue mucho menor (18,75%). En lo que se refiere a producción secundaria fue la subregión del Sinú medio en donde se presentó el mayor número de estas empresas con 73,96% seguido por el Bajo Sinú y el Alto Sinú con 46,15% y 43,45% respectivamente; la subregión con menor porcentaje de empresas fue La Sabana con el 20% (Figura 199).

Figura 199. Empresas forestales de acuerdo a su clasificación – Primaria y/o Secundaria - distribuidas por subregiones en el departamento de Córdoba.

Fuente: Elaboración equipo técnico.

UNA MAQUINA

CUATRO MAQUINAS

■TRES MAQUINAS ■SEIS O MÁS MAQUINAS

Es pertinente indicar que existe una asociación significativa entre la subregión y la clasificiación de las empresas de transformadora del producto forestal (prueba χ 2, con un nivel de significancia del 5% y g-l= 10; P-valor =0,0000001).

5.8.1.4. Capacidad instalada y utilizada

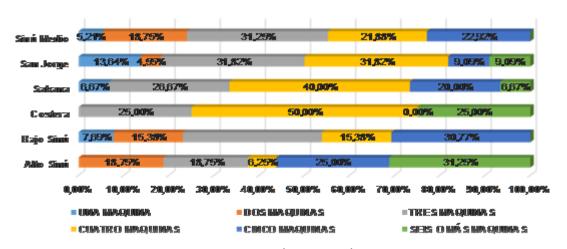
En relación al número de máquinas presentes en las empresas transformadoras del producto forestal se obtuvo que el 29,52% utilizan tres máquinas, el 23,49% cuatro, el 21,08% cinco, el 14,46% dos, el 6,02% una y tan solo el 5,42% seis o más maquinas (Figura 200).

5,42% 6,02% 21,08% 23,49%

Figura 200. Numero de máquinas presentes por empresa forestal en el departamento de Córdoba.

Fuente: Elaboración equipo técnico.

DOS MAQUINAS

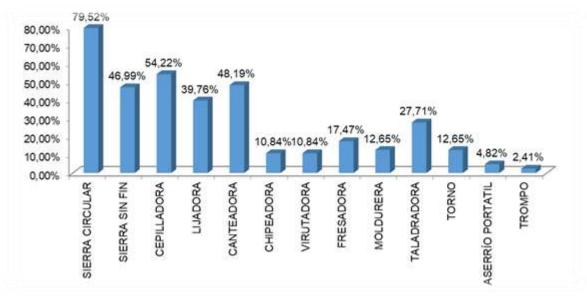

■ CINCO MAQUINAS

En la subregión Costera, el número de máquinas utilizadas para la producción forestal que predominan por empresa es de dos con el 50%, esto mismo sucede en la subregión de la Sabana con el 40%. En el Sinú Medio predomina la utilización de tres máquinas con el 31,25%, caso similar ocurre en el Bajo Sinú con el 30,78%. Para la Subregión del San Jorge se registró una igualdad entre tres y cuatro máquinas con el 31,82% (Figura 201).

Figura 201. Numero de máquinas presentes por empresa forestal distribuidas por subregión en el departamento de Córdoba.

Fuente: Elaboración equipo técnico.

Cabe resaltar que existe una asociación significativa entre la subregión y el número de maquinas en las empresas de transformadora del producto forestal (prueba χ 2, con un nivel de significancia del 5% y g-l= 25; P-valor =0,05).


En relación a las tecnologías, La máquina más utilizada por las empresas forestales es la sierra circular ya que un 79,52% cuentan con esta herramienta, le siguen la cepilladora (54,22%), la canteadora (48,19%) y la sierra sin fin (46,99%). Las máquinas que registraron menor presencia fueron el torno y el trompo con 2,41% y 4,82% respectivamente (Figura 202).

El 41,57% de las empresas forestales usan el 100% de las maquinas que poseen en sus procesos productivos, así mismo el 18,07% de las empresas utilizan el 20% y menos del 11% utilizan entre el 40% y el 80% de sus máquinas (Figura 203).

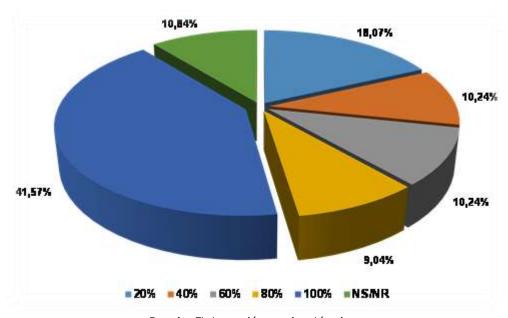
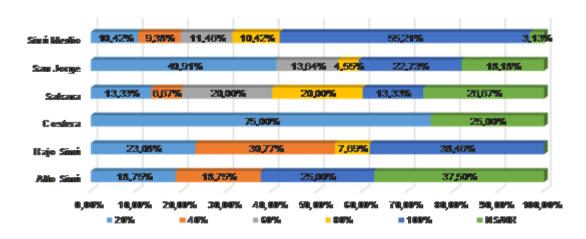


Figura 202. Tipos de máquinas utilizadas por las empresas forestales en el departamento de Córdoba.

Fuente: Elaboración equipo técnico.

Figura 203. Porcentaje de las máquinas utilizadas por las empresas forestales en el departamento de Córdoba.

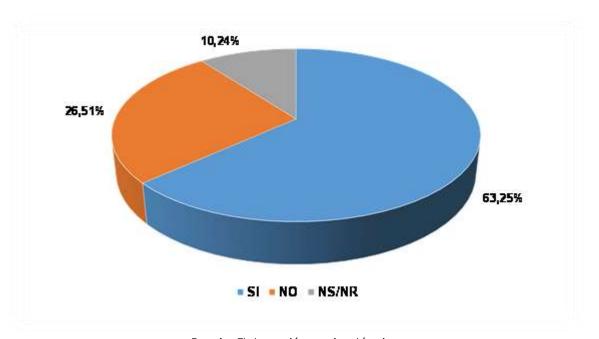

Fuente: Elaboración equipo técnico.

En la subregión Costera un 75% de las empresas utilizan sus máquinas en un 20%, lo que representa una subutilización de estas herramientas, caso contrario ocurren en el Sinú Medio en donde el 55,21% utilizan sus máquinas en un 100%. En el Alto Sinú y en la Sabana, se destaca que las empresas no saben o no responden cual es el porcentaje de utilización de sus máquinas (Figura 204).

Figura 204. Porcentaje de las maquinas utilizadas por las empresas forestales distribuidas por subregiones en el departamento de Córdoba.

Fuente: Elaboración equipo técnico.

Es importante expresar que existe una asociación significativa entre la subregión y el porcentaje de uso de las maquinas presente en las empresas de transformadora del producto forestal (prueba χ 2, con un nivel de significancia del 5% y g-l= 25; P-valor =0,0001).


El 63,25% de las empresas expresaron que las maquinas si son suficientes para la demanda que tienen de sus productos y solo un 26,51% contestaron que no; esto puede deberse principalmente que poseen muchas maquinas para el volumen de producción (Figura 205).

Para la mayoría de las empresas presentes en las subregiones, las máquinas que tienen, si son suficientes para abastecer la demanda de sus productos, esto se hace muy notorio sobre todo en el Bajo Sinú en donde el 92,31% manifestaron que si son suficientes. En el Sinú Medio es en donde mayores respuestas negativas se obtuvieron ya que para el 36,46% de las empresas de esta subregión el número de máquinas no son suficientes (Figura 206).

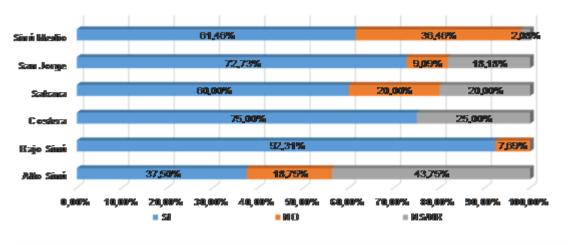


Figura 205. Suficiencia de máquinas para la demanda de productos forestales.

Fuente: Elaboración equipo técnico.

Figura 206. Análisis por subregiones de la suficiencia de máquinas en las empresas forestales

Fuente: Elaboración equipo técnico.

Es significativo expresar que existe una asociacionentre la subregión y el número de maquinas presente en las empresas de transformadora del producto forestal para satisfacer la demanda (prueba χ 2, con un nivel de significancia del 5% y g-l= 10; P-valor =0,00001).

5.8.1.5. Clase y cantidad de productos

Entre los productos que más se comercializan se encuentran la tabla (63.86%), bloque (47.59%), listón (42.17%), y el mueble (40.96%), estos son considerados productos forestales de transformación primaria y en general el uso principal es de construcción para la región. Los de menor comercialización son los pilotes (11.45%) y la troza (13.25%) (Figura 207).

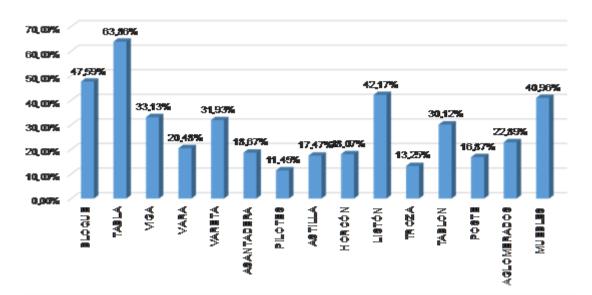


Figura 207. Principales productos que se comercializan en el departamento de Córdoba.

Fuente: Elaboración equipo técnico.

De acuerdo a los resultados, las principales especies forestales utilizadas son el Roble (Tabebuia rosea (Bertol.) Bertero ex A.DC.) con el 78,92%, Cedro (Cedrela odorata L.), con 48,80%, Teca (Tectona grandis L.f.) con el 36,14%, y Ceiba (Ceiba pentandra (L.) Gaertn.) con 18,67%, entre otras especies (Figura 208), encontrándose una especie en peligro de extinción o en peligro actualmente en Colombia por la explotación del recurso; además de que las condiciones del medio permiten que estas especies predominen en todas las subregiones del departamento.

Las especies que no registran tanto uso son el Abarco (Cariniana pyriformis Miers) con 1,20%, Matarraton (Gliricidia sepium (Jacq.) Walp.) con e 1,81%, Almendro (Dipteryx sp.)

con 3,01%, y Pino (Pinus sp.) con el 3,61%, posiblemente a la escasez que se presenta en la zona.

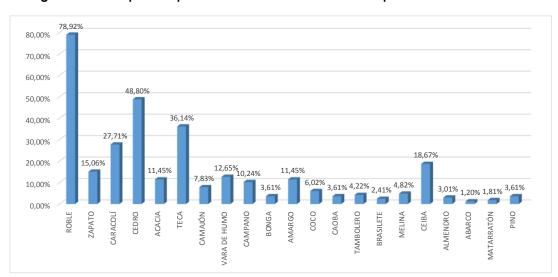


Figura 208. Principales especies forestales utilizadas en el departamento de Córdoba.

Fuente: Elaboración equipo técnico.

De acuerdo a los datos analizados para el departamento, el mes de diciembre reporta la variación más alta de la producción con un porcentaje de 79,52%, seguido de noviembre con 54,82%; generalmente estos meses son de mayor ganancia para el comercio de acuerdo a las estadísticas, lo que evidencia que sean los de mayor movimiento para los productores de la región (Figura 209).

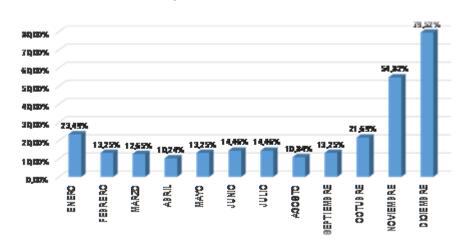


Figura 209. Meses de mayor variación en la producción de productos maderables en el departamento de Córdoba.

Fuente: Elaboración equipo técnico

5.8.1.6. Ingresos potenciales anuales de las empresas forestales

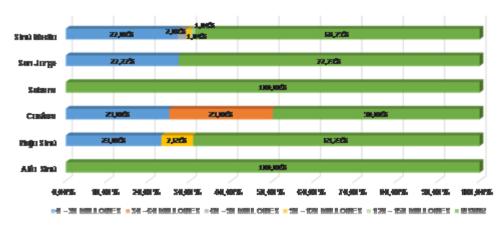
De acuerdo a los resultados obtenidos la mayoría de los productores en el departamento no conocen los intervalos de comercialización, este porcentaje asciende al 74,70%, este dato se origina porque muchos de los encuestados dejan vacíos en esta respuesta por el NS/NR o no eran las personas que tenían el conocimiento (Figura 210).

De otra parte, del 21,69% se encuentra en el rango de 0 a 30 millones de pesos y solo un 1,20% registra ganancias de más de 90 millones de pesos.

21,69% -0,60% -1,20% -0,60% -0,60% -0,60% -0,60%

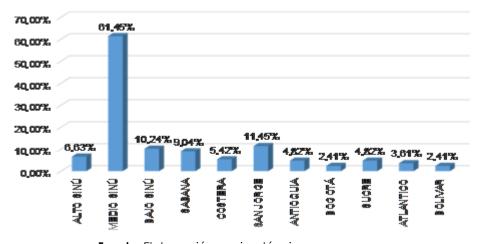
Figura 210. Rangos de comercialización de productos maderables en el departamento de Córdoba.

Fuente: Elaboración equipo técnico


Se relata una asociación significativa entre la subregión y el rango de ingreso de las empresas de transformadora del producto forestal (prueba χ 2, con un nivel de significancia del 5% y g-l= 25; P-valor =0,0002).

En las subregiones la Sabana y el Alto Sinú el 100% de las empresas encuestadas reporaton que no tienen conocimiento de las ganancias anuales, y en la región del Sinú Medio se muestra una variabilidad en los rangos, de hasta 150 millones de pesos (Figura 211).

Figura 211. Relación entre los rangos de comercialización y las subregiones.



Fuente: Elaboración equipo técnico

5.8.1.7. Sitios y centros de acopio de los productos forestales

El principal destino de los productos maderables en el departamento de Córdoba es la región del medio Sinú con un 61,45%, en estos municipios se ve la comercialización porque son pocas las fuentes para la extracción de los productos y además cabe resaltar que Montería genera mucha demanda por ser la capital del departamento; otras ciudades como Lorica, Cerete y Sahagún se encuentran entre las cinco principales de Córdoba, lo que apunta a mayor necesidad de productos (Figura 212).

Figura 212. Principales destinos de productos maderables en el departamento de Córdoba.

Fuente: Elaboración equipo técnico

5.8.1.8. Volumen de madera anuales

Se puede ver que los mayores rangos de producción están entre 0-50.000 pies (0-118 m³), que se encuentran localizadas en las pequeñas industrias 76,51% que confirmaría que la industria maderera en Córdoba está en su mayoría en empresas familiares y/o microempresas. Sin embargo, se debe considerar el grado de incertidumbre del 21,08% de empresas que no respondieron el volumen producido anualmente.

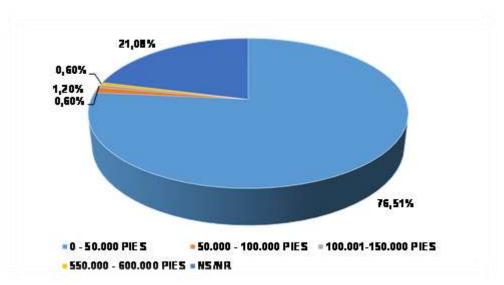
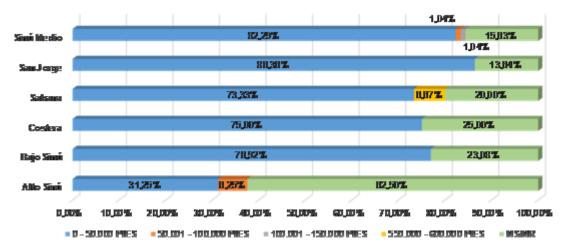


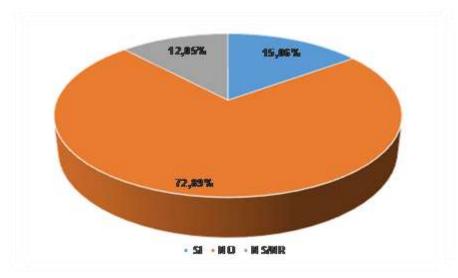
Figura 213. Volumen de madera anual

Fuente: Elaboración equipo técnico


En la Figura 214 que en la subregión Sabana se localiza la mayor Industria de maderas del departamento, en donde se reporta el 6,67% de utilización de más de 550.000 pies; Quedando las demás subregiones con industrias pequeñas con uso de madera en un rango de 0-50.000 pies. Es relevante observar que en la subregión Alto Sinú el 62,5% no sabe no responde.

Vale la pena indicar que existe una asociación significativa entre la subregión y el rango de producción (prueba χ2, con nivel de significancia del 5% y g-l= 20; P-valor =0,03).

Figura 214. Análisis de volumen anual por subregiones ambientales



Fuente: Elaboración equipo técnico

5.8.1.9. Posibilidad de aprovechamiento de los residuos vegetales

De acuerdo a los datos obtenidos, el 72,89% de las empresas encuestadas en el departamento de Córdoba no aprovechan los residuos maderables producidos y solo el 12,05% si lo hacen (Figura 215). Por ende, es importante incentivar la cultura de reutilización en los productores para generar relaciones que ayuden a la conservación del recurso natural y aumento de la cultura ambiental.

Figura 215. Aprovechamiento de residuos maderables en el departamento de Córdoba.

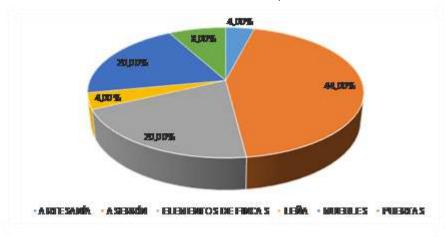
Fuente: Elaboración equipo técnico

Vale la pena indicar que existe una asociación significativa entre la subregión y el aprovechamiento de residuos maderables que realizan las empresas de transformación del producto forestal (prueba $\chi 2$, con un nivel de significancia del 5% y g-l= 10; P-valor =0,00000002).

El analisis por subregión muestra que La Sabana es la unica zona que registra mayor aprovechamiento de los residuos maderables (53,33%), más de la mitad del total de empresas y que en otras subregiones tales como el San Jorge la situación es lo contrario, el 82,29% de las empresas no aprovechan estos residuos (Figura 216).

13,54% 82,29% Sinú Medio 81,82% 9,09% San Jorge 53,33% 33,33% 13,33% Sabana 75,00% 25,00% Costera 84,62% Bajo Sinú 31,25% 68,75% Alto Simú 0,00% 20,00% 40,00% 60,00% 80,00% 100,00% SI NO NSINR

Figura 216. Relación entre el aprovechamiento de los residuos maderables y las subregiones.


Fuente: Elaboración equipo técnico

En cuanto al aprovechamiento también se evidencia que el mayor uso es para aserrín por las condiciones del residuo, seguido por elementos de fincas y muebles (Figura 217).

Figura 217. Usos de los residuos maderables en el departamento de Córdoba.

Fuente: Elaboración equipo técnico

5.8.1.10. Generación de empleo del sector forestal y seguridad industrial

Se puede ver que la mayoría de las empresas 89,16% mantiene un rango de empleados entre 1-10, mostrando un manejo de empresa familiar o nivel de microempresa. De igual forma el 2,41%, son empresas que reflejan un sistema industrial y/o complejidad de empresa, requiriendo una mayor demanda de personal (Figura 218).

2,41% 8,43% 89,16% 89,16% NS/NR

Figura 218. N° de empleos que generan las empresas forestales

Fuente: Elaboración equipo técnico

Las subregiones Bajo Sinú y Sinú Medio, se manejan casi en su totalidad como pequeñas empresas, con un número de empleados mínimos; En las subregiones Sabana y Sinú Medio se localizan empresas con mayor demanda de mano de obra. De igual forma se puede observar que las otras subregiones Sinú Alto y Costera pueden contemplar otra complejidad en la empresa, dado que el ítem NS/NR es bastante alto (Figura 219).

Simi Medio 94,89% 3,89% 2,08%

San Jerge 50,59% 50,59% 50,00%

Salsana 80,00% 6,69% 12,32%

Coeslesa 75,00% 25,00%

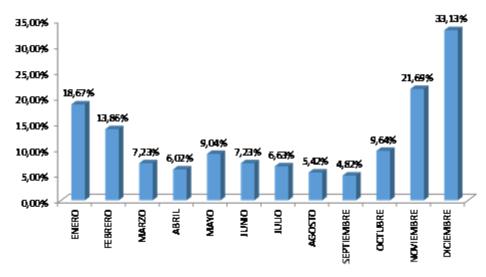
Rajo Simi 900,00% 43,75% 43,75%

DJOW 10,00% 20,00% 40,00% 50,00% 60,00% 70,00% 20,00% 10,00%

1 - 10 EMPLEA BOS 11 - 20 EMPLEA BOS 80,00% 70,00%

Figura 219. Análisis de generación de empleos por subregiones ambientales

Fuente: Elaboración equipo técnico

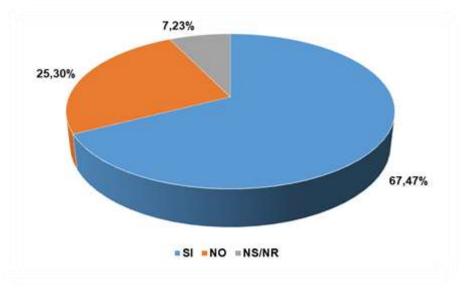

Vale la pena indicar que existe una asociación significativa entre la subregión y número de empleados en las empresas de transformación del producto forestal (prueba χ 2, con nivel de significancia del 5% y g-l= 10; P-valor =0,0001).

Podemos ver que la mayor época de trabajo se da hacia el fin de año, que coincide con celebración de fechas especiales, períodos en los que se puede tener mayor flujo de dinero. De igual forma en la gráfica podemos ver que las épocas de menor intensidad de de trabajo se relaciona con meses donde no hay gran cantidad de ingresos económicos para los consumidores (Figura 220).

Figura 220. Variación mensual de generación de empleos.

Fuente: Elaboración equipo técnico

En el ítem de seguridad industrial se evidencia que es generalizado por parte de los trabajadores el uso de los elementos de seguridad, sin embargo, se tiene un porcentaje significativo que no utiliza ninguna protección en la labor (Figura 221).


A nivel de subregión se observa que, para la subregión Costera, Bajo Sinú, Sinú medio y San Jorge en aproximadamente mas del 70% utilizan elementos de seguridad; no obstante, la subregión del Alto Sinú con un 37,5%, presenta carencia de uso de elementos de protección y solo un 25% reporta su uso (Figura 222).

Vale la pena indicar que existe una asociación significativa entre la subregión y el manejo de equipos de protección en las empresas de transformadora del producto forestal (prueba x2, con un nivel de significancia del 5% y g-l= 10; P-valor =0,00005).

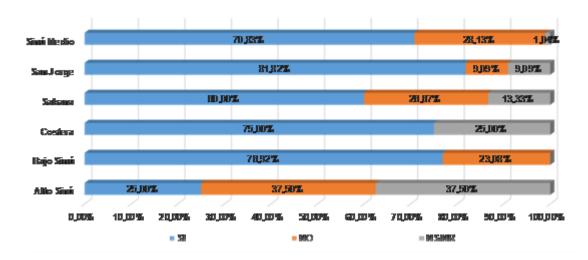


Figura 221. Utilización de equipos de protección en las empresas forestales

Fuente: Elaboración equipo técnico

Figura 222. Análisis por subregión de seguridad industrial

Fuente: Elaboración equipo técnico

5.8.2. Producción hidrobiológica y pesquera

De acuerdo a las estadísticas, de SEPEC (2015), (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015) para la cuenca Sinú en el departamento de Córdoba, se registró en ese año un desembarco estimado de 2.735.091 toneladas como se muestra en la

Tabla 35. Las especies más representativas en cuanto a volúmenes de desembarco son la Cachama (Colossoma macropomum) con un aporte de 1.435,78 toneladas, Bocachico (Prochilodus magdalenae) aportó 1.135,357 toneladas, tilapia roja (Oreochromis mossambicus) un aporte de 154,643 toneladas, Carpa (Cyprinus carpio) con 1,013 toneladas y Sábalo (Prochilodus lineatus) 8,31 toneladas (De La Hoz-M, 2015) (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015)

Tabla 327. Producción Hidrobiológica y pesquera en Córdoba

Subregión Ambiental	Bocachico (†)	Cachama (†)	Tilapia o Mojarra roja (†)	Carpa (†)	Sábalo (†)
Alto Sinú	11,414	35,903	1,99	0,713	
Bajo Sinú	569,8	494,15	4,135		
Costera	22,9	30,238	0,208		5,25
Sabana	208,5	205,3	44,51		
San Jorge	304,833	277,307	40,05	0,3	
Sinú Medio	17,88	392,9	63,75		3,06
TOTAL GENERAL	1.135,327	1.435,798	154,643	1,013	8,31

Fuente: Elaborado por equipo técnico a partir de (Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental, 2015).

5.8.3. Producción Artesanal

La ley 36 de 1984, hace la clasificación de producción artesanal en producción indígena, tradicional popular y artesanía contemporánea o neoartesanía. La producción que se presenta en el departamento de Córdoba obedece a la clasificación que hace la Ley 36 de 1984 y se discriminan en tres tipos: indígena, tradicional y contemporáneo. Según esta Ley y su decreto reglamentario número 258 del 2 de febrero de 1987 se define la artesanía indígena como: aquella en que el aborigen utilizando sus propios medios transforma, dentro de sus tradiciones, en objetos de arte y funcionalidad de los elementos del medio ambiente en que vive para así satisfacer necesidades materiales y espirituales, conservando sus propios rasgos históricos y culturales (QUIÑÓNEZ, 2003).

La producción de estos objetos artesanales resultante de la fusión delas culturas americanas, africanas y europeas, elaboradas por el pueblo en forma anónima con

predominio completo del material y los elementos propios de la región, transmitida de generación en generación (QUIÑÓNEZ, 2003).

La ley 36 de 1984, define la artesanía contemporánea como la producción de objetos artesanales con rasgos nacionales que incorporan elementos de otras culturas y cuya característica es la transición orientada a la aplicación de aquellos de tendencia universal en la realización estética, incluida la tecnología moderna (QUIÑÓNEZ, 2003).

Artesanías de Colombia realiza una distribución geográfica de los departamentos en los cuales se encuentra la mayor concentración de población artesana, encontrándose Córdoba con 9,34% en su mayoría artesanos están representados en población indígena y afrocolombianas. El departamento de Córdoba es cuna de artesanos tradicionales fabricantes de productos que han ganado reconocimiento en todo el mundo. Los productos del llamado "circuito artesanal", provenientes de los municipios de San Andrés de Sotavento, Momil, Chinú, Lorica, Ciénaga de Oro, Sahagún, Chimá, Cereté y Montería, no sólo son abundantes y variados, también cuentan con una gran calidad artística (MONSERRATE, 2016).

De acuerdo a lo anterior la producción de artesanías se consolidan los valores tradicionales de la familia y la convivencia entre los pobladores con intereses comunes, donde los principales oficios prácticados por los artesanos del departamento de Córdoba son la son la tejeduría (34%), la sombrerería (23%), la bisutería (8%), la alfarería (6%), los trabajos decorativos (4%), la ebanistería (4%), la cestería (3%) y la costura (MONSERRATE, 2016).

Córdoba es cuna de artesanos tradicionales que fabrican productos que han ganado reconocimiento en todo el mundo. La artesanía emblemática del departamento es el Sombrero Vueltiao este nombre alude a las vueltas que las vueltas de la cinta de la caña flecha da para formar la estructura del sombrero. También se produce la cestería con fibras de iraca, enea, cepa de plátano, caña flecha, junco y bejuco, las manos s ágiles de los artesanos expertos en diversas técnicas de trenzado elaboran bellos productos tales como canastas, petacas, balayes, hamacas, esteras y muebles (Ministro de Comercio, 2017).

La mayor parte de la producción artesanal se vende en los talleres o viviendas. Un 0,30% se vende en plaza de mercado y únicamente el 11,58% vende en otros sitios; el 0,03% de los artesanos participa en ferias artesanales y el 0,01% en forma ambulante. De igual manera, el 85,16% de la producción se vende en los municipios de origen, el 8,18% en otros municipios, y solamente el 3,45% en otros departamentos, lo que explica las grandes debilidades existentes en los procesos de comercialización (Artesanías de Colombia S.A. - CENDAR, 2017).

Especies utilizadas

BIHAO

Calathea lutea

Nombre común: Bigo

Figura 223. Cesto elaborado en Bihao

Fuente: Artesanías de Colombia.

El bihao es una especie originaria del trópico americano, desde México hasta Las Antillas y Ecuador (Kennedy et al. 1988). En Colombia crece espontánea en clima cálido y templado hasta aproximadamente 2000 m sobre el nivel del mar, en sitios húmedos o encharcados, a lo largo de cañadas y dentro de matorrales y rastrojos, en donde forma poblaciones que pueden ser ralas o densas.

Hierbas erectas y robustas, de hasta 4 m de alto. Hojas en rosetas con pecíolos muy largos, de más de 2 m, con un canal interno o vaina en la parte basal de hasta 1 m de largo; láminas elípticas, obtusas o terminadas en punta, de hasta 150 cm de largo y 60 cm de ancho, verde oliva por encima y cubiertas de una capa de cera blanquecina por debajo. Racimos erguidos, de 2 a 6 ejes aplanados lateralmente, con brácteas café rojizas, en cuyo interior llevan flores delicadas y amarillas.

Para la producción de artesanías se utiliza los pecíolos de las hojas y ejes de la inflorescencia. De los peciolos obtienen fibras para los manares y cestos y los ejes delas inflorescencias las utilizadas para hacer las chinas.

CAÑA FLECHA

Gynerium sagittatum

Nombre común: Conocida como caña brava, carrizo, chusque o caña boba, (Watson, 1992)

Figura 224. Tejido Caña Flecha

Fuente: Artesanías de Colombia

Es una planta perenne con fuertes rizomas y es una de las gramíneas más grandes, llegando a alcanzar hasta 10 metros de altura. Crece espontáneamente en aluviones pedregosos de los ríos caudalosos de las tierras calientes y subtempladas formando grandes colonias (Howard, 1979); (Contreras M. E., 1998) (Como se citó en Valoración de los recursos filogenéticos de caña flecha *Gynerium Sagittatum* Aubl. En el caribe Colombiano) (Contreras M. O., 1999)

Los tallos de Caña flecha oscilan entre 3 y 10 metros de altura (PITTIER, 1939) (SHNEE, 1984) (KALLIOLA, PUHAKKA, & SALO, 1992).Los tallos son rectos y erectos, su parte inferior está cubierta de las vainas de las hojas caídas, mientras que en la parte superior se agrupan en parte de abanico; su color varía de verde a amarillento. Así mismo, la planta posee tallos estoloníferos, los cuales se desarrollan por encima de la superficie del suelo inmediatamente por debajo de ella, presentan nudos y en cada uno de ellos se forman raíces adventicias, que puedan dar origen a una planta. El estolón, puede alcanzar una longitud de 20 metros (Madera y Tuirán, 1982). Las hojas son linear-lanceoladas, alternas y constan de dos partes: la vaina y la lámina foliar, con márgenes agudamente aserradas, con longitudes de 50 a 200 cm de largo y de 5 a 10 cm de ancho el ángulo de inserción es de 30 grados centígrados y algunos cultivares poseen vellosidades y otros no. La inflorescencia de la Caña flecha, es una panícula larga y terminal, de aproximadamente 1 metro de largo y 1 cm de diámetro, con espiguillas femeninas de unos 3mm de largo y espiguillas masculinas de 3,5 mm de largo, formando una inflorescencia similar a la de caña de azúcar; las semillas son de color café, de aproximadamente 1mm de largo (Madera, 1982); (SHNEE, 1984); (Watson, 1992).

La hoja de esta gramínea suministra la materia prima para la confección del sombrero de fibra blanda: sombrero vueltiao. La comunidad del resguardo manufactura varias clases de sombreros. El quinceano, el diecinueve, el veintiuno, el veintitrés y veintisiete. Esta diferencia hace la relación a la fineza de la trenza, o la destreza manual y a la

experiencia tradicional de estos artesanos indígenas cuya cultura responde a un mestizaje "Zenú-Cunas" (SERPA, 2000).

El origen sobre el uso de la caña flechase remonta a las sociedades indígenas que poblaban Córdoba, Sucre, Bolívar, Bajo Cauca y Nechí regiones en donde se han hallado piezas de cerámica y orfebrería de más de 2000 años de antigüedad, en las cuales se representan sombreros, gorros y tocados, que reflejan con claridad los rasgos del trenzado del actual "sombrero vueltiao" (Puche V., 1983).

El campesino le da varios usos a la Caña flecha, el tallo después de florecer la planta se emplea para cercar las casas en la construcción de paredes y techos; fabricación de viviendas de interés social, instrumentos musicales, protección de la ribera de los ríos y paisajismo. La espiga de la inflorescencia se utiliza para elaborar flechas de pescar; la panoja como elemento ornamental casero al natural o teñida de vivos colores. De las hojas se aprovecha la nervadura central para obtener la fibra para la trenza del sombrero, y su bagazo se da como forraje a las bestias cuando escasea el pasto. Algunos le atribuyen insospechadas cualidades medicinales diuréticas. De igual manera, la industria venezolana, ve con grandes perspectivas el tallo, para la extracción de papel y fabricación de tableros para la elaboración de muebles (Contreras M. E., 1998) (Contreras M. O., 1999) (Orinoco, 2005).

Hoy día, los descendientes de la etnia Zenú no sólo conservan la tradición cultural en torno a la caña flecha y sus usos tradicionales, sino que han diversificado y ampliado la gama de artesanías que se producen con la planta. Actualmente, la caña flecha es una de las especies importantes en la economía nacional, y el "sombrero vueltiao" su máxima expresión cultural, no sólo símbolo de la identidad de la costa norte de Colombia, sino por extensión, uno de los símbolos de nuestra nacionalidad. (Linares, 2008).

Se produce principalmente en el resguardo indígena de San Andrés de Sotavento, en los corregimientos de Tuchín, Vidales y Bellavista. Luego de un complejo proceso de raspado, clasificación, deshidratación, cocción y coloración de la fibra de la caña flecha, los artesanos proceden al trenzado, que se originó hace muchos siglos en las labores de cestería aborigen y que consiste en combinar de manera armónica las fibras negras y blancas para formar figuras geométricas o pintadas. Esos dibujos simbolizan elementos totémicos o religiosos de la cultura zenú. La tradición del sombrero vueltiao se remonta a épocas precolombinas, esto se puede comprobar con los hallazgos de figuras antropomórficas Zenúes que portan en sus cabezas ese tipo de sombreros.

ENEATypha sp

Nombre común: En Córdoba se conoce como anea caña de la pasión.

Figura 225. Artesano tejiendo una estera con fibra de Enea, Córdoba

Fuente: Artesanías de Colombia

La enea es una planta cosmopolita de amplia distribución geográfica en los trópicos y subtrópicos (STANDLEY, 1958) Las dos especies que fueron introducidas al país se han encontrado en Antioquia, Boyacá, Córdoba, Cundinamarca, Huila, Magdalena, San Andrés y Providencia, Santander y Valle, desde el nivel del mar hasta 2600 m de altitud, en matorrales densos de tamaño variado, dependiendo de la disponibilidad de agua, establecidos en lugares abiertos con alta luminosidad, sobre suelos cenagosos o palustres, como pantanos temporales o permanentes y márgenes de lagos y lagunas (Linares, 2008).

Es herbácea, robusta, hasta de más de 3 m de alto. Hojas angostas y largas, acintadas y planas, esponjosas y delicadas, terminadas en punta y de color verde aún cuando secas. Inflorescencias en las puntas de los tallos, en forma de espigas cilíndricas y alargadas, muy densas, pardas, con las flores masculinas en la parte superior de la espiga y las f ores femeninas en la parte inferior (Linares, 2008).

Las artesanías con enea tienen mayor tradición en Córdoba (Ciénaga de Oro, Sahagún, San Carlos, Montería y Lorica; (BARRERA, 2007a) (SERJE, 1987) Boyacá (LINARES, 1993) y Cundinamarca (URIBE, 2001). La tradición artesanal en torno a la enea proviene de procesos campesinos, ligados al tejido de esteras. En Córdoba sobresale la elaboración de la cestería. La extracción de las hojas de enea se realiza en cualquier época del año. Se toman las plantas por "manotadas", moviéndolas hacia atrás y con una hoz se cortan a ras del nivel del agua, para evitar dañar las "cepas" y permitir que las plantas vuelvan a producir brotes. Se suelta la "manotada" cortada, se coge otra, se corta, y así sucesivamente se sigue el corte (la "punta"). El material cortado se traslada al taller.

Normalmente, las plantas requieren un año para alcanzar el tamaño ideal de corte, que es de 2 m aproximadamente. Puesto que las hojas de esta planta son muy delicadas, se debe evitar que les caiga llovizna o de lo contrario se manchan y no sirven para el trabajo artesanal. El proceso de recolección documentado por (BARRERA, 2007a) en Montería y Lorica (Córdoba), incluye el corte de hojas con machete, y el presecado de las hojas extendidas sobre los residuos de cosechas anteriores en el agua o en la orilla durante siete días. Esto se hace porque las hojas verdes son muy pesadas para ser transportadas luego del corte (Linares, 2008).

IRACA

Carludovica Palmata Ruiz & Pav. (Artesanias de Colombia, 2008)

Nombre común: se conoce como Iraca, Paja Toquilla, Palma Panamá y Jipi Japa (Bristol, 1961) (DUKE, 1986.).

Figura 226. Artesano tejiendo una estera con fibra de Enea, Córdoba

Fuente: Artesanías de Colombia

La Iraca es una planta pequeña perenne, silvestre considerada en algunos lugares como maleza, se produce en su medio natural, por emisión de hijuelos que generan sus rizomas y aún por semillas, originando tupidas manchas en los terrenos donde se propaga (PORTILLA, 2005.)

La palma tiene raíces de color crema que se desarrollan en los primeros 50 cms, pudiendo alcanzar hasta 1,60 m de profundidad. Su tallo crece a pocos centímetros del suelo con un grosor que varía entre 5 cms. y 10 cms., con entrenudos cortos y corteza color café claro. La planta nace con una hoja, a los dos días brota la segunda, a los seis la tercera, a los dieciséis la cuarta, a los veintiséis la quinta y así sucesivamente, variando su tamaño entre cuarenta a setenta centímetros de longitud. Llega a medir hasta un metro en condiciones especiales. Las flores de la iraca se desarrollan sobre un eje carnoso, protegidas por tres hojas de color marfil. Los frutos se ubican en un cuerpo carnoso que toma un color rojo cuando madura Tiene unas cerezas que contienen las semillas. Cada fruto puede tener 500 cerezas y cada cereza de 100 a 120 semillas, de color marfil, que miden entre 1 y 2 milímetros de grueso. Las semillas tienen utilidad especial en la investigación genética que busca obtener plantas mejoradas (Artesanias de Colombia, 2005)

El cultivo de palma de iraca de adapta a todo tipo de suelos, se da bien en todos los climas cálidos de Colombia y en general en los tropicales y subtropicales a temperaturas entre 22 – 25 °C y precipitación pluvial de 150mm. Requiere una altura entre 1.000 Y 1.800 m.s.n.m. (PORTILLA, 2005.)

Para la elaboración de artesanías las partes de la planta que se utilizan son las hojas jóvenes antes de expandirse (cogollos) y peciolos de las hojas (Linares, 2008). En el departamento de Córdoba utilizan la Iraca para producción de múltiples y variadas artesanías en la que esta palma se transforma gracias al trabajo y a la destreza de hábiles manos e imaginativas creaciones de artesanos y artesanas quienes han posesionado sus productos en muchos lugares. Para producir estas creaciones la palma de Iraca sufre diversas etapas del proceso las cuales tienen pequeñas variaciones según la región o los usos de los operarios, pero en general se someten a un mismo tratamiento básico que abarca varias tareas: recolección (corte del cogollo y del peciolo, corte, ripiado y sipiado del peciolo), cocción, enjuague, blanqueada y estufada. Para elaborar artesanías con esta materia prima se utiliza la técnica de tejeduría, ya que es una de las más ricas y delicadas de todo el territorio nacional. Entre las herramientas e implementos que se utilizan en la realización de estas artesanías cuentan: agujas, tijeras, pinzas y alicates. Actualmente se elaboran tapetes, sombreros, alpargates, frazadas, bayetas, sacos de fique, mantas, pabellones, alfombras, colchas, cotones, zapatos de tacón, cordobanes, camisetas, paños y cinchas de monturas, entre otros, mediante la técnica de la teieduría (PORTILLA, 2005.)

PALMA ESTERA

Astrocaryum malybo

Nombre común: En el departamento de Córdoba se conoce como palma estera **Figura 227.** Cestos elaborados en Palma Estera

Fuente: (Artesanías de Colombia S.A. - CENDAR, 2017)

La palma estera es una planta exclusiva de Colombia, endémica de la cuenca del río Magdalena (desde Antioquia y Caldas hasta Cesar y Magdalena), de la cuenca alta de los ríos Sinú y San Jorge (desde Córdoba hasta Urabá), y del extremo norte de la Costa Pacífica (en el Chocó); crece en bosques secos a húmedos, desde el nivel del mar hasta 750 m de altitud (Galeano, 2005)

Es una palma solitaria, muy espinosa, con 15 a 20 hojas que nacen a ras del suelo y alcanzan hasta unos 5 m de largo, compuestos de numerosos folíolos angostos, blanquecinos por debajo, de hasta 1 m de largo y 4 cm de ancho. Las flores son pequeñas, amarillentas y están dispuestas en racimos robustos que nacen entre las hojas. Los frutos van de elípticos a redondeados, de hasta 4 cm de largo y 2.6 cm de diámetro, terminados en una punta corta, lisos, de color violáceo a negro en la madurez; la semilla está cubierta por un cuesco duro y de color negro, con tres orificios cerca de la punta, por uno de los cuales emerge la primera raíz para el establecimiento de la nueva planta (Linares, 2008).

Las partes de la planta que se utilizan son fibras extraídas de las hojas jóvenes (cogollos).se obtienen productos artesanales como esteras, tapetes, pie de camas e individuales; en menor escala y en combinación con otros materiales, cinturones, aretes y canastos (Artesanias de Colombia, 2008).

Estos productos se realizan en telar vertical, que se gradúa de acuerdo con el tamaño del producto deseado. Con esta técnica se elaboran esteras, individuales, cortinas, tapetes y centros de mesa. Los petates fabricados con hojas de palma de estera constituyen una próspera industria casera en los pueblos de la costa caribe colombiana. Se utilizan como tapetes para adornar las habitaciones, sirven para cubrir las camas y aún constituyen una especie de colchón donde se puede dormir cómodamente en regiones de alta temperatura (Artesanias de Colombia, 2008).

PLATÁNO

Musa X balbisiana

Nombre común: Banano, bocadillo, cuadrado, dominico, guineo, habano, hartón, pacífico, plátano, tres filos (en todo el país) (Linares, 2008).

Figura 228. Cesto en fibra de calceta de plátano, Urabá

Fuente: Expoartesanías (C. Gómez Duma)

El plátano es una planta herbácea monocotiledónea, de la familia Musaceae, originaria del sudeste asiático y traída a nuestro país por los españoles en el siglo XVI (Corpoica, 2006). Es considerado el cuarto cultivo más importante del mundo, por tratarse de un producto básico y de exportación. En cuanto a las condiciones agroecológicas del cultivo, la altitud determina el período vegetativo del plátano de acuerdo con la variedad adaptándose en un amplio rango que va desde los cero metros hasta los 2000 msnm (Universidad de Córdoba, 2011). La temperatura es un factor que determina la frecuencia de emisión de las hojas y de ella depende que el periodo vegetativo de la planta sea más largo o más corto.

El cultivo del plátano requiere, para su normal desarrollo y buena producción, precipitaciones bien distribuidas durante el año. No se recomienda establecer el cultivo en zonas que presenten fuertes vientos, superiores a los 20 kilómetros/hora, dado que causan daños en las hojas como doblamiento o rotura, afectando la producción. La humedad relativa del ambiente debe ser adecuada (75-80 %), dado que condiciones de alta humedad podrían favorecer la presencia de enfermedades causadas por hongos. (Corpoica, 2006). Se debe contar con buena cantidad de luz día, para que las plantas se desarrollen adecuadamente (hojas, racimos, yemas o brotes laterales). En el caso contrario, la baja disponibilidad de luz retrasa la producción y afecta la calidad del fruto (Universidad de Córdoba, 2011).

Luego de que este cultivo es cosechado, se retiran los racimos, se cortan las cepas y se sacan las calcetas. Así de estas se sacan los filamentos que luego de un proceso completamente artesanal de limpieza y enjuague, se convierten en hilo de plátano para la elaboración de tapices, telas, tapetes, entre otros. La cestería en rollo con calceta de plátano es desarrollada por artesanos de Montería, Los Córdobas y Cerete (Artesanias de Colombia, 2008).

También se utilizan las vainas de las hojas maduras para elaborar artesanías obteniendo, canastas, petacas, jarrones, portarretratos, hamacas, costureros, abanicos, revisteros, gorras, paneras, pie de camas o esteras, tapetes, cofres, baúles, carpetas, individuales y chalecos (Linares, 2008).

6. Regimen de Ordenación Forestal

6.1. Zonificación forestal

La zonificación forestal es un proceso técnico, mediante el cual se delimitan las áreas forestales y se sectorizan las áreas con características físicas y biológicas homogéneas que fueron determinadas mediante un proceso detallado de análisis temático, de igual forma el resultado define las alternativas del uso del recurso forestal (SERFOR, 2016).

Asi mismo este proceso integra aspectos ecológicos incorporados a la capacidad de uso, la clasificación de los tipos de bosque, coberturas de la tierra, condiciones de fragilidad del ecosistema, distribución de la biodiversidad forestal y de fauna silvestre,

estado de conservación, aspectos económicos, sociales y culturales. Además, se contempla el análisis de los escenarios socio-ambientales y ecológicos referidos a la actividad humana, más el estado de transformación de los paisajes forestales (SERFOR, 2016).

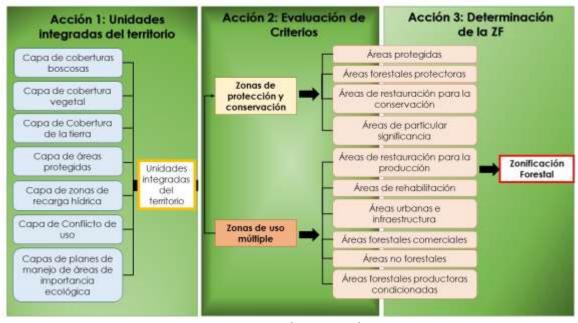
Finalmente, la zonificación forestal determina las potencialidades y limitaciones para el uso directo e indirecto de los ecosistemas forestales y otros ecosistemas, incluyendo el mantenimiento de su capacidad para brindar bienes y servicios ecosistemicos, definiendo las alternativas de uso de los recursos forestales (SERFOR, 2016).

6.1.1. Metodología para la elaboración de la zonificación forestal

La zonificación del plan de ordenamiento forestal se realizo fundamentalmente en 2 fases, las cuales se desarrollan a continuación:

6.1.1.1. Fase de recopilación, generación y sistematización de información temática

En esta fase se recopilo y sistematizo toda la información cartográfica disponible que sirvió de insumo para la zonificación, tales como: Áreas protegidas declaradas, zonas de recarga hídrica y capas de áreas de importancia ecológica. Así mismo, se utilizaron las capas temáticas generadas en la caracterización como son: coberturas de la tierra, coberturas boscosas, conflicto de uso y clases agrológicas; los cuales permitirán la definición de criterios y variables para la identificación de las categorías de zonificación.


6.1.1.2. Fase de Análisis

En esta fase se indica el procedimiento para obtener las zonas que integran cada grupo de categorías de la zonificación forestal, para lo cual se detalla los pasos metodológicos en la Figura 229.

Figura 229. Esquema metodológico de zonificación forestal

6.1.1.2.1. Acción 1: Unidades integradas del territorio

Esta acción se fundamentó principalmente en la integración mediante técnicas de SIG de todas las variables temáticas, conservando en su base de datos la información correspondiente a cada uno de estos. El método utilizado para obtener las categorías de análisis se denomina exclusión selectiva, la cual selecciona los elementos esenciales, es decir, las variables significativas y/o determinantes que precisan la característica principal de cada una de las unidades a definir.

6.1.1.2.2. Acción 2: Evaluación de criterios

En la acción 2 se evaluó las unidades integradas aplicando criterios para la determinación de las categorías, definiendo zonas con fines de protección y conservación y las enfocadas al uso multiple; a partir de lo anterior se determinan las categorías de zonificación forestal detalladas a continuación:

6.1.1.2.2.1. Zonas de conservación y protección ambiental

Son espacios cuya vocación natural constituyen el potencial estratégico de biodiversidad, el cual reside en mantener los servicios ecosistémicos que prestan en términos de provisión, regulación, soporte y culturales.

6.1.1.2.2.1.1. Áreas protegidas

Se entiende un área definida geográficamente que haya sido designada o regulada y administrada a fin de alcanzar objetivos específicos de conservación y que se hace parte del SINAP. Se encuentran bajo esta categoría el PNN Parque Natural Nacional Paramillo, los DRMI Bahía de Cispatá, La Balsa, Tinajones, y Sectores Aledaños al Delta Estuarino del Río Sinú, Complejo Cenagoso del Bajo Sinú, Complejo de Humedales de Ayapel. De igual forma hacen parte Distrito de Conservación de suelos Ciénada de Bañó y Ciénaga de Corralito; a su vez se incluyen las Reserva Nacional de la Sociedad Civil Campo Alegre, Horizontes, Santa fé, el Paraíso de los Deseos, Santa Isabel, Betancí – Guacamayas, Viento solar y Santa rosa.

6.1.1.2.2.1.2. Áreas de particular significancia

Definido por áreas estratégicas priorizadas para la conservación pero donde su uso principal es la conservación y usos compatibles. Se encuentran bajo esta categoría las áreas de manglares que no se encuentran dentro del DMI y humedales del departamento.

6.1.1.2.2.1.3. Áreas forestales protectoras

Son aquellas áreas las que deben conservar su cobertura boscosa natural, con el fin de proteger los recursos naturales y brindar otros servicios ecosistémicos. Dentro de esta categoría se encuentra las coberturas asociadas a zona de recarga hidríca, bosque de galería, bosques inundables y áreas forestales con clase agrológica 8.

6.1.1.2.2.1.4. Áreas forestales de restauración para la conservación

Corresponden a aquellas zonas en las cuales existe un grado de deterioro o transformación ambiental pero que son susceptibles del restablecimiento de la dinámica sucesional natural y pueden propiciar la continuidad de los procesos naturales. En esta categoría se encuentran las áreas de vegetación secundaria alta y las áreas donde el bosque de galería es ausente en las cuencas del Rio Sinú, San Jorge y Canalete.

6.1.1.2.2.2. Zonas de uso múltiple

Esta categoría corresponde a aquellas zonas cuyo uso actual resulta aceptable para continuar desarrollando las actividades económicas que representan la estructura productiva y la red de asentamientos urbanos y suburbanos que demandan la incorporación progresiva en el tiempo de criterios de sostenibilidad ambiental.

6.1.1.2.2.2.1. Áreas de restauración para la producción

Esta categoría corresponde a aquellas áreas forestales las cuales presentan un estado de intervención a causa de extracción selectiva en sus clases diamétricas medias; no obstante, las actividades humanas deberán estar orientadas al enriquecimiento y recuperación de las condiciones naturales que permitan el aprovechamiento sostenible. Dentro de esta categoría se encuentran las coberturas de bosque abierto bajo de tierra firme y bosque fragmentado.

6.1.1.2.2.2.2. Áreas de Rehabilitación

Corresponde a aquellas áreas que poseen características dasométricas que permiten generan productividad futura y sostenible, sin embargo, requiere de incorporar procesos de reparación de procesos productivos y servicios ecosistémicos enfocando la mira al restablecimiento parcial de elementos estructurales o funcionales de cada una de estas coberturas. Se encuentran bajo esta categoría las coberturas de vegetación secundaria baja y bosque fragmentado de pastos y cultivos.

6.1.1.2.2.2.3. Áreas forestales productoras condicionadas

Esta categoría corresponde a áreas forestales destinadas al desarrollo de aprovechamiento forestal sostenibles, pero deben ser sometidas a cupos de aprovechamientos establecidos, de tal manera que no afecte la sostenibilidad del recurso a futuro. Se encuentran dentro de esta categoría el bosque abierto alto de tierra firme, bosque denso bajo de tierra firme, bosque fragmentado con vegetación secundaria y vegetación secundaria.

6.1.1.2.2.2.4. Áreas forestales comerciales

En esta categoría se encuentran las plantaciones forestales con fines comerciales o industriales que se encuentran bajo la administración del Ministerio de Agricultura de acuerdo al Decreto 2803 de 2010 y fue delegado al Instituto Colombiano Agropecuario (ICA).

6.1.1.2.2.2.5. Áreas no forestales

Dentro de esta categoría se encuentran las áreas que no poseen usos con fines forestales; por lo cual en esta categoría se encuentran los territorios agrícolas, áreas de vegetación herbácea y arbustiva, áreas abiertas sin o con poca vegetación y zonas de extracción minera.

6.1.1.2.2.2.6. Áreas urbanas e infraestructura

En esta categoría se encuentran las zonas urbanizadas, las zonas industriales o comerciales y redes de comunicación y zonas de obras civiles.

6.1.2. Resultados de la Zonificación forestal por Unidad Administrativa de Manejo

Inicialmente se debe indicar que las unidades administrativas de ordenación determinadas para la definición de áreas de la zonificación forestal y posteriores directrices de manejo fueron establecidas como las subregiones ambientales definidas por la Corporación; para lo cual en la Figura 230 se presenta el mapa de zonificación forestal del Departamento de Córdoba.

6.1.2.1. Unidad administrativa I – Sinú Medio

En la unidad administrativa I presenta el 77,03% en áreas no forestales con 382182,78 ha, sin embargo, dentro de las áreas que se someterán a manejo forestal se encuentran con un 5,42% las áreas forestales productoras condicionadas con 26906,56 ha; así mismo las áreas con fines de restauración para la producción obedecen a el 1,86% con 9212,49 ha y las áreas de rehabilitación representando el 0,87% con 4331,47 ha.

En cuanto a las áreas de protección y conservación, se encuentran las áreas forestales protectoras con 0,98% representado en 4881,49 ha y las áreas de restauración para la conservación son el 0,23% con 1140,08 ha. De igual forma, las áreas protegidas representan el 3,71% con 18423,64 ha; la distribución porcentual y de área se detalla en la Tabla 328.

Tabla 328. Zonificación forestal UAO I

Zona	UAO - Sinú Medio	AREA (H)	%
Zona de	Área Protegida	18423,64	3,71
conservación y protección	Áreas de Particular Significancia	41378,04	8,34
ambiental	Áreas de Restauración para la Conservación	1140,08	0,23
	Áreas Forestales Protectoras	4881,49	0,98
	Áreas de Rehabilitación	4331,47	0,87
	Áreas de Restauración para la Producción	9212,49	1,86
Zona de uso	Áreas Forestales Comerciales	885,23	0,18
múltiple	Áreas Forestales Productoras Condicionadas	26906,56	5,42
	Áreas no Forestales	382182,78	77,03
	Áreas Urbanas e Infraestructura	6793,08	1,37
	TOTAL	496134,86	100

Fuente: Elaboración equipo técnico

6.1.2.2. Unidad administrativa II – San Jorge

Para el caso de la unidad administrativa II, las zonas uso múltiple con fines no forestales están representadas en un 46,54% en áreas no forestales con 370729,54 ha y las áreas urbanas e infraestructura con 3843,19 ha equivalente a 0,48%. En el caso de las áreas con fines forestales se encuentran las enfocadas en restauración para la producción con un área de 37611,49 ha siendo el 4,72%; así mismo, las áreas de rehabilitación representan el 8,01% con 63796,54 ha, las áreas forestales productoras condicionadas constituyen el 2,85% con 22701,66%, y las áreas forestales comerciales son el 0,06% representado en 504,41 ha (Tabla 329).

Con respecto a las zonas con fines de protección y conservación, se destaca las áreas protegidas con 28,46% representando en 226692,79 ha, las áreas de particular significancia con 50297,15 ha equivalente a 6,31%, las áreas forestales protectoras con 18384,52 ha con un 2,31% y las áreas de restauración para la conservación tiene un peso porcentual del 0,26% con 2048,49 ha (Tabla 329).

Tabla 329. Zonificación forestal UAO II

Zona	UAO - San Jorge	AREA (H)	%
Zona de	Área Protegida	226692,79	28,46
conservación y protección	Áreas de Particular Significancia	50297,15	6,31
ambiental	Áreas Forestales Protectoras	18384,52	2,31
	Áreas de Restauración para la Conservación	2048,49	0,26
Zona de uso múltiple	Áreas de Rehabilitación	63796,54	8,01
	Áreas de Restauración para la Producción	37611,49	4,72
	Áreas Forestales Comerciales	504,41	0,06
	Áreas Forestales Productoras Condicionadas	22701,66	2,85
	Áreas no Forestales	370729,54	46,54
	Áreas Urbanas e Infraestructura	3843,19	0,48
	TOTAL	796609,78	100

Fuente: Elaboración equipo técnico

6.1.2.3. Unidad administrativa III – Sabana

En la unidad administrativa III, el área de uso múltiple con fines no forestales son el 82,55% en áreas no forestales con 227312,51 ha y el 0,81% las áreas urbanas e infraestructura con 2224,04 ha. En cuanto a las áreas que se someterán a manejo forestal, las áreas forestales productoras condicionadas poseen 1050,59 ha; así mismo las áreas con fines de restauración para la producción obedecen a 4157,10 ha y las áreas de rehabilitación

representando el 0,51% con 1407,09 ha. Por otra parte, las áreas forestales comerciales constituyen el 0,03% con 77,39 ha.

En cuanto a las áreas de protección y conservación, se encuentran las áreas forestales protectoras con 0,98% representado en 4881,49 ha y las áreas de restauración para la conservación son el 0,23% con 1140,08 ha. De igual forma, las áreas protegidas representan el 3,71% con 18423,64 ha; la distribución porcentual y de área se detalla en la Tabla 330.

Tabla 330. Zonificación forestal UAO III

Zona	SABANA	AREA (H)	%
Zona de	Área Protegida	8,37	0,00
conservación y protección	Áreas de Particular Significancia	26115,70	9,48
ambiental	Áreas de Restauración para la Conservación	48,07	0,02
	Áreas Forestales Protectoras	12957,10	4,71
Zona de uso	Áreas de Restauración para la Producción	4157,10	1,51
múltiple	Áreas Forestales Comerciales	77,39	0,03
	Áreas Forestales Productoras Condicionadas	1050,59	0,38
	Áreas de Rehabilitación	1407,09	0,51
	Áreas no Forestales	227312,51	82,55
	Áreas Urbanas e Infraestructura	2224,04	0,81
	TOTAL	275357,96	100

Fuente: Elaboración equipo técnico

6.1.2.4. Unidad administrativa IV – Costera

En relación a la unidad administrativa IV, las zonas uso múltiple con fines no forestales están representadas en un 71,47% en áreas no forestales con 133913,20 ha y las áreas urbanas e infraestructura con 3397,94 ha equivalente a 1,81%. En el caso de las áreas con fines forestales se encuentran las encaminadas en restauración para la producción con un área de 1644,78 ha siendo el 0,88%; así mismo, las áreas de rehabilitación representan el 1,73% con 3247,58 ha, las áreas forestales productoras condicionadas constituyen el 3,96% con 7415,10%, y las áreas forestales comerciales son el 0,37% representado en 688,75 ha (Tabla 331).

En relación con las zonas con fines de protección y conservación, se destaca las áreas protegidas con 11,78% representando en 22071,81 ha, las áreas de particular significancia con 5825,47 ha equivalente a 3,11%, las áreas forestales protectoras con 8315,22 ha con un 4,44% y las áreas de restauración para la conservación con 850,42 ha (Tabla 331).

Tabla 331. Zonificación forestal UAO IV

Zona	COSTERA	AREA (H)	%
Zona de	Área Protegida	22071,81	11,780
conservación y protección	Áreas de Particular Significancia	5825,47	3,109
ambiental	Áreas de Restauración para la Conservación	850,42	0,454
	Áreas Forestales Protectoras	8315,22	4,438
Zona de uso	Áreas de Restauración para la Producción	1644,78	0,878
múltiple	Áreas Forestales Comerciales	688,75	0,368
	Áreas Forestales Productoras Condicionadas	7415,10	3,957
	Áreas de Rehabilitación	3247,58	1,733
	Áreas no Forestales	133913,20	71,470
	Áreas Urbanas e Infraestructura	3397,94	1,813
	TOTAL	187370,28	100

6.1.2.5. Unidad administrativa V – Bajo Sinú

En la unidad administrativa V, el área de uso múltiple con fines no forestales son el 46,36% de áreas no forestales con 76011,06 ha y el 0,64% son las áreas urbanas e infraestructura con 1042,04 ha. En cuanto a las áreas que se someterán a manejo forestal, las áreas forestales productoras condicionadas poseen 267,20 ha; así mismo las áreas con fines de restauración para la producción obedecen a 572,75 ha y las áreas de rehabilitación representando el 0,25% con 408,05 ha.

En cuanto a las áreas de protección y conservación, se encuentran las áreas forestales protectoras con 0,29% representado en 479,47 ha y las áreas de restauración para la conservación con 109,34 ha. De igual manera, las áreas protegidas representan el 41,33% con 67761,18 ha; la distribución porcentual y de área se detalla en la Tabla 332.

Tabla 332. Zonificación forestal UAO V

Zona	BAJO SINU	AREA (H)	%
7	Área Protegida	67761,18	41,33
Zona de conservación	Áreas de Particular Significancia	17294,16	10,55
y protección	Áreas Forestales Protectoras	479,47	0,29
ambiental	Áreas de Restauración para la Conservación	109,34	0,07
Zona de uso	Áreas de Restauración para la Producción	572,75	0,35

Zona	BAJO SINU	AREA (H)	%
múltiple	Áreas Forestales Productoras Condicionadas	267,20	0,16
	Áreas de Rehabilitación	408,05	0,25
	Áreas no Forestales	76011,06	46,36
	Áreas Urbanas e Infraestructura	1042,04	0,64
	TOTAL	163945,25	100

6.1.2.6. Unidad administrativa VI – Alto Sinú

Con respecto a la unidad administrativa VI, las zonas con fines de protección y conservación, se destaca las áreas protegidas con 33,76% representando en 76475,58 ha, las áreas de particular significancia con 1894 ha equivalente a 0,84%, las áreas forestales protectoras con 3012,59 ha con un 1,33% y las áreas de restauración para la conservación con 439,64 ha ().

En relación a las zonas uso múltiple con fines no forestales están representadas en un 49,77% en áreas no forestales con 112752,41 ha y las áreas urbanas e infraestructura con 1584,06 ha equivalente a 0,70%. En el caso de las áreas con fines forestales se encuentran las orientadas a la restauración para la producción con un área de 12970,76 ha siendo el 5,73%; así mismo, las áreas de rehabilitación representan el 4,92% con 11141,15 ha, las áreas forestales productoras condicionadas constituyen el 2,52% con 5703,99%, y las áreas forestales comerciales son el 0,25% representado en 567,69 ha (Tabla 331).

Tabla 333. Zonificación forestal UAO VI

Zona	ALTO SINU	AREA (H)	%
	Área Protegida	76475,58	33,76
Zona de conservación	Áreas de Particular Significancia	1894,30	0,84
y protección	Áreas Forestales Protectoras	3012,59	1,33
ambiental	Áreas de Restauración para la Conservación	439,64	0,19
	Áreas de Restauración para la Producción	12970,76	5,73
	Áreas Forestales Comerciales	567,69	0,25
Zona de uso	Áreas Forestales Productoras Condicionadas	5703,99	2,52
múltiple	Áreas de Rehabilitación	11141,15	4,92
	Áreas no Forestales	112752,41	49,77
	Áreas Urbanas e Infraestructura	1584,06	0,70
	TOTAL	226542,16	100

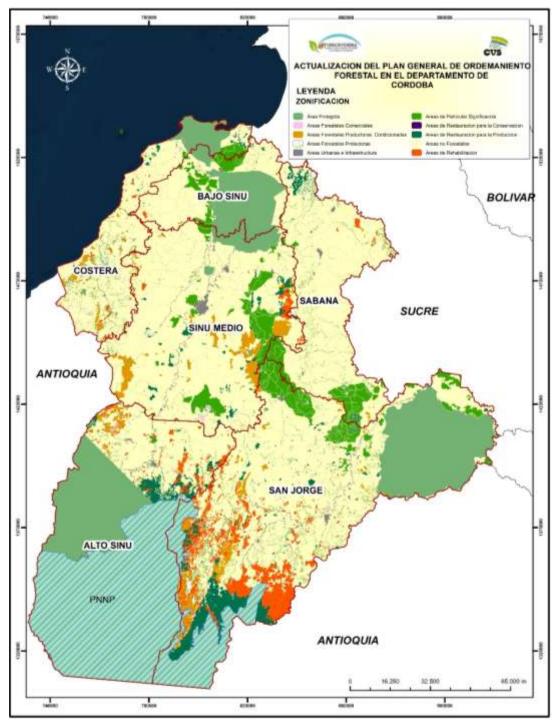


Figura 230. Zonificación forestal del Departamento de Córdoba

6.2. Lineamientos de Manejo para las áreas forestales con fines de uso múltiple y conservación y protección ambiental.

- 6.2.1. Conservación y protección ambiental
- 6.2.1.1. Áreas forestales protectoras
- 6.2.1.1.1. Protección y restauración de los recursos biológicos

Este lineamiento se encamina a la protección y restauración de las áreas presentes de Bosques de Galería (BG), el Bosque Denso Bajo Inundable (BDBI), el Bosque Abierto Bajo Inundable (BABI), Áreas forestales de Clase Agrologica VIII y cobertura adyacente a zonas de Recargas de Acuíferos.

El proceso de restauración busca restablecer los procesos ecológicos para mantener la composición, estructura y función del ecosistema en diferentes unidades de paisaje y a distintas escalas, mediante el desarrollo de estrategias participativas (MADS, 2015). De igual manera es un proceso complejo, integral y cuyos objetivos se logran a mediano y largo plazo y su propósito va más allá de la simple revegetación o reforestación de áreas mediante plantaciones de especies arbóreas.

Es por lo anterior que las acciones a realizar en las áreas forestales protectoras con un área de 48030,39 ha, deben estar enfocadas en la conservación y protección de las coberturas existente y garantizar la faja forestal protectora teniendo en cuenta el orden de la corriente como se indica a continuación:

Tabla 334. Faja forestal protectora de acuerdo al orden de la corriente

ORDEN DE LA CORRIENTE	RETIRO / METROS
1	30
2	20
3 y 4	15
6,7 y 8	10
> 9	6

Fuente: Elaboración equipo técnico

Para la codificación de las corrientes se aplicará la clasificación implementada por el IDEAM bajo la metodología de Gravelius.

Determinación de la Faja Forestal Protectora de Nacimientos: La faja forestal protectora en los nacimientos se define por el radio, tomado desde el punto de afloramiento de agua hasta el borde exterior del área de encharcamiento. El retiro es igual a tres veces el radio. En cualquier caso, el retiro no podrá ser inferior a 15 metros.

Las estrategias a implementar dentro de este lineamiento es enriquecimiento forestal de las áreas forestales protectoras y restauración ecológica asistida, específicamente en el incremento de las fajas forestales de protección para el bosque de galería en un área de 37700 ha.

Por otra parte el conflicto entre el ser humano y la fauna silvestre, está dado principalmente por la degradación de los ecosistemas donde habitan los animales, así mismo por la cacería ilegal y el manejo inadecuado de los sistemas productivos extensivos de ganado ovino, caprino y vacuno; ocasionan que se presenten ataques a ganado, como último recurso de alimentación, en zonas aledañas a bosques y humedales. La estrategia de este proyecto busca realizar campañas de educación ambiental y de capacitación en buenas prácticas de producción agropecuaria, especialmente evitando la generación de conflictos entre la fauna silvestre y las comunidades.

A su vez se propone Implementar acciones de conservación de fauna y flora amenazada, estas acciones se implementan con el fin de promover la conservación de especies en categorías de amenaza según la Resolución 1912/2017 del MADS. Dentro del marco de las acciones a implementar se propone la formulación de planes de conservación y manejo de especies amenazadas que carezcan de esta medida, realización de estudios que permitan la distribución y determinación del estado actual de la fauna silvestre amenazada, educación ambiental en prácticas de conservación y para especies de flora se incluye la propagación en viveros y reforestación.

No obstante, dentro del inventario forestal realizado se evidencia la presencia de muy pocos individuos de las especies Abarco (Cariniana pyriformis Miers), Cedro (Cedrela odorata L.) y Caoba (Swietenia macrophylla King), las cuales se encuentran dentro de las categorías de amenaza en peligro crítico y en peligro, las cuales requieren de la realización de estudios poblacionales específicos, con el fin de determinar la abundancia, densidad, vulnerabilidad, resiliencia y rareza de cada una para determinar la viabilidad de la veda regional indefinida de estas especies.

6.2.1.1.2. Investigación y desarrollo de productos forestales no maderables

La comercialización de productos forestales no maderables (PFNM) ha sido incorporada en los últimos años como un aporte al desarrollo rural en las áreas forestales tropicales. No obstante, la debilidad principal de este proceso es la falta de conocimiento e investigación en la extracción sostenible y periodos de producción de especies que son generadoras de dichos productos; sumado a esto existe una carencia de información en lo relacionado al mercado y canales de comercialización de dichos productos.

Este lineamiento dirige sus acciones hacia la necesidad de desarrollar proyectos de investigación que permitan conocer el potencial de algunas especies y las cantidades

aproximadas que pueden extraer o comercializar basado en sistemas adecuados de extracción a partir del tipo de producto a obtener. Cabe resaltar que el proceso de investigación en productos forestales no maderables (PFNM) debe ser una combinación de información cualitativa y cuantitativa, teniendo en cuenta que es una actividad que comprende una compleja interacción entre personas, mercados y recursos naturales.

De acuerdo a la información levantada en el inventario forestal se evidencia 49 especies con viabilidad de proporcionar PFNM, presentando usos para extracción a través de semillas, exudados, hojas, frutos, fibras, raíz y cortezas con fines alimenticios, medicinales, tinturas y producción de productos como artesanías, cosméticos, entre otros; por lo cual en la Tabla 335 se muestra el listado de especies potenciales con su respectivo origen de extracción.

Tabla 335. Especies potenciales de extracción de PFNM

Nombre común	Nombre cientifico	Origen de extracción
Caimito	Chrysophyllum cainito L.	Fruto
Canilla muerto - Cacho de carnero	Talisia sp.	Corteza
Capacho	Buchenavia tetraphylla (Aubl.) R.A.Howard	Corteza
Carreto	Aspidosperma desmanthum Benth. ex Müll.Arg.	Corteza
Coco cristal	Lecythis minor Jacq.	Semilla
Guamo machete	Inga edulis	Corteza
Guarumo	Cecropia peltata L.	Exudado
Guayabo danto	Bellucia pentamera Naudin	Fruto y hojas
Lengua vaca - Patevaca	Senna bacillaris (L.f.) H.S.Irwin & Barneby	Hojas
Melao	Heliocarpus americanus L.	Corteza
Meao de perro	Solanum microleprodes Bitter	Corteza
Mora	Maclura tinctoria (L.) D.Don ex Steud.	Exudado y corteza
Palma amarga	Sabal mauritiiformis (H.Karst.) Griseb. & H.Wendl.	Hojas
Pata de vaca	Bauhinia aculeata L.	Hojas
Pimentillo	Aspidosperma sp.	Corteza

Nombre común	Nombre cientifico	Origen de extracción
Vara o culo de Hierro	Aspidosperma album (Vahl) Benoist ex Pichon	Corteza
Higo	Ficus magdalenica Dugand	Exudado y corteza
Laurel	Ocotea sp.	Hojas y Corteza
Laurel amarillo	Persea sp.	Hojas y Corteza
Chirimoya	Annona cherimola Mill.	Fruto y Corteza
Higo copé	Ficus dugandii Standl.	Exudado y corteza
Acacia roja	Delonix regia (Hook.) Raf.	Corteza y semillas
Lecherito	Sapium sp.	Exudado
Níspero	Manilkara huberi (Ducke) Standl.	Exudado y fruto
Olleto pelao	Grias cauliflora L.	Fruto
Sangregao	Croton sp.	Hojas
Aguacate	Persea americana Mill.	Fruto
Higuerón - Laurel	Ficus tonduzii Standl.	Exudado
Lacre montañero	Vismia billbergiana Beurl.	Exudado
Acacia nativa	Senna occidentalis (L.) Link	Semillas y Corteza
Congo	Coccoloba sp.	Corteza
Trébol	Protium apiculatum Swart	Exudado
Varepiedra blanco	Casearia decandra Jacq.	Hojas
Achiotillo	Bixa sp.	Hojas
Caucho	Ficus involucrata Blume	Exudado
Guartinajero	Pterocarpus sp.	Exudado
Cachito de toro	Acacia cornigera (L.) Willd.	Exudado
Coroza	Elaeis oleifera (Kunth) Cortés	Fruto
Lata	Bactris guineensis (L.) H.E.Moore	Fruto

Nombre común	Nombre cientifico	Origen de extracción
Palma de vino	Attalea butyracea (Mutis ex L.f.) Wess.Boer	Hojas y semillas
Palma milpesos	Oenocarpus bataua Mart.	Flores
Palma panga	Raphia taedigera (Mart.) Mart.	Fibras
Palma tagua	Phytelephas seemannii O.F.Cook	Semillas
Zancona, Palma zancona	Socratea exorrhiza (Mart.) H.Wendl.	Raices
Zanca de mula	Ocotea spectabilis (Meisn.) Mez	Hojas y Corteza
Limon criollo	Citrus aurantiifolia (Christm.) Swingle	Fruto
Cerezo	Malpighia glabra L.	Fruto
Vara de león	Cordia sp.	Hojas
Niguito	Miconia sp.	Fruto

- 6.2.1.2. Áreas forestales de restauración para la conservación
- 6.2.1.2.1. Conservación y utilización sostenible de los bosques naturales con fines de pago de servicios ambientales

La comunidad en general se beneficia con la conservación de la biodiversidad, pero los costos de la conservación recaen principalmente en los propietarios de los predios en los que hay parches boscosos. Por tal motivo el gobierno nacional ha generado incentivos para alentar a los propietarios de bosques y responsables del manejo forestal a tomar medidas especiales para la conservación y utilización sostenible de la biodiversidad, es por eso que el pago de los servicios ecosistémicos provistos por los bosques puede ofrecer incentivos a los propietarios de bosques y los responsables del manejo forestal para conservar la biodiversidad en los bosques.

- Conservación de los bosques mediante pago de incentivos a los propietarios

De acuerdo con lo definido en el Decreto 870 de 2017 del Ministerio de Ambiente y Desarrollo, en su artículo 7 dice:

"Las acciones sujetas de reconocimiento del incentivo económico de Pago por Servicios Ambientales corresponderán a la preservación y la restauración parcial o total de éstas áreas. Dentro de las acciones de restauración se incluyen las actividades productivas que permitan la generación de servicios ambientales a partir del uso sostenible del suelo, respetando el régimen de uso y manejo del área..."

- "Las modalidades de Pago por Servicios Ambientales se refieren a los servicios ambientales que se buscan generar o mantener mediante acciones sujetas al reconocimiento del incentivo de pago por servicios ambientales. Dentro de estas modalidades se destacan los pagos por servicios ambientales de: calidad y regulación hídrica, culturales y espirituales, reducción y captura de gases de efecto invernadero, y conservación de la biodiversidad".
- "Los elementos básicos para la formulación, diseño, implementación seguimiento a proyectos de pago por servicios ambientales corresponden a los aspectos mínimos requeridos para la implementación de los proyectos de pago por servicios ambientales, como los siguientes:
 - ✓ Identificación, delimitación y priorización de las áreas y ecosistemas estratégicos, de conformidad con la normatividad que aplique en la materia.
 - ✓ Identificación de los servicios ambientales. Selección de predios.
 - ✓ Estimación del valor del incentivo.
 - ✓ Identificación de fuentes financieras y mecanismo para el manejo de recursos.
 - ✓ Formalización de los acuerdos. Registros de los proyectos.
 - ✓ Monitoreo y seguimiento".

Según este artículo en su parágrafo 1 "Los propietarios, poseedores u ocupantes de buena fe exenta de culpa que reciban el incentivo de Pago por Servicios Ambientales podrán adelantar de forma complementaria actividades relacionadas con el uso y aprovechamiento sostenible de la biodiversidad."

6.2.1.2.2. Recuperación y restablecimiento de los servicios ecosistémicos de los bosques de galería

La pérdida y degradación del bosque conlleva a una reducción en los bienes y servicios ambientales que prestan, incluidos la regulación hídrica, la producción de materias primas y alimentos, el mantenimiento y conservación de la biodiversidad. Para la CVS, el control y vigilancia presentan un significativo nivel de dificultad, por esto las Alertas tempranas de deforestación se convierten en una herramienta para tomar decisiones rápidas, priorizando actividades de control en las áreas identificadas como objeto de acciones de aprovechamiento ilegal de los recursos forestales en especial de las franjas protectoras de rondas hídricas.

Es por lo descrito anteriormente que el presente lineamiento busca disminuir la vulnerabilidad de los Bosques de Galería a la intervención antrópica y con esto acceder a los servicios ecosistémicos que brinda, incluidos la baja de inundaciones, mitigar la erosión superficial y de orillas, facilitar los procesos de infiltración y percolación en zonas de carga y almacenamiento, actuar como filtro para reducir la contaminación, regular

la afluencia de agua de escorrentía a los cauces, propiciar la creación de microclimas frescos y húmedos alrededor de las fuentes de agua en meses cálidos, facilitar el movimiento de especies entre diferentes hábitats, incrementar el valor recreativo de las riberas y propiciar el equilibrio del recurso hidrobiológico.

En la zonificación del presente documento se presentan 37.772,06 hectáreas de Bosque de Galería que se encuentran aptas para ser intervenidas mediante procesos de restauración como ecosistema estratégico para el suministro de servicios ambientales en el departamento.

De acuerdo a la guía técnica para restauración de los ecosistemas en Colombia (Ministerio de Ambiente, Vivienda y Desarrollo Territorial - MADVS & Academia de Ciencias Exactas, Físicas y Naturales - ACCEFYN, 2012) una vez identificado el ecosistema - Bosques de Galería – se debe proceder a la realización de las siguientes actividades:

Selección del Sitio:

Para la selección del sitio se recomienda restaurar las zonas de protección de ronda hídrica de 30 m para cada margen de los cauces principales y afluentes principales de los municipios presentes, aunque los esquemas de ordenamiento territorial - EOT, Plan básico de ordenamiento territorial - PBOT, menciona rondas de protección más amplias como de 100 m para el río Sinú (MADVS & ACCEFYN, 2012).

Selección de Especies para la Restauración Ecológica:

En la Tabla 336. Especies arbóreas nativas sugeridas para la restauración ecológica de los bosques de galería. Tabla 336 se mencionan las especies arbóreas recomendadas para la restauración ecológica. Este listado no debe ser una limitante, sino una sugerencia de especies de la región. De la misma manera, se debe tener en cuenta a la comunidad del área de influencia para la selección de las especies de acuerdo a las expectativas de los habitantes, haciendo énfasis en las especies nativas debido a que se encuentran presentes en este tipo de ecosistemas.

Tabla 336. Especies arbóreas nativas sugeridas para la restauración ecológica de los bosques de galería.

Especie	Nombre común
Anacardium excelsum (Bertero ex Kunth) Skeels	Caracoli
Ochoterenaea colombiana F.A.Barkley	Реро
Handroanthus chrysanthus (Jacq.) S.O.Grose	Polvillo
Tabebuia rosea (Bertol.) Bertero ex A.DC.	Roble

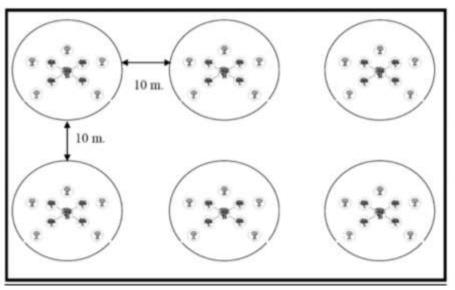
Especie	Nombre común
Cordia collococca L.	Muñeco
Albizia niopoides var. colombiana (Britton & Killip) Barneby & J.	Guacamayo
Brownea ariza Benth.	Florisanto
Enterolobium cyclocarpum (Jacq.) Griseb.	Orejero
Inga macrophylla Willd.	Guamo blanco
Inga sp.	Guamo
Zygia longifolia (Willd.) Britton & Rose	Achí
Ceiba pentandra (L.) Gaertn.	Ceiba
Guazuma ulmifolia Lam.	Guacimo
Pseudobombax septenatum (Jacq.) Dugand	Ceiba verde
Sterculia apetala (Jacq.) H.Karst.	Camajon
Maclura tinctoria (L.) D.Don ex Steud.	Mora
Muntingia calabura L.	Nigua
Coccoloba pubescens L.	Uvero

Reforestación:

La reforestación es un mecanismo que se puede usar para restaurar las áreas de bosque de galería. Las actividades de reforestación a través de plantaciones arbóreas y sistemas agroforestales reestablecen la cubierta de árboles en tierras taladas, pero no sustituyen a los bosques, pues éstos son más eficaces para mantener las funciones ambientales y conservar la diversidad biológica y además pueden proporcionar una fuente de ingresos más estables. Sin embargo, las labores de reforestación se justifican en tierras previamente arboladas, que no ha perdido su capacidad productiva, de tal modo que sea posible el desarrollo de diferentes tipos de especies vegetales en diferentes combinaciones como plantaciones forestales, sistemas agroforestales y otros (UICN, PNUMA & WWF, 1991).

Para el enriquecimiento de los bosques de galería, con el fin de lograr los objetivos de la restauración que finalmente propendan por el aumento en términos de la sinergia ecológica de la cobertura del bosque de galería se propone establecer arreglos de siembra de especies nativas mediante los llamados "Núcleos de Anderson" basado en la teoría de la nucleación la cual encuentra una relación entre el ecoclina de un área abierta vs el área boscosa, generando a mediano plazo los "núcleos de diversidad" (Anderson, 1953).

Más que el de una simple plantación de árboles, el objetivo de esta acción se enfoca a que a través de este procedimiento se planten individuos procedentes de un estado

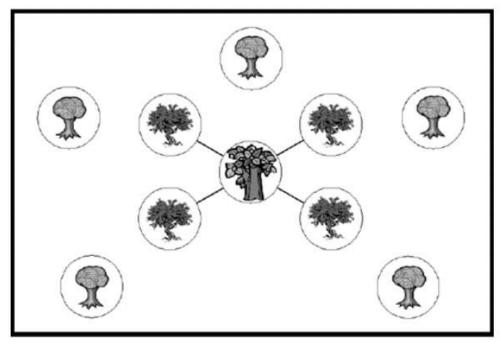


sucesional superior a zonas ecológicamente en proceso de degradación, induciendo de esta manera una recuperación vegetal acelerada (Anderson, 1953).

El arreglo a implementarse se efectuará de la siguiente manera según la (¡Error! No se encuentra el origen de la referencia.).

Figura 231. Patrón espacial a implementar mediante generación de núcleos de diversidad.

Fuente: Tomado de (Anderson, 1953).


De acuerdo a lo anterior se escogerán según la ecología de las especies y los patrones sucesionales naturales de cada especie a implementar de la siguiente manera

- Especies centrales: preponderantemente umbrófilas.
- Especies del primer aro: de carácter heliófilas parciales.
- Especies del segundo aro: preponderantemente heliófilas.

Figura 232. Detalle del arreglo nuclear.

Fuente: Tomado de (Anderson, 1953).

Cada núcleo estará distanciado entre si 10 m.; al interior del mismo los espaciamientos entre la especie central al primer aro será de 2,5 m., y del primer aro al segundo 3,0 m. esto último teniendo en cuenta que el principio de la nucleación tendrá como factor determinante dejar en competencia intraespecífica por nutrientes a las especies vegetales más numerosas regulando su población sin afectar a las demás.

La altura mínima de la especie central será mínimo de 0,5 m en su parte aérea; las especies de los aros externos serán de 1,0 m. las especies del aro interno serán mínimo de 0,5 m. En ningún caso la altura incluye el alto de la bolsa. Ahoyado de 30 cm para plántulas de 30 – 40 cm de alto a partir de la base del tallo, fertilización y mezcla del sustrato.

Una vez en el sitio el material se esparcirá uniformemente en toda la superficie del terreno garantizando la estructura de los suelos y su humedad. Se debe nivelar el área de acuerdo a las pendientes, estabilidad del terreno y requerimientos de siembra.

6.2.2. Uso múltiple

6.2.2.1. Áreas forestales productoras condicionadas

6.2.2.1.1. Desarrollo socioeconómico a partir de sistemas agroforestales basados en los recursos forestales nativos

En el departamento de Córdoba se tiene que el uso del suelo ha cambiado para desarrollar una ganadería extensiva de forma tradicional, ganadería ésta que viene deteriorando de forma acelerada el aspecto ambiental, en donde la cobertura de bosque es la más perturbada y por efecto el recurso hídrico.

Actualmente se hace un énfasis en la importancia de considerar la ecología y el presente y futuro del medio ambiente, donde palabras como sostenible o sustentable son usados con más frecuencia. Y es a partir de la Agroforestería que se deriva el término Silvopastoreo, que en los 40 últimos años se le ha dado más desarrollo a este modelo de sistema productivo: La combinación de la siembra de pastos con árboles y arbustos nativos ha mejorado la alimentación del ganado y la productividad de la finca. La agroforestería, que se puede definir como "aquellos sistemas donde hay una combinación de especies arbóreas con especies arbustivas o herbáceas generalmente cultivadas.

La estrategia debe enfocarse en realizar acciones compatibles con los usos dominantes como los sistemas de silvopastoriles, en donde se genere conectividad de las áreas de bosques fragmentados con vegetación secundaria con otras, realizándose alrededor de las 2.184 hectáreas existentes, encontradas en el Plan de Ordenamiento. Los sistemas silvopastoriles con manejo de la sucesión vegetal, en donde el ganado va regando las semillas de las plantas y los ganaderos se dedican a hacer podas selectivas, sin arrasar con todo a su paso, como muchas veces suelen hacer. Las plantaciones forestales con pastoreo de ganado: son cultivos de árboles en los cuales se incorpora la explotación ganadera, para obtener una mayor liquidez y poder financiar el proyecto arbóreo. Otros sistemas que puede aplicarse son los cercos vivos, las barreras contra viento, los linderos arborizados y los corredores biológicos, que son una manera natural de cercar a los animales y proveerles sombra y otro tipo de alimento.

Los árboles utilizados para de la vegetación natural del paisaje o especialmente plantados con fines productivos. En ese escenario, se pueden utilizar árboles para la obtención de madera o frutales. La cubierta vegetal, por su parte, puede ser una pradera natural, mejorada o artificial, la cual puede servir como alimento para bovinos, ovinos o caprinos; Los árboles pueden producir madera aserrable, postes, leña o frutas, es decir, todo lo que pueda significar un ingreso extra para el productor. A la vez ayudan a mejorar la producción de pasto y ganado, gracias a que reducen la influencia de los vientos y entrega sombra. Las plantas forrajeras proveen alimento para el ganado, y una cubierta para el suelo, que frena el crecimiento de las malezas y controla los procesos de erosión.

6.2.2.1.2. Establecimiento de cupos de aprovechamiento para régimen de aprovechamiento forestal persistente

El establecimiento de cupos globales de aprovechamiento para cada cobertura tiene como propósito garantizar la oferta y renovabilidad del recurso, estableciendo las medidas de manejo y aprovechamiento de especies forestales; por lo cual se establece un ciclo de corta mínimo y el volumen máximo a extraer. Estas acciones permiten fortalecer el control y seguimiento en los permisos y autorizaciones futuras de aprovechamiento forestal.

Para el caso de la asignación del cupo global de aprovechamiento forestal por cobertura se tiene el parámetro de área aprovechable anual, teniendo en cuenta la renovabilidad del recurso se tiene el área total aprovechable y el ciclo de corta, para lo cual se calcula con la siguiente ecuación:

$$Aa = \frac{Ap}{Cc}$$

Donde,

Aa es el área en hectáreas aprovechable anualmente (cupo) Ap es el área en hectáreas productora definida Cc es el ciclo de corta en años.

El volumen total del cupo global relaciona el volumen máximo en metros cúbicos de madera en bruto del cupo de aprovechamiento y su correlación con el área aprovechable anualmente.

$$C1 = Aa * V$$
Donde,

C1 es el volumen en metros cúbicos de madera en bruto del cupo de aprovechamiento Aa es el área en hectáreas aprovechable anualmente (cupo) V es volumen en metros cúbicos de madera en bruto aprovechable por hectárea

Bosque Abierto Alto de Tierra Firme

El área productiva de esta cobertura corresponde a 9119,27 ha, el ciclo de corta para esta cobertura es de 30 años y el diámetro mínimo de corta es de 35 cm de DAP; teniendo en cuenta lo anterior se obtiene lo siguiente:

$$Aa = \frac{9119,27}{30}$$

$$Aa = 303,97 \text{ ha/ } año$$

$$C1 = 303,97 * 15 \text{ m}^3/\text{ha}$$

$$C1 = 4559,55 \text{ m}^3$$

Para la cobertura se obtiene un volumen máximo por hectárea de 15 m³ y un cupo global de aprovechamiento persistente y doméstico de 4559,55 m³.

Bosque Denso Bajo de Tierra firme

El área productiva de esta cobertura corresponde a 23052,15 ha, el ciclo de corta para esta cobertura es de 30 años y el diámetro mínimo de corta es de 40 cm de DAP; teniendo en cuenta lo anterior se obtiene lo siguiente:

$$Aa = \frac{23052,15}{30}$$

$$Aa = 768,40 \text{ ha/ } año$$

$$C1 = 768,40 * 8 \text{ m}^3/\text{ha}$$

$$C1 = 6147,20 \text{ m}^3$$

Para la cobertura se obtiene un volumen máximo por hectárea de 8 m³ y un cupo global de aprovechamiento persistente y doméstico de 6147,20 m³.

Bosque fragmentado con vegetación secundaria

El área productiva de esta cobertura corresponde a 2198,06 ha, el ciclo de corta para esta cobertura es de 30 años y el diámetro mínimo de corta es de 35 cm de DAP; teniendo en cuenta lo anterior se obtiene lo siguiente:

$$Aa = \frac{2198,06}{30}$$

$$Aa = 73,26 \text{ ha/ } año$$

$$C1 = 73,26 * 10 \text{ m}^3/\text{ha}$$

$$C1 = 732,60 \text{ m}^3$$

Para la cobertura se obtiene un volumen máximo por hectárea de 10 m³ y un cupo global de aprovechamiento persistente y doméstico de 732,60 m³.

Vegetación secundaria

El área productiva de esta cobertura corresponde a 51551,4 ha, el ciclo de corta para esta cobertura es de 30 años y el diámetro mínimo de corta es de 35 cm de DAP; teniendo en cuenta lo anterior se obtiene lo siguiente:

$$Aa = \frac{51551,4}{30}$$

Aa = 1718,38 ha/ año

C1 = 1718,38 * 8 m³/ha

 $C1 = 13747,04 \text{ m}^3$

Para la cobertura se obtiene un volumen máximo por hectárea de 8 m³ y un cupo global de aprovechamiento persistente y doméstico de 13747,04 m³.

6.2.2.1.3. Mejoramiento y reconversión de las técnicas y prácticas de aprovechamiento forestal

El mejoramiento y reconversión de buenas prácticas está fundamentada en acciones que permitan la utilización de sistemas de aprovechamiento forestal de bajo impacto; dicho sistema deberá cumplir con tres fases: pre-aprovechamiento, aprovechamiento y post-aprovechamiento.

La fase de pre-aprovechamiento deberá incluir actividades de inventario de la unidad de manejo, determinación de las áreas de protección y de producción, inventario de planificación de la unidad a aprovechar, ubicación de árboles comerciales, semilleros, identificación de caminos forestales y eliminación de lianas todo detallado en el plan de aprovechamiento forestal; así mismo una capacitación al personal que trabajará en el aprovechamiento.

La fase de aprovechamiento implica las actividades de construcción de caminos forestales, tala dirigida, arrastre, troceo, carga y transporte y control. Finalmente, las actividades de post- aprovechamiento deben incluir la recuperación de residuos, reparación, cierre de caminos y actividades generales de limpieza.

El éxito de un aprovechamiento forestal de bajo impacto está fundamentado en una tala dirigida que exige el cumplimiento de los siguientes pasos:

- 1. Eliminar la maleza alrededor de la base del árbol, incluyendo lianas.
- 2. Determinar la dirección natural de caída del árbol y decidir la dirección más conveniente.
- 3. Determinar la ruta de escape; limpiar de maleza si fuera necesario.
- 4. Cortar el árbol, usando cuñas si fuera necesario.
- 5. Limpiar el tronco, trocear y arrastrar.

La tala dirigida se basa en criterios claramente definidos:

- 1. Protección del rodal remanente: El énfasis principal es minimizar el impacto a la vegetación remanente y evitar la creación de grandes claros y la caída del árbol en cursos de agua.
- 2. Facilidad de extracción: Siempre que sea posible, los árboles deben voltearse de manera que facilite el arrastre. Idealmente las trozas deben quedar en un ángulo de 30 a 60° en relación a la pista de arrastre. Este proceso minimiza el daño a la vegetación remanente.
- Protección del producto: utilizar técnicas especiales de corta para evitar que los árboles caigan en sitios con condiciones difíciles de terreno u otros impedimentos que pudieran hacer que la troza se raje o quiebre o imposibiliten la extracción
- 4. Seguridad del operario: Los operarios deben estar bien informados de donde estén el resto de compañeros y de las rutas de escape. En algunos casos, es necesario usar cuñas para corregir la dirección de caída. En muchos casos dependiendo el terreno es necesario la utilización de métodos con cables.
- 5. El proceso de arrastre debe garantizar la reducción de área disturbada y disminuir erosión. Es posible emplear técnicas con tractores de oruga y cables con winches.

Cabe resaltar que las técnicas y prácticas de aprovechamiento forestal de bajo impacto deberán están fundamentadas en la planificación detallada, una implementación y control eficaz de operaciones, una completa evaluación postaprovechamiento y una buena capacitación al personal de campo; de tal manera que se garantice el manejo sostenible de los bosques del departamento.

- 6.2.2.2. Áreas de restauración para la producción
- 6.2.2.2.1. Manejo silvicultural y restauración ecológica asistida de bosques naturales

Este lineamiento posee acciones de tipo silvicultural que permitirán garantizar un manejo adecuado para permitir el crecimiento y desarrollo de estas coberturas, con el fin de proveer futuros servicios productivos y ecosistémicos. Los procesos silvicutlurales se hacen con el fin de ayudar al crecimiento y desarrollo de la regeneración natural, aumentar el desarrollo de los árboles remanentes, evitar la muerte de árboles deseables en el futuro y aumentar la producción y calidad de la madera.

Las actividades silviculturales a emplear para estas áreas son las siguientes:

- 1. Corta de liberación: consiste en eliminar la vegetación que impide que los árboles deseados reciban la iluminación adecuada. Los árboles a ser liberados deben cumplir con los siguientes requisitos: Diámetros entre 10 y 49,9 cm, sin defectos, fuste recto y sano, producir por lo menos una troza comercial, copa bien formada y no estar muy inclinados. Cabe resaltar que los árboles a eliminar sean solamente aquellos que representan una competencia para un árbol deseable.
- Corta de lianas y bejucos: Este tratamiento se realiza por razones de dificultad de tránsito en el bosque, competencia por luz entre árboles y bejucos, daños y riesgo de accidentes al extraer árboles.
- 3. Refinamiento: Este tratamiento pretende eliminar todos los árboles de una o más especies no deseables a partir de un diámetro; además se aclara que no puede ser una apertura intensa que genera la invasión de especies.
- 4. Saneamiento o mejora: Este proceso se realiza con la eliminación de los árboles sobremaduros, deformes, dañados o con problemas fitosanitarios. Es importante considerar la permanencia de árboles que sean utilizados como hospederos y fuentes de alimento.

Cabe aclarar que las medidas silviculturales anteriores pueden ser aplicadas conjuntas o unificadas dependiendo de la necesidad de mejora de un área en particular y el objetivo de recuperación del área de bosque individual; estos métodos deben podrán ser aplicados en las coberturas de bosque abierto bajo de tierra firme y bosque denso alto de tierra firme.

Por otra parte, la restauración ecológica de los bosques debe estar fundamentada en un proceso de enriquecimiento, con el fin de regenerar el bosque con plantas valiosas producidas en vivero o recolectadas en otros sitios.

Las formas de enriquecimiento deben realizarse con diferentes métodos basado principalmente en la cobertura a enriquecer; a partir del método en claros, el cual debe

realizarse plantando especies valiosas en claros naturales o dejados por extracción selectiva; esta técnica permite la recuperación de bosques que inician procesos de fragmentación.

Estos procesos de enriquecimiento deben realizarse principalmente en el bosque fragmentado, teniendo en cuenta que esto permite incrementar los parches de bosque y aumentar la conectividad ecológica.

6.2.2.2.1. Restauración y Recuperación de recursos genéticos de los bosques naturales

Se entiende que las dinámicas naturales deben estar dirigidas a la recuperación, no de la totalidad sino de los componentes básicos de la estructura, función y composición de especies, de acuerdo a las condiciones actuales en que se encuentra los bosques actuales en la jurisdicción de la CVS, en particular las coberturas de bosque abierto bajo de tierra firme, bosque denso alto de tierra firme y bosque fragmentado. En este sentido habría que tener en cuenta es necesario contar con ayuda para que se puedan recuperar los mecanismos de regeneración del ecosistema; b. las coberturas boscosas difícilmente podrán llegar a su estado original, sin embargo podran recuperar parte de su estructura pristina y procesos ecologicos; c. Su recuperación dependerá del conocimiento que se tenga de las áreas de referencia y de su estado actual; d. Es necesario iniciar o acelerar los procesos que conduzcan a la recuperación de éstas áreas.

Para el caso de éstas áreas definidas como de restauración para la producción debe existir una adecuada planificación para garantizar la sostenibilidad de servicios ambientales con fines de sostenibilidad de los sistemas productivos. Gran parte de este trabajo de restauración se debe concentrar en la protección de las cuencas hidrográficas o en la provisión de nuevas fuentes de fibra de madera. Sin embargo, la plantación de especies nativas en sitios cuidadosamente seleccionados puede producir tambien beneficios importantes de biodiversidad a escala del paisaje.

Es necesario tener en cuenta las siguientes actividades para estas áreas:

- Se implementarán actividades de restauración para su recuperación ecológica y productiva de productos maderables y no maderables
- Se implementaran actividades de investigación científica en estas áreas
- Es necesario fomentar actividades de manejo e investigación concertadas con los propietarios de los bosques
- Impulsar la educación e investigación sobre la biodiversidad de las coberturas boscosas aptas para la producción.
- Se realizara recolección de germoplasma (semillas, estacas, etc.) de especies arbóreas y arbustivas para restauración e investigación.

- Evaluar y observar las condiciones físicas del área como suelo, régimen hídrico, condiciones climáticas para determinar los factores de estrés y riesgo ecológico y físico específico para el área.
- Fomentar las actividades de capacitación en taxonomía, ecología y manejo de la biodiversidad de los bosques naturales
- La restauración de la vegetación nativa en los sitios degradados debería planificarse para proporcionar una diversidad de tipo de vegetación sucesional, aumentar la conectividad de los fragmentos forestales y permitir la dispersión de plantas y animales, garantizando la viabilidad de las poblaciones a escala de paisaje y de unidad de manejo forestal.
 - 6.2.2.3. Áreas de rehabilitación

6.2.2.3.1. Rehabilitación ecológica de los bosques para la producción

Para la rehabilitación de las coberturas de vegetación secundaria alta, vegetación secundaria baja y bosque fragmentado por pastos y cultivos se pueden utilizar como estrategias el manejo de la regeneración natural, la utilización de árboles aislados o vegetación remanente de estas áreas, incorporar árboles de especies pioneras nativas, como son áreas destinadas a la producción tamien la introducción de sistemas agroforestales, cercas vivas y barreras rompe vientos, establecimiento y ampliación de corredores biológicos, el uso de pastoreo para controlar el crecimiento de los pastos y ayudar a dispersar semillas. Estas estrategias deben estar enmarcadas en la manipulación del ambiente físico, quimico, biológico del suelo y de la vegetación. Las acciones a tener en cuenta son:

- Recuperar la productividad del suelo (funciones físicas, químicas y biológicas), como contribución a la proliferación de la riqueza biológica en general
- Las metas y objetivos de biodiversidad para los bosques tropicales de producción deberían fijarse con la participación de todos los actores pertinentes, prestando especial atención a las necesidades y prioridades de las comunidades locales.
- Alentar y regular la actividad forestal comunitaria y de pequeña escala, asi como los acuerdos de manejo forestal conjunto y cooperativo, de manera que se ofrezcan incentivos para la conservación de la biodiversidad.
- Ofrecer garantías para la biodiversidad en los sistemas locales de manejo forestal
- Se deberán diseñar programas de seguimiento de las áreas en rehabilitación que satisfagan las necesidades de producción con un enfoque participativo
- Ofrecer incentivos a largo plazo para el seguimiento de las áreas en rehabilitación para la producción.
- Asegurar que el ordenamiento forestal y la planificación de los ciclos de aprovechamiento de lugar a patrones de cobertura que faciliten las condiciones adecuadas para la conservación de la biodiversidad.

- Plantar especies nativas para extender su hábitat y ofrecer oportunidades para el movimiento de la biodiversidad entre los parches de vegetación secundaria y bosque fragmentado
- El manejo forestal debe asegurar que las actividades no tengan un impacto negativo en los componentes de la biodiversidad.

7. Bibliografía

- Alcaldía de Municipal de Chima. (2003). Plan esquemático de ordenamiento territorial. Municipio de Chima. Chima.
- Banco de la Republica. (2009). CIÉNAGA DE AYAPEL: RIQUEZA EN BIODIVERSIDAD Y RECURSOS HIDRICOS. BANCO DE LA REPUBLICA, DOCUMENTOS DE TRABAJO.
- Institution Smithsonian. (2014). Arboles, Arbustos y Palmas de Panamá. Obtenido de Center For Tropical Forest Science: http://ctfs.si.edu/webatlas/mainframe.php?order=s
- Acosta, J., Barrera, R., & Guzman, G. (1993). Geología del área de Colomboy (Córdoba). Bogotá: Ingeominas para Ecopetrol.
- Aeronautica Civil. (2017). www.aerocivil.gov.co.
- Aguirre, Z. L., Solano, M., & Aguirre, N. (2015). Especies forestales mas aprovechadas del sur del Ecuador. Loja-Ecuador: Universidad Nacional de Loja.
- Alcaldía Municipal de San Antero. (2008). Plan de Desarrollo MUnicipal de San Antero 2008-2011. San Antero .
- Alcaldía de Tierra Alta. (2012). Plan de Desarrollo 2012 2015 del Municipio de Tierra Alta. Tierra Alta.
- Alcaldía del municipio de Valencia, C. (2012). Alcaldía del municipio de Valencia, Córdoba. Plan de Desarrollo, 2012-2015. Valencia.
- Alcaldía Municipal de Ayapel. (2016). Plan Básico de Ordenamiento Territorial de Ayapel. Ayapel.
- Alcaldía Municipal de Canalete. (2001). Esquema de ordenamiento Territorial de Canalete 2001-2010. Canalete.
- Alcaldía Municipal de Canalete. (2001). Plan de Ordenamiento Territorial 2001-2010. Canalete.
- Alcaldía Municipal de Cereté. (2001). Plan de Ordenamiento Territorial del Municipio de Cereté. Cereté.

- Alcaldía Municipal de Chima. (2003). Plan Esquematico de Ordenamiento Territorial de Chimá 2003-2012. Chimá.
- Alcaldía Municipal de Chinú. (2000). Plan Básico de Ordenamiento Territorial. Chinú.
- Alcaldía Municipal de Cienaga de Oro. (2004). Plan Básico de Ordenamiento Territorial 2004-2015. Cienaga de Oro.
- Alcaldía Municipal de Cotorra. (2004). ESquema de Ordenamiento Territorial del Municipio de Cotorra 2004-2012. Cotorra.
- Alcaldía Municipal de Los Córdobas. (2000). Esquema de Ordenamiento Territorial de Los Córdobas 2000 2010.
- Alcaldía Municipal de los Cordobas. (2002). Plan de ordenamiento básico territorial 2002-2010. Los Córdobas.
- Alcaldía Municipal de Los Córdobas. (2016). PLan de Desarrollo del MUnicipio de los Córdobas 2016-2019. Los Córdobas.
- Alcaldía Municipal de Momil. (2003). Esquema de ordenamiento territorial de Momil. Córdoba. Momil.
- Alcaldía Municipal de Momil. (2010). Esquema de Ordenamiento Territorial de Momil 2010 -2020. Momil.
- Alcaldía Municipal de Montelibano. (2001). Plan Básico de Ordenamiento Territorial Municipio de Montelíbano, 2001-2010. Montelibano.
- Alcaldía Municipal de Montería. (2016). Plan de Desarrollo 2016 -2019. Montería.
- Alcaldía Municipal de Moñitos . (2001). Esquema de Ordenamiento Territorial del Municipio de Moñitos 2001-2015. Moñitos.
- Alcaldía Municipal de Planeta Rica . (2016). Plan de Desarrollo Municipal 2016-2019. Planeta Rica.
- Alcaldía Municipal de Planeta Rica. (2016). Plan de ordenamiento Básico territorial.

 Planeta Rica.
- Alcaldía Municipal de Pueblo Nuevo. (2000). Plan Básico de Ordenamiento Territorial.

 Pueblo Nuevo.
- Alcaldía Municipal de Puerto Escondido. (2001). ESQUEMA DE ORDENAMIENTO TERRITORIAL 2001-2010. Pueto Escondido.
- Alcaldía Municipal de Puerto Escondido. (2001). Esquema de Ordenamiento Territorial 2001-2010. Puerto Escondido.

- Alcaldía Municipal de Puerto Libertador. (2005). Esquema de Ordenamiento territorial del Municipio de Puerto Libertador. Puerto Libertador.
- Alcaldía Municipal de Purisima. (2012). Plan de ordenamiento territorial del Municipio de Purisima 2012-2015. Purisima.
- Alcaldía Municipal de Purisima de la Concepción. (2016). Plan de desarrollo municipio de Purisima de la Concepción. Purisima de la Concepción.
- Alcaldía Municipal de Sahagún. (2013). Plan de Ordenamiento Territorial del Municipio de Sahagún 2012-2015. Sahagún.
- Alcaldía Municipal de San Andrés de Sotavento. (2001). Plan Básico de Ordenamiento Territorial. San Andrésde Sotavento.
- Alcaldía Municipal de San Antero. (2016). Plan de Ordenamiento Territorial 2016-2019. San Antero.
- Alcaldía Municipal de san Bernardo del Viento. (2001). Plan Básico de Ordenamiento Territorial 2001-2003. San Bernardo del Viento.
- Alcaldía Municipal de San Carlos. (2005). Esquema de Ordenamiento Territorial Municipio de San Carlos 2005-2019. San Carlos.
- Alcaldía Municipal de San José de Uré. (2010). Esquema de ordenamiento Territorial 2010-2023. San Joséde Uré.
- Alcaldía Municipal de San Pelayo. (2012). Plan de desarrollo Municipal 2012-2015. San Pelayo.
- Alcaldía Municipal de Santa Cruz de Lorica. (2012). Plan de ordenamiento Territorial de Santa Cruz de Lorica 2012 -2015. Santa Cruz de Lorica.
- Alcaldia Municipal de Tuchin. (2015). Plan de Ordenamiento Básico Territorial. Tuchin.
- Alcaldía Municipal deSan Andrés de Sotavento. (2012). Plan de Desarrollo Municipal 2012-2015. San Andrés de Sotavento.
- Alcaldía Municipla de Ayapel. (2014). Plan Básico de Ordenamiento Territorial del Municipio de Ayapel. Ayapel.
- Anderson, M. (1953). Plantacion en Grupos Espaciados. Pensilvania: Unasylva.
- Arevalo, R., & Londoño, A. (2006). Manual para la identificación de maderas que se comercializan en el departamento del Tolima. Ibagué–Colombia. Ibague: Universidad del Tolima.
- Artesanias de Colombia. (2005). Orientaciones para el manejo técnico del cultivo de la palma de iraca en el departamento de Nariño. Nariño.

- Artesanias de Colombia. (02 de Marzo de 2008). Artesanias de Colombia. Obtenido de Artesanias de Colombia: de Colombia: file:///C:/Users/PC/Documents/PGOF/ARETESANIAS/artesanias-colombia-tejeduria-aguadas-caldas.pdf.
- Artesanías de Colombia S.A. CENDAR . (13 de Marzo de 2017). Artesanías de Colombia S.A. Obtenido de http://artesaniasdecolombia.com.co/PortalAC/GlosarioPalabra/paja-tetera_214
- AUNAP-MDR-CCI-SEPEC. (2013). Reporte de la actividad pesquera Industrial y artesanal Continental y Marina de Colombia. Convenio 0005 de 2012 entre la Autoridad nacional de acuicultura y pesca y La Universidad del Magdalena. Magdalena.
- (2011). Autocenso poblacional Indígena.
- Balick, M. J. (1986). Systematics and Economic Botany of the Oenocarpus--Jessenia (Palmae) Complex. Bronx: New York Botanical Garden.
- Ballesteros, J. & Linares, J. (2015). Fauna de Córdoba, Colombia. Monteria: Fondo Editorial Universidad de Cordoba.
- Banco de la República. (1995). Los Indígenas Zenues. En S. J.-S. Turbay, Geografía humana de Colombia.
- Banco de la República. (2009). Cienaga de Ayapel. Riqueza biodiversidad y Recurso Hídrico. Economía regional.
- Banco de la República. (2009). Cienaga de Ayapel. Riqueza biodiversidad y Recurso Hídrico. Centro de Estudios Económicos Regionales (CEER)- Cartagena.
- Banco de la República. (2013). La Economía de las Aguas del Sinú. Centro de Estudios Económicos Regionales (CEER)- Cartagena.
- BARRERA, A. C. (2007a). Protocolo para la producción sostenible de artesanías en enea (Typha spp.) en Córdoba. Proyecto "Habilitación, uso y manejo sostenible de materias primas vegetales y ecosistemas relacionados con la producción artesanal en Colombia". Artesanías de Colombia. Montería: Artesanías de Colombia S.A.
- Barriga, H. (1974). Flora medicinal de Colombia. Universidad Nacional.
- Bernal, Y., & Correa, E. (1990, 2010). Especies vegetales promisorias de los países del Convenio Andrés Bello. Santafé de Bogotá: Convenio Andrés Bello.
- Betina. (3 de junio de 2011). *info jardin*. Obtenido de PLANTA DEL DIA: http://archivo.infojardin.com/tema/ficha-de-lapacho-rosado-handroanthus-impetiginosus-tabebuia-avellanedae.373959/

- Blair, S., & Madrigal, B. (2005). Plantas antimaláricas de Tumaco: costa pacífica colombiana. Medellin: Editorial Universidad de Antioquia.
- Bornás, R. (1971). Optimización de la Producción de una empresa de contrachapado en Costa Rica, un ejemplo de investigación de operaciones. Turrialba: Biblioteca Conmemorativa Orton.
- Botero, E., Verhelst, J., & Páez, C. (2010). ECOLOGÍA DE FORRAJEO DEL PERIQUITO DE SANTA MARTA (PYRRHURA VIRIDICATA) EN LA CUCHILLA DE SAN LORENZO, SIERRA NEVADA DE SANTA MARTA. ORNITOLOGIA NEOTROPICAL, 463–477.
- Brea, M., Franco, M., Bonomo, M., & Politis, G. (2013). Análisis antracológico preliminar del sitio arqueológico Los Tres Cerros 1 (Delta Superior del río Paraná), provincia de Entre Ríos. Revista del Museo de La Plata, 345-360.
- Bristol, M. (1961). Carludovica Palmata in brommaking. Bots Mus Leaft. Harvard Univ.
- Carreira, S., & Meneghel, M. &. (2005). Reptiles de Uruguay. Montevideo.
- Castro, F., & Peñuela, L. (2006). caracterización de usos de la biodiversidad e identificacion de opciones de manejo de recursos en la biodiversidad en el resguardo indigena caño mochuelo, Casanares. Fundacion Horizonte Verde, 1-16.
- CCI-MADR. (2012). Encuesta Nacional Piscícola 2011 A y 2011 B. Informe de resultados. Bogotá.
- Centro para las Naciones Unidas para los Asentamientos Humanos-Hábitat. (1994). El pueblo, los asentamientos, el medio ambiente y el desarrollo. Nairobi.
- Cerón, C., & Montalvo, C. (1998). Etnobotánica de los huaorani de quehueiri-ono, Napo-Ecuador. Quito- Ecuador: QUITO / UCE / 1998.
- Chamorro, D. (2002). Los Sistemas Silvopastoriles en la Ganaderia Bovina del Tropico Bajo Colombiano. Colombia: Corporacion Colombiana de Investigacion Agropecuaria.
- Christoforo, A., Blecha, A., Carvalho, A., Rezende, L., & Lahr, F. (2013). Characterization of Tropical Woods Species for Use in Civil Constructions. *Journal of Civil Engineering Research*, 98-103.
- COLCULTURA. (sf). Colombia Cultural. Colombia Cultural- Colcultura.
- Colombia Cultural-COLCULTURA. (s.f.). SINIC.
- Comisión Europea & FAO. (2002). Estado de la información forestal en Colombia. Santiago, Chile: FAO.
- Consultor, E. (2003). plan Esquematico de Ordenamiento Territorial Municipio de Chima. Chima.

- Contreras, M. E. (1998). Variabilidad del contenido de humedad en los períodos de luna llena y menguante, densidad y contracción del tallo de la caña brava Gnerium Sagittatum Aubl. Revista Forestal Venezolana, 97-102.
- Contreras, M. O. (1999). Elaboración de tableros aglomerados de partículas de caña brava (Gnerium Sagittatum) y adhesivo urea formaldehído. . Revista Forestal Venezolana, 129-135.
- Corba, C., Cárdenas, D., & Suárez, S. (2005). UTILIDAD DEL VALOR DE USO EN ETNOBOTÁNICA.ESTUDIO EN EL DEPARTAMENTO DE PUTUMAYO (COLOMBIA). Caldasia, 89-101.
- CORDECOR, Esquema de Ordenamiento Territorial 2001-2010. (2001). Calculos SIG- Uso de suelos. Los Cordobas.
- Corpoica. (03 de Marzo de 2006). Corpoica. Obtenido de Corpoica: http://
- Corporación Autónoma Regional de los Valles del sinú y del San Jorge CVS. (2008). Sistemas de Información Geográfica SIG.
- Corporación Colombiana Internacional. (2006). Evaluaciones Agropecuarias Municipales. Montería: Secretaría de Agroindustría y Desarrollo Económico-Gobernación de Córdoba.
- Corporación Nuevo arco Iris. (2008). FARC: Dinámica reciente de la Guerra. MOE y Corporación Nuevo Arco Iris.
- Correa, M. (1926). Dicionário das plantas úteis do Brasil e das exóticas cultivadas. Rio de Janeiro, Brazil: Imprensa Nacional.
- CSB, CORPOMOJANA, CVS, CORPAMAG, CORANTIOQUIA. (2011). Plan de Manejo Integral de Humedales de la Subregión Depresión Momposina, parte baja del Rio Cauca, Magdalena y San Jorge y Cuenca del Rio Sinú.
- Cuidado de la salud. (2017). Obtenido de Beneficios de la fruta lima (Citrus aurantifolia): http://www.cuidadodelasalud.com/medicina-natural/beneficios-de-la-fruta-lima-citrus-aurantifolia/
- CVS. (2016). Plan de Accion Institucional 2016-2019. Monteria.
- CVS CONIF OIMT MINAMBIENTE. (2005). Plan de Manejo Integral de los Manglares de la Zona de Uso Sostenible del Sector Estuarino de la Bahía de Cispatá Departamento de Córdoba. Montería.
- CVS CONIF. (2008). Plan General de Ordenación Forestal del Departamento de Córdoba (PGOF) Primera Fase. Bogotá: Convenio 027 de 2007.
- CVS CONIF. (2008). Propuesta para la redelimitación de la Zona de Reserva Forestal del Pacifico en Jurisdicción de CVS. Bogotá: Convenio 026-2007.

- CVS Conservación Internacional. (2008). Plan de Manejo y Gestión Ambiental de los Humedales Corralito, Martinica, Pantano Largo y Pantano Grande Libro 1: Caracterización y Diagnostico. Montería.
- CVS Conservación Internacional. (2008). Plan de Manejo y Gestión Ambiental de los Humedales Corralito, Martinica, Pantano Largo y Pantano Grande Libro 2: Humedal de Martinica. Montería.
- CVS Conservación Internacional. (2008). Plan de Manejo y Gestión Ambiental de los Humedales Corralito, Martinica, Pantano Largo y Pantano Grande Libro 3: Humedal de Corralito. Montería: Libro 3.
- CVS Conservación Internacional. (2008). Plan de Manejo y Gestión Ambiental de los Humedales Corralito, Martinica, Pantano Largo y Pantano Grande-Libro 4: Humedal de Pantano Grande. Montería.
- CVS Conservación Internacional. (2009). Plan de Manejo y gestión ambiental del Complejo de los Humedales de Cienaga Catabre – Charco Ají, Ciénagas de Charco Grande y Los Quemados en los Municipios de San Carlos y Ciénaga de Oro, Cuenca del caño Aguas Prietas (Córdoba. Montería.
- CVS FONADE . (2004). Diagnóstico Ambiental de la Cuenca Hidrográfica del Río Sinú. Montería: Convenio 192026.
- CVS FONADE. (2005). Diagnóstico Ambiental de la Cuenca Hidrográfica del Río San Jorge. Montería.
- CVS FONADE. (2005). Diagnóstico Ambiental de la Cuenca Hidrográfica del Río San Jorge . Montería.
- CVS FONADE. (2005). Plan de Manejo Integral para la Cuenca Hidrográfica de Arroyo Grande, Municipio de San Carlos Departamento de Córdoba. Montería.
- CVS FONADE. (2005). Plan de Manejo Integral para la Cuenca Hidrográfica de Arroyo Hondo, Municipio de Purísima, Lorica y San Antero Departamento de Córdoba. Montería.
- CVS FONADE. (2005). Plan de Ordenación y Manejo de las cuencas de los ríos Los Córdobas, Mangle y Cedro, Quebradas Yuca y Broqueles y áreas de escorrentía directa al mar, en el departamento de Córdoba. . Montería.
- CVS Fundación Bosques y Humedales. (2015). Delimitación, estudios y reglamentación para la declaratoria de un Área protegida en la Ciénaga de los Negros como parte del Sistema Departamental y Local de Áreas Protegidas en el Departamento de Córdoba. Montería.
- CVS Fundación Herencia Ambiental. (2012). Plan de Manejo del Humedal de Berlín. Montería.

- CVS Fundación Herencia Ambiental. (2012). Plan de Manejo del Humedal de los Negros en el Departamento de Córdoba. Montería.
- CVS Fundación Herencia Ambiental. (2013). Fundamentos para la declaratoria de la Ciénaga de la Pacha como Área Protegida Regional. Montería.
- CVS Fundación Herencia Ambiental Caribe. (2011). Fundamentos para la declaratoria de la Ciénaga de Martinica como Área Protegida Regional. Montería.
- CVS Fundación Herencia Ambiental Caribe. (2011). Plan de Manejo de la Ciénaga de la Pacha en el Departamento de Córdoba. . Montería.
- CVS Fundación Herencia Ambiental Caribe. (2011). Plan de Manejo de la Ciénaga de Sierra Chiquita en el Departamento de Córdoba. Montería: Convenio 07 de 2011.
- CVS Fundación Herencia Ambiental Caribe. (2012). Fundamentos para la declaratoria de Pantano Largo como Área Protegida Regional. Montería.
- CVS Fundación Herencia Ambiental Caribe. (2012). Plan de Manejo de los Humedales Urbanos y periurbanos del Municipio de Montería en el Departamento de Córdoba. Montería.
- CVS Fundación Herencia Ambiental Caribe. (2015). Plan de Manejo del Humedal Furatena en el Departamento de Córdoba. Montería: Convenio 025 de 2015.
- CVS Herencia Ambiental . (2014). Plan de Manejo de la Ciénaga de Betanci Fase II. Montería.
- CVS Herencia Ambiental. (2012). Fundamentos para la Declaratoria de la Ciénaga de Baño como Área protegida Regional. Montería.
- CVS Herencia Ambiental. (2013). Plan de Manejo de la Ciénaga de Betanci Fase I. Montería: Convenio de Cooperación N° 006.
- CVS Herencia Ambiental. (2014). Plan de Manejo para la Declaratoria de la Ciénaga de Corralito Como Área Protegida Regional. Montería.
- CVS INVEMAR . (2009). Formulación del Plan de Manejo para el Distrito de Manejo Integrado Bahía de Cispatá, La Balsa, Tinajones y sectores aledaños del Delta Estuarino del Rio Sinú. Santa Marta: Convenio 092.
- CVS Unión Temporal Eco 2014. (2015). Proyecto de Rehabilitación ecológica Participativa en 2000 Ha de Aptitud Ambiental y Forestal de la Cuenca Alta del Rio Sinú, en los Municipios de Tierralta y Valencia, Departamento de Córdoba. Montería: Convenio 063 de 2014.
- CVS Unión Temporal Ecológica . (2015). Proyecto de Rehabilitación ecológica Participativa en 1000 Ha de Aptitud Ambiental y Forestal de la Cuenca Alta del

- San Jorge, en el Municipio de Montelíbano, Departamento de Córdoba. Montería: Convenio 064 de 2014.
- CVS UNIVERSIDAD NACIONAL. (2008). Plan de Ordenación Forestal Cerro Murrucucú. Área de amortiguamiento del PNN Paramillo. Cuencas Hidrográficas quebradas Tay, Urrá, Ceniza y Jui. Montería: Convenio 047 de 2003 y 075 de 2004.
- CVS Universidad Nacional de Colombia. (2007). Plan de Manejo y Ordenamiento Ambiental del Complejo Cenagoso del Bajo Sinú. Montería: Convenio 089.
- CVS & CONIF. (2007). Plan de Ordenamiento Forestal del Departamento de Cordoba PGOF. Monteria.
- CVS & INVEMAR. (2010). Plan Integral de Manejo Bahia de Cispata, La Balsa, Tinajones y Sectores Aledaños. Santa Marta: Rojas, G. X y P. Sierra-Correa.
- CVS & UPB. (2008). Plan de Formulacion y Ordenacion de la Cuenca del Rio Canalete. Monteria.
- CVS & UPB. (2008). Plan de Ordenación y Manejo Integral de la Cuenca Hidrográfica del río Canalete-POMIC río Canalete. Montería: Corporación Autónoma Regional de los valles del Sinú y del San Jorge.
- CVS. (2002). Plan de Gestión Ambiental Regional. PGAR 2002-2012. Montería.
- CVS. (2005). Diagnóstico Ambiental de la Cuenca Hidrográfica del río San Jorge. Montería: CVS.
- CVS. (2005). Diagnóstico Ambiental de la Cuenca Hidrográfica del río Sinú. Montería: Corporación Autónoma Regional de los Valles del Sinú y San Jorge.
- CVS. (2007). Diagnóstico Ambiental de la Cuenca Hidrográfica del Río San Jorge. Monteria.
- CVS. (2016). Acuerdo 032: Por el cual se adopto la estructura de la Corporación Autónoma Regional de los Valles del Sinu y del San Jorge. Montería.
- CVS. (2016). Acuerdo 303: Por el cual se modifica la planta de personal de la Corporación Autónoma Regional de los Valles del Sinu y del San Jorge. Montería.
- CVS. (2016). INFORME DE GESTION I SEMESTRE. MONTERIA.
- CVS y Universidad Pontificia Bolivariana. (2008). Plan de Ordenamiento y Manejo Integral de la Cuenca Hidrográfica del Rio Canalete. Montería.
- CVS, CARSUCRE y ECOVERSA. (2016). Informe de Avance del Plan de Ordenamiento y Manejo de la Unidad Ambiental Costera Estuarina del Rio Sinú y el Gollfo de Morrosquillo. Montería: Convenio 032 de 2015.

- CVS, CARSUCRE, UNIVERSIDAD DE CORDOBA & PARQUES NACIONALES. (2006). Prospección y Formulacion del Plan de Ordenamiento y Manejo Integral de la Cuenca Hidrografica del Rio Sinú. Monteria.
- CVS, CARSUCRE, UNIVERSIDAD DE CORDOBA, UAESPNN. (2006). Fases de prospección y formulación del Plan de Ordenamiento y Manejo Integral de la Cuenca Hidrográfica del Rio Sinú. Montería.
- CVS, Universidad de Antioquia, GAIA. (2007). Plan de Manejo Ambiental del Complejo de Humedales de Ayapel. Medellin.
- CVS, Universidad de Antioquia, GAIA. (2009). Propuesta técnica para la Declaratoria del Complejo de Humedales de Ayapel en Categoría de Distrito de Manejo integrado de los Recursos Naturales Renovables DMI. Montería.
- CVS, Universidad Nacional de Colombia, Colegio Mayor de Cundinamarca, Universidad Javeriana, Universidad de los Andes, Universidad Distrital, Universidad de Cordoba. (2009). Plan de Manejo Humedales Baño, Pantano Bonito, Charco pescao, Arcial, Cintura y El Porro. Montería.
- CVS; Sistema de Parques Nacionales Naturales, CARSUCRE & UNICOR. (2006). Plan de Ordenamiento y Manejo Integral de la Cuenca Hidrográfica del río Sinú (POMCA-RS). Montería: Corporación Autónoma Regional de los Valles del Sinú y San Jorge.
- CVS-CORDECOR. (2013). Diagnóstico Ambiental de la Cuenca Hidrográfica del Río Sinú y Diagnóstico Ambiental de la Cuenca Hidrográfica del Río San Jorge. Cálcilos SIG, CORDECOR. Cienaga de Oro.
- DANE Confederación cauchera colombiana. (2011). Informe de Resultados del Censo de Unidades Productoras de Plantaciones de Caucho –UPPC en Once Municipios de Antioquia y Tres Municipios de Córdoba. Bogotá, D.C.: Dirección de Regulación, Planeación, Estandarización y Normalización.
- DANE. (2005). Informe del Censo Poblacional Nacional. Bogotá: DANE.
- DANE. (2014). Censo Nacional Agropecuario 2014. Bogotá.
- DANE. (2014). Encuesta Nacional Agropecuaria 2014. Bogotá.
- DANE. (2016). Ficha Metodológica. 3er Censo Nacional Agropecuario. DANE. Metodología General. Tercer Censo Nacional Agropecuario 3er CNA. . Bogotá.
- DANE –ENA y Ministerio de Agricultura y Desarrollo Rural. (2011). Anuario estadistico del sector Agropecuario y Pesquero.
- DANE, IGAC Y CORPOICA. (2002). Zonificación de los conflictos de uso de las tierras en Colombia. Bogotá, D.C.

- David, H., Díaz, O., Urrea, L., & Cardona, F. (2014). Guia ilustrada Flora cañón de rio Porce, Antioquia. EPM E.S.P. Medellin: Universidad de Antioquia, Herbario Universidad de Antioquia Medellín, Colombia.
- De La Hoz-M, J. L.-M. (2015). Estadisticas de capturay esfuerzo de las pesquerías artesanales e industriales de Colombia en los sitios y puertos monitoreadospor SEPEC durante el año 2015. Bogotá: Autoridad Nacional de Acuicultura y pesca (AUNAP).
- Decreto 1076 . (2015). Decreto Unico Reglamentario del Sector Ambiente y Desarrollo Sostenible. Bogotá: Ministerio de Ambiente y Desarrollo Sostenible .
- Defensoria del Pueblo . (2003). Informe de Riesgo 064 . Montelibano.
- Defler, T. (2003). Primates de Colombia. Bogotá: Conservacion Internacional.
- Del Campo, A. (2011). Incendios de la cobertura vegetal en Colombia. Cali: Universidad Autónoma de Occidente.
- Dirección de Desarrollo Territorial . (2004). Guía No.1: Revisión y Ajuste de Planes de Ordenamiento Territorial. Bogotá: Ministerio de Ambiente y Desarrollo Sostenible.
- DNP. (Abril de 2017). Base de datos certificada nacional. Bogotá.
- DNP, ESAP & MINISTERIO DE CULTURA. (2008). El proceso de planificación en las entidades territoriales: El plan de desarrollo y sus instrumentos para la gestión 2008-2011. Bogotá: DNP & ESAP.
- Dueñas, H., & Duque-Caro, H. (1981). Geología del cuadrángulo F-8. Boletín Geol. Ingeominas v 24 (1), p. 1-35. Bogotá: Instituto Colombiano de Geología y Minería.
- DUKE, J. (1986.). Isthmian ethonobotany dictionary. Jodhpur, India: Scientific Publishers.
- Duque-Caro, H. (1996). Geología de la plancha 38. Bogotá: Ingeominas.
- Eisenberg, J. (1981). The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation and Behavior. Chicago: The University of Chucago Press.
- Emmons, L. y. (1997). Neotropical Rainforest Mammals a Field Guide. The University of Chicago Press, 307.
- Escobar, O., Rodríguez, J., & Correa, J. (1993). La madera de Colombia. Obtenido de http://www.gbif.org/species/100074603
- (2001). Esquema de Ordenamiento territorial 2001-2010 del municipio de Puerto Escondido. Puerto escondido.
- FAO. (1987). Especies forestales productoras de frutas y otros alimentos. Roma: Organizacion De Las Naciones Unidas para La Agricultura Y La Alimentacion.

- FAO, FEDEMADERAS, FORCARIBE. (2011). Cadena Forestal Madera, Muebles y productos de Madera del Departamento de Córdoba 2011-2030. Montería: Acuerdo Regional de Competetividad.
- Ferriol, M & Farinós, H. (2012). Los componentes alfa, beta y gamma de la biodiversidad. Aplicación al estudio de comunidades vegetales. Valencia: Universidad Politecnica de Valencia.
- Financiera de Desarrollo Territorial, Findeter y la firma Geoadaptive. (2015). Bogotá.
- FINDETER. (16 de 10 de 2014). www.findeter.gov.co.
- Finol, H. . (1971). Nuevos parámetros a considerar en el análisis estructural de las selvas vírgenes tropicales. Revista Forestal Venezolana 14 (21), 29-42.
- Flores, Y. (20 de marzo de 2014). Bosques de Ucayali. Obtenido de Cultivo del shihuahuaco Dipteryx odorata: http://vonhumboldtinia.blogspot.com.co/2014/03/cultivo-del-shihuahuaco-dipteryx-odorata 20.html
- Forero. (1980). Etnobotánica de las comunidades indígenas Cuna y Waunana. Chocó (Colombia).
- Francis, J. K. (1994). Ficus Citrifolia P. Miller: Jagüey Blanco, Moraceae, Mulberry Family. *SO-ITF-SM-75*, 4.
- Fundación Bosques y Humedales CVS. (2015). Plan de Manejo para la Cuenca Hidrográfica de Arroyo Carolina. Montería.
- Fundación Bosques y Humedales CVS. (2016). Estudios para la Declaratoria de un Área Protegida en la Ciénaga de Betanci como parte del Sistema Departamental y Local de Áreas Protegidas en el Departamento de Córdoba. Montería: Salas, F. Vallejo, J. Fuentes, E. Schorr, F. Lozano, L. Domínguez, P. Informe Convenio 015 de 2016.
- Fundación exportar & GTZ . (2014). Obtenido de Maderas Duras Del Norte Argentino: http://web.archive.org/web/20060529100405/http://www.hardwoods.com.ar:80/esp/fichas/cedro.htm
- Galeano, G. &. (2005). Libro Rojo de Plantas de Colombia. Volumen II: Palmas, frailejones y zamias. Bogotá, Colombia.: Instituto Alexander von Humboldt, Instituto de Ciencias Naturales-Universidad Nacional de Colombia, Ministerio del Medio Ambiente.
- GBIF. (15 de febrero de 2017). Global Biodiversity Information Facility. Obtenido de http://www.gbif.org/species
- GEOTEC. (1997). Cartografía geológica de la Región del Sinú. Bogotá: INGEOMINAS.

- Gobernación de Córdoba. (1996).
- Gobernacion de Cordoba. (1996). El Uraba Córdobes. Pobreza violencia y perspectiva. Documentos para la accion. Montería.
- Gobernación de Córdoba. (2009). PLan víal Departamental de Córdoba 2009-2018. Montería.
- Gobernacion de Córdoba. (2012). Creación del departamento.
- Gobernación de Córdoba. (2012). Plan de Desarrollo.
- Gobernación de Córdoba. (2013). Plan departamental de seguridad alimentaria y Nutricional de Córdoba 2013-2019. Montería.
- Gobernación de Córdoba. (2016). Plan de Desarrollo.
- Gobernación de Córdoba. (2016). Plan de Desarrollo. Montería.
- Gobernación de Córdoba. (2016). Plan de Desarrollo Departamental "Unidos por Córdoba". Montería.
- Gobernación de Córdoba, Secretaría de Salud. (2017). Informe Secretaría e salud departamental. Montería.
- Gobernación de Cordoba; UNGRD, PNUD. (2012). PLAN DEPARTAMENTAL PARA LA GESTIÓN DEL RIESGO DE CÓRDOBA. Montería: Gobernación de Córdoba.
- Gonzaga, A. L. (2006). madeira uso e conservação. Brasilia: IPHAN / MONUMENTA.
- González, M. (2013). Chirimoya (Annona cherimola Miller), frutal tropical y sub-tropical de valores promisorios. SciELO, 52-63.
- Gutierrez, E. Moreno, R & Villota, N. (2013). Guía de cubicación unificada de Madera Proyecto de Gobernanza Forestal. Pereira: Unión Europea, CARDER.
- Gutiérrez, F. (2007). Diseño de Políticas Ambientales Corporativas de la CVS. Recursos Hidrobiológicos.Convenio CVS-CI No. 083 de 2005. Montería: CVS.
- Hanamura, T., Hagiwara, T., & Kawagishi, H. (2005). Structural and functional characterization of polyphenols isolated from acerola (Malpighia emarginata DC.) Fruit. Bioscience, Biotechnology, and Biochemistry, 280-286.
- Hansson, L. F. (1995). Spacial Ecology And Biological Conservation. London: Chapman and Hall.
- Henao, J. C. (2008). Zonificación Ambiental de la zona de Reserva Forestal del Pacífico en Jurisdicción del Departamento de Córdoba, Caribe Colombiano. Colombia Forestal Vol. 11, 175-200.

- Henderson, A., Galeano, G., & Bernal, R. (1995). Field guide to the palms of the Americas. Princeton University Press, Nueva Jersey. 352 p. BioStor, 363.
- Hilty, S. y. (1986). A Guide to the Birds of Colombia. Princeton University Press, 835.
- Hokche, A. (2008). Nuevo catálogo de la flora vascular de Venezuela. Caracas Venezuela: Fundación Instituto Botánico de Venezuela Dr. Tobías Lasser.
- Howard, R. (1979). Flora of the lesser Antilles, Leeward and Winward ISland. En R. Howard, Flora of the lesser Antilles, Leeward and Winward ISland (pág. 586). Jamaica: Harvard University.
- Humboldt. (2014). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Obtenido de Bosque Seco Tropical : http://www.humboldt.org.co/es/investigacion/proyectos/en-desarrollo/item/158-bosques-secos-tropicales-en-colombia
- Hurtado, C., Macías, D., & Chito, E. (2011). PLANTAS ÚTILES PARA LA ELABORACIÓN DE ARTESANÍAS EN EL. BOLETÍN CIENTÍFICO CENTRO DE MUSEOS MUSEO DE HISTORIA NATURAL, 40-59.
- ICANH. (02 de 2017). www.icanh.gov.co. Obtenido de Instituto Colombiano de Antroplogía e Historia.
- ICANH. (2017). WWW.ICANH.GOV.CO.
- Idárraga, á., Ortiz, R., Callejas, R., & Merello, M. (2013). Flora de Antioquia Catálogo de Las Plantas Vasculares. Medellin: Universidad de Antioquia.
- IDEAM. (2017). Instituto de Hidrología, Meteorología y Estudios Ambientales. Obtenido de http://www.ideam.gov.co/web/entidad
- IDEAM, IGAC, CORMAGDALENA. (2008). Mapa de Cobertura de la Tierra Cuenca Magdalena-Cauca: Metodología CORINE Land Cover adaptada para Colombia a escala 1:100.000. Bogotá, D.C.: Instituto de Hidrología, Meteorología y Estudios Ambientales, Instituto Geográfico Agustín Codazzi y Corporación Autónoma Regional del río Grande de La.
- IGAC. (2009). Estudio general de suelos y zonificación de tierras del departamento de Córdoba;. Bogotá.
- IGAC. (2009). Estudio General de Suelos y Zonificación de Tierras. Departamento de Córdoba. Bogotá: Imprenta Nacional de Colombia.
- IGAC. (2009). ESTUDIOS GENERAL DE SUELOS Y ZONIFICACION DE TIERRAS DEL DEPARTAMENTO DE CORDOBA.
- IGAC. (2014). IGAC "anti ranking" de los departamentos con los mayores conflictos de los suelos en Colombia. BOGOTÁ D.C.

- IGAC. (Abril de 2017). Sistema de información geográfica para la planeación y el ordenamiento territorial SIG-OT. Obtenido de http://sigotn.igac.gov.co/sigotn/frames_pagina.aspx
- IGAC, CORPOICA. (2002). Zonificación de los conflictos de usos de las tierras del país. Bogotá, D.C.
- IIAP. (2010). CARACTERIZACIÓN ECOLÓGICA DEL COMPONENTE FAUNISTICO EN LOS BOSQUES RELICTUALES DE CÓRDOBA. Quibdó: INSTITUTO DE INVESTIGACIONES AMBIENTALES DEL PACIFICO.
- INEGI. (2000). Tacotalpa estado de Tabasco. Cuaderno estadístico municipal 2000. Mexico.
- INEGI. (2005). Uso potencial de suelos. México.
- INGEOMINAS. (1999). Mapa Geológico del Departamento de Córdoba. Bogotá: Instituto Colombiano de Geología y Minería.
- INGEOMINAS. (2003). MAPA HIDROGEOLÓGICO DE CÓRDOBA, ESCALA 1:250.0000.

 Bogotá: INGEOMINAS.
- INGEOMINAS. (2004). INFORME HIDROGEOLÓGICO DE CÓRDOBA. Bogotá: Instituto colombiano de Geología y Minería.
- Institution Smithsonian. (2014). Árboles de Parque Nacional Sarigua y las Áreas Secas de los Alrededores. Recuperado el 24 de julio de 2017, de Smithsonian Tropical Research Institute Herbariium: http://biogeodb.stri.si.edu/bioinformatics/sarigua/
- Instituto Colombiano Agropecuario (ICA). (2017). Base de datos de Plantaciones forestales con fines comerciales Corte Abril 2017. Montería.
- Instituto humboldt. (2017). INSTITUTO DE INVESTIGACIÓN DE RECURSOS BIOLÓGICOS ALEXANDER VON HUMBOLDT COLOMBIA. Obtenido de http://www.humboldt.org.co/es/instituto/documentos#Informes-de-Gestión
- Instituto Nacional de Vías-INVIAS. (2008). Red primaria de Vías Córdoba. Bogotá.
- INVEMAR. (2009). Cuenca del sinú. Bogotá.
- INVEMAR. (2016). Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis"- INVEMAR. Obtenido de http://www.invemar.org.co/web/guest/proyectos
- IPSE, . (2016). Datos reportados por operadores de Red, IPSE, proyecciones DANE a partir del censo 2005. Barranquilla.

- ITTO. (2017). The International Tropical Timber Organization. Obtenido de http://www.tropicaltimber.info/es/specie/macaranduba-manilkara-huberi/#lower-content
- Jiménez, N., & Estupiñán, A. (2010). USO DE LAS PLANTAS POR GRUPOS CAMPESINOS EN LA FRANJA TROPICAL DEL PARQUE NACIONAL NATURAL PARAMILLO (CÓRDOBA, COLOMBIA). Caldasia, 21-38.
- KALLIOLA, R., PUHAKKA, M., & SALO, J. (1992). Interespecific variation and the distribution and ecology of Gynerium Sagittatum (Poaceae) in the western Amazon. Flora.
- Kattan, G. &. (2007). Inventario de Aves Passeriformes en el Area de Expancion Urbana del Municipio de Quibdo, Choco, Colombia. Revista Intitucional Universidad Tecnologica del Choco, 79-89.
- La Razon. (4 de Octubre de 2016). *Diario Digital la Razon.co*. Obtenido de Aerocivil aprueba primera ruta internacional desde Monteria: http://www.larazon.co/web/2016/10/aerocivil-aprueba-primera-ruta-internacional-desde-monteria/
- Linares, E. G. (2008). Fibras Vegetales Utilizadas en Artesanías en Colombia. Artesanías de Colombia S.A. Bogotá.
- LINARES, E. L. (1993). Materias primas vegetales usadas en artesanías en Colombia. Informe fi nal presentado al Jardín Botánico "José Celestino Mutis". Artesanías de Colombia S.A. y Fondo FEN-Colombia. (Mecanografi ado),.
- Loh, J. &. (2004). Living Planet Report. Switzerland: World Wildlive Found.
- Lombo, R. (1963). Contribucion Para Un Plan de Manejo de la Cuenca Superior Del Rio Macho. Turrialba: Instituto Americano de Ciencias Agriculas.
- Londoño, C., & Gonzalez, H. (1997). Mapa geológico del departamento de Córdoba. Bogotá: Instituto Colombiano de Geología y Minería.
- López, J., & Erazo, M. (2015). Identificación y usos de las principales especies Forestales y Agrícolas del Resguardo. Florencia: CEAD.
- López, N. (Julio de 2006). PROYECTO RESTABLECIMIENTO DEL BOSQUE DE GALERÍA EN EL RÍO SINÚ, CONVENIO CVS FONADE. Obtenido de INVENTARIO DE ESPECIES VEGETALES DE LAS ORILLAS DEL RÍO SINÚ.: https://es.scribd.com/document/257148213/Tab-Inventario-Flora-Bosque-Galeria-Rio-Sinu
- López, R., & Cárdenas, D. (2002). Manual de identificación de especies maderables objeto de comercio en la Amazonia colombiana. Bogotá: Instituto Amazónico de Investigaciones Científicas.

- López, R., & Montero, M. (2005). Manual de identificación de especies forestales en bosques naturales con manejo certificable por comunidades. Bogota.
- López, R., Espitia, L., & Sarmiento, C. (2016). ESPECIES FORESTALES NO MADERABLES DEL BOSQUE SECO TROPICAL. Colombia: Instituto de Investigaticion de Recursos Biológicos Alexander von Humboldt.
- Lorenzi, H. (1992). Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil. Nova Odessa: Instituto Plantarum.
- Louis, M. (25 de julio de 2017). Catálogo de las Plantas Vasculares del Departamento de Antioquia. Missouri Botanical Garden. Obtenido de http://www.tropicos.org/name/40030080?tab=synonyms
- Lozada, J. (2008). Sucesión vegetal en bosques aprovechados de la Reserva Forestal Caparo y Reserva Forestal Imataca, Venezuela. España: Universidad de Valencia .
- Luther, E., Wadsworth, F., & Marrero, J. (1967). Árboles Comunes de Puerto Rico y las Islas Vírgenes. Puerto Rico: Universidad de Puerto Rico.
- Madera, M. T. (1982). Estudio preliminar el cultivo de caña flecha y sus beneficios. Monterría: Universidad de Córdoba.
- MADS. (2017). Trafico llegal de Especies de Fauna Silvestre en Colombia. Bogotá.
- MADS, M. d. (2015). Plan Nacional de Restauración: restauración ecológica, rehabilitación y recuperación de areas disturbadas. Bogotá, D.C.: MADS.
- Mahecha, G., Ovalle, A., Camelo, D., Rozo, A., & Barrero, D. (2004). Vegetación del territorio CAR, 450 especies de sus llanuras y montañas. Bogota: Corporación Autónoma Regional de Cundinamarca CAR.
- Malaret, A. (1970). Lexicón de Fauna y Flora. Madrid: Comisión Permanente de la Asociación de Academias de la Lengua Española.
- Malavassi, I. (2003). Maderas de Costa Rica: 150 especies forestales (segunda ed.). (S. José, Ed.) Costa Rica: Editorial Universidad de Costa Rica.
- Manrique, E. (1999). Índice de vegetación, aplicación del NDVI. *Teledetección, Avances* y aplicaciones, 217-219.
- Marín, E. M. (1995). Los indios Katios aspectos socio culturales.
- Matsushita, M. S. (2010). Espécies da sociobiodiversidade vegetal de um fragmento do bioma Floresta Ombrófila Mista e ajuste do modelo matemático para estimativa de fitomassa foliar de guaçatonga (Casearia decandra Jacq.). Curitiba.

- MAVDT, CVS & FONADE. (2006). Diagnóstico Ambiental de las Cuencas de los ríos los Córdobas, Mangle y Cedro, Quebradas Yuca y Borqueles y áreas de escorrentía directa al mar, en el departamento de Córdoba. Montería: MAVDT.
- Mederos, K. (1 de Enero de 2016). *Naturaleza tropical*. Obtenido de La Planta alternativa al café, Senna occidentalis: https://naturalezatropical.blogspot.com.co/2016/01/Senna-occidentalis.html
- Medicina Natural. (9 de mayo de 2017). Obtenido de Lapacho rosado (Handroanthus impetiginosus) : Usos y propiedades medicinales: https://www.plantasyremedios.com/lapacho-rosado-handroanthus-impetiginosus-usos-y-propiedades-medicinales/
- Mendoza, M., Klitgaard, B., Milliken, W., Garvizu, M., Muñoz, M., Zappi, D., & Biggs, N. (2008). Vegetacion del jardin de cactaceas de Bolivia. Museo de Historia Natural Noel Kempff Mercado, Casilla 2489, Santa Cruz, Bolivia, 1-56.
- Minambiente & OIMT. (2002). Guías técnias para la ordenación y el manejo sostenible de los bosques naturales . Bogotá: Editorial Gente Nueva .
- MinCultura. (30 de Septiembre de 2015). Sistema Nacional de Informacion Cultural.

 Obtenido de http://www.sinic.gov.co/SINIC/ColombiaCultural/ColCulturalBusca.aspx?AREID=3 &SECID=8&IdDep=23&COLTEM=216
- Ministerio de Agricultura, Corporación Colombiana Desarrollo Rural Internacional y la Secretaría de Agricultura Departamental. (2015). Evaluaciones Agropecuarias Municipales. Montería.
- Ministerio de Ambiente y Desarrollo Sostenible. (2014). Por la cual se establece el listado de especies silvestres amenazadas de la diversidad biológica colombiana que se encuentran en el territorio nacional. Bogotá.
- Ministerio de Ambiente, I. C. (Abril de 2017). Sistema de información ambiental de Colombia. Obtenido de http://www.siac.gov.co/Catalogo mapas.html
- Ministerio de Ambiente, Vivienda y Desarrollo Territorial MADVS & Academia de Ciencias Exactas, Físicas y Naturales ACCEFYN. (2012). Guías Tecnicas para la Restauración Ecológica de los Ecosistemas de Colombia. Bogotá D.C.: Grupo de Restauración Ecológica GREUNAL.
- Ministerio de Salud. (2013). Dinamica Demografica y Estructuras poblacionales. Bogotá.
- Ministerio del Interior. (2015). Base de datos. Bogotá.
- Ministro de Comercio, I. y. (13 de Marzo de 2017). Guía turistica Córdoba Colombia. Obtenido de

- http://www.mincit.gov.co/loader.php?lServicio=Documentos&lFuncion=verPdf&id =58182&name=GuiaTuristicaCordoba-ok.pdf&prefijo=file
- MINTIC. (junio de 2017). mintic.gov.co. Obtenido de MINTIC: www.mintic.gov.co
- Moe, Corporación Nuevo Arco Iris & U de los Andes. (2008). Contexto de violencia y conflicto armado. Monografía Politico Armado del departamento de Córdoba 1997-2007.
- MONSERRATE, R. &. (2016). La Chamba, Mompós y Tuchín. Diagnóstico del sector artesanal y las particularidades regionales en Colombia, artesanías en barro, filigrana y caña flecha. Bogotá D.C.
- Morales, J. F., Correa, M., & Torib, N. (2009). Semillas y frutos de uso artesanal en Panamá. Heredia: Instituto smithsonian de investigaciones tropicales.
- Moret, A. P. (2010). Variaciones en la composición florística de tipos de bosque asociados con Pachira quinata (Jacq.) W.S. Alverson en el Bosque Universitario "El Caimital", Barinas, Venezuela. *Revista Forestal Venezolana*, 51-63.
- Municipio de Chinú. (2012). Plan de Desarrollo municipal Chinú 2012-2015 "Porque Chinú es de todos". Chinú: Municipio de Chinú.
- Municipio de Ciéaga de Oro. (2016). Plan de Desarrollo Municipal de Ciénaga de Oro 2016-2019 "Con Dios y el pueblo". Ciéaga de Oro: Municipio de Ciéaga de Oro.
- Municipio de Montelíbano. (2016). Plan de Desarrollo municipal de Montelíbano 2016-2019 "La Educación y el campo, son nuestro campo". Montelíbano: Municipio de Montelíbano.
- Municipio de Moñitos. (2012). Plan de Desarrollo municipal de Moñitos 2012-2015 "Unidos por la dignidad y la prosperidad". Moñitos: Municipio de Moñitos.
- Municipio de Pueblo Nuevo. (2016). Plan de Desarrollo municipal de Pueblo Nuevo 2016-2019 "Pueblo Nuevo, próspero y socialmente justo". Pueblo Nuevo: Municipio de Pueblo Nuevo.
- Municipio de Puerto Escondido. (2016). Plan de Desarrollo Municipal de Puerto Escondido 2016-2019 "Todos Ganamos". Puerto Escondido: Municipio de Puerto Escondido.
- Municipio de Puerto Libertador. (2016). Plan de Desarrollo municipal de Puerto Libertador 2012-2015 "Para seguir avanzando". Puerto Libertador: Municipio de Puerto Libertador.
- Municipio de Sahagún. (2016). Plan de Desarrollo municipal de Sahagún 2016-2019 "Más oportunidad, más progreso". Sahagún: Municipio de Sahagún.
- Municipio de Tierralta. (2016). Plan de desarrollo "Juntos por Tierralta" 2016-2019. Tierralta: Municipio de Tierralta.

- Municipio de Tierralta. (2016). Plan de Desarrollo Municipal de Tierralta 2016-2019 "Juntos por Tierralta". Tierralta: Municipio de Tierralta.
- Muñoz, O., Montes, M., & Wilkomirsky, T. (2001). Plantas medicinales de uso en Chile: química y farmacología. Santiago de Chile: Editorial Universitaria.
- Murillo, T., & Lázaro, J. (2010). Árboles de las montañas de Antioquia. Medellín : CORANTIOQUIA.
- Observatorio Etnico . (2012). Plan de Salvaguardia Etnica: Pueblo Embera Katío del Alto Sinú. Tierralta Córdoba: Centro de Cooperación al Indigena .
- Oficina de las Naciones Unidas contraladroga y el delito. (2016). Monitoreo de territorios afectados por cultivos ilícitos 2015. Bogotá.
- Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2002). Estado de la Información Forestal en Colombia. Santiago, Chile: PROYECTO GCP/RLA/133/EC.
- Orinoco. (01 de Marzo de 2005). Orinoco. Obtenido de Orinoco: www.cienciahoy.retina.ar/ln/hoy76/recursos.htm
- Oviedo, V. M. (2017). plantas para curar. Obtenido de Propiedades antioxidantes del corozo o uva de lata: http://www.plantasparacurar.com/propiedades-antioxidantes-del-corozo-o-uva-de-lata/
- Palacios, L. Rodriguez, P. Rangel, O. (2012). Cambios en el Clima y en la Vegetación en Ambientes Estuarinos de la Bahía de Cispatá (Córdoba Caribe Colombiano). En J. Rangel-Ch, Colombia Diversidad Biótica XII (págs. 145-164). Medellin: Universidad Nacional de Colombia-Instituto de Ciencias Naturales.
- Pantoja, F. P. (2016). Problemas y desafíos de la Minería de Oro artesanal y en pequeña escala en Colombia. Revista de la Facultad de Ciencias Económica: Investigación y Reflexión, 147-160.
- Parra-Olea, G., & Flores-Villela, O. &. (2014). Biodiversidad de Anfibios en México. Ciudad de Mexico.
- Pennington, T. (2005). Arboles tropicales de México. Manual para la identificación de las principales especies. mexico: S.L. FONDO DE CULTURA ECONOMICA DE ESPAÑA.
- Pereira, M. (Mayo de 2007). Alcalóides Indólicos. Quim. Nova., Vol. 30(4, 970-983).
- Perera, M. A. (2000). Guayana siglo XVI: ecología cultural y antropología histórica de un malentendido 1498-1597. Caracas: Universidad Central de Venezuela.
- Pieters, I., Bruyne, D., Claeys, M., & Vlietinch, J. (1993). Isolation of a dihydrobenzofuran lignan from South American dragon's blood (Croton spp.) as an inhibitor of cell proliferation. *Jounar of Natural Products*, 899–906.

- Pimenta, R. (2016). Usos medicinais de plantas Amazônicas do gênero Bellucia. SODEBRAS, 115-119.
- PITTIER, H. (1939). Plantas usuales de Venezuela Caraca. Venezuela: Elite.
- (2012). Plan Básico de Ordenamiento Territorial del Municipio de Tuchín 2012-2015. Tuchín.
- (2012). Plan de Desarrollo 2012 2015 del Municipio de Tierra Alta. Montelibano.
- (2016-2019). PLAN DE DESARROLLO DE CORDOBA. MONTERIA.
- (2011). Plan para el desarrollo de la educación ambiental en el municipio de planeta rica Córdoba. Planeta Rica.
- Pontificia Universidad Javeriana Colombia. (2003). La conformación territorial en Colombia. Cuadernos de Desarrollo rural.
- PORTILLA, B. J. (2005.). Artesanías de Colombia ONUDI Laboratorio Colombiano de diseño. San Juan de Pasto. Obtenido de Artesanías de Colombia ONUDI Laboratorio Colombiano de diseño. .
- POT. (2001). Plan Básico de Ordenamiento Territorial Municipio de Montelíbano, 2001-2010. Montelibano.
- Pozo, W. E. (1988). Caracterización de los Dormideros Usados por Ateles belzebuth en el Parque Nacional Yasuní, Ecuador. *Neotropical Primates*, 27-34.
- Puche V., B. (1983). El sombrero vueltiao Zenú.
- QUIÑÓNEZ, A. C. (2003). Reflexiones en torno a la artesanía y el diseño en Colombia. Bogotá D.C.: Centro Editorial Javeriano.
- Ramos., J. B. (2016). Plan de Seguimiento y Monitoreo de la Zona Deltaico Estuarina del Río Sinú (noviembre 2000 diciembre 2016). Santa Marta: INVEMAR, Coordinación de Servicios Científicos. InformeTécnico Final, Fase XIX, para la empresa URRÁ S.A. E.S.P.
- Rangel-Ch, J. C.-C. (2012). La Biodiversidad de Municipios del Caribe de Colombia. Bogota D.C: UNC.
- Red Nacional de Información . Sistema Nacional de atención y Repación de víctimas. (04 de 2017). AppRNI-Cifras.
- (2017). RED NACIONAL DE INFORMACION: RNI-Sistema Nacional de Atencion y Reparacion de Victimas. BOGOTA.
- Rengifo, J. y. (1999). Guia de Campo de Anfibios y Reptiles de Urrá. Medellin: SKANSKA.
- República de Colombia, DNP, Escuela Superior de Administración Pública, & USAID . (2011). Los Concejos Municipales: actores claves en la gestión del desarrollo de

- los municipios. Guía para concejales electos y ciudadanía. Bogotá: Departamento de Planeación Nacional.
- Resolución 007. (2010). Declaratoria del Resguardo Indigena Zenú de San Andres de Sotavento Córdoba y Sucre como Territorio Libre de Transgénicos. San Andres de Sotavento: Resguardo Indigena Zenú de San Andres de Sotavento Córdoba y Sucre.
- Resolución 0124. (2006). Reserva de la Sociedad Civil Santa Fe . Bogotá: Parques Nacionales.
- Resolución 0202. (2005). Reserva Natural de la Sociedad Civil Horizontes. Bogotá: Parques Nacionales de Colombia.
- Resolución 0233. (2007). Reserva de la Sociedad Civil Paraiso de los Deseos . Bogotá : Parques Nacionales.
- Resolución 0238 . (2005). Reserva de la Sociedad Civil Campo Alegre. Bogotá : Parques Nacionales.
- Resolución 025. (2014). Reserva de la Sociedad Civil Santa Rosa. Bogotá: Parques Nacionales.
- Resolución 026. (2012). Reserva de la Sociedad Civil Santa Isabel. Bogotá: Parques Nacionales.
- Resolución 1936. (2013). Ministerio de Medio Ambiente. 12. Bogotá.
- Restrepo, M., Quintero, P., Fraume, N., & Palomino, A. (2005). El milagro de las plantas : aplicaciones medicinales y orofaríngeas. Bogota: Fundación Hogares Juveniles Campesinos.
- Rincón, M. (2004). Diagnóstico socioambiental de la pequeña minería de metales preciosos en Colombia. Montevideo: Oficina regional de Ciencia para América Latina y el Caribe y Centro Internacional de Investigaciones para el Desarrollo de Canadá.
- Rodriguez, M. y. (1996). Manual de identificación de especies forestales de la región subandina. *INIA OIMT*, 489.
- Rutter, R. (1990). Catálogo de plantas útiles de la Amazonia Peruana. Lima, Perú: Ministerio de Educación. Instituto Lingüístico de Verano.
- S. Guallar, E. S. (2009). Paseriformes del Occidente de Mexico: Morfoetria, datación y sexado. Ciudad de Mexico: A. Omedes & J. M. Montserrat.
- Saito, C & Rosales, A. (2004). Asistencia Técnica Para Apoyar las Actividades Forestales en las Reserva de la Biosfera Maya. Washington DC.: U.S. Agency for International Development/Guatemala Glenda de Paiz, Cognizant Technical Officer.

- Sanchez, M. (2017). Salud y Suerte. Obtenido de El guarumo y su uso como planta medicinal: http://www.saludysuerte.net/2015/02/el-guarumo-y-su-uso-como-planta.html
- Secretaria de Planeación CVS. (2017). CVS.
- Secretaria de Salud de Córdoba. (2017). www. cordoba.gov.co/v1/sec_salud.htlm.
- SERFOR, S. N. (2016). Guía metodológica para la Zonificación Forestal. Lima, Perú.
- SERJE, M. (1987). Cestería. Revista de la Academia de Historia de Córdoba, 5: 6-8.
- SERPA, E. R. (2000). Secretaría de Cultura de Córdoba. Montería.
- SHNEE, L. (1984). *Plantas comunes de Venezuela*. Caracas, Venezuela: Biblioteca de la Universidad Central de Venezuela.
- SIB. (08 de 02 de 2016). Sistema de Informacion Sobre Biodiversidad de Colombia. Recuperado el 24 de 01 de 2016, de http://www.sibcolombia.net/biodiversidad-en-cifras/
- Silva, J. (2008). FICHAS TÉCNICAS SOBRE CARACTERÍSTICAS TECNOLÓGICAS Y USOS DE MADERAS COMERCIALIZADAS EN MÉXICO. Zapopan, Jalisco, mexico: Vivir Mejor.
- Sistema Nacional de información Cultural. (2016). sinic/ColombiaCultural.
- Somarriba, E. (1987). Investigación agroforestal del proyecto UNU/CATIE 1979-1987. Turrialba: Investigación Agroforestal del Proyecto UNU/CATE.
- STANDLEY, P. &. (1958). Typhaceae. En: Flora of Guatemala. Guatemala: Fieldiana Botany.
- Tarama, J. (24 de julio de 2008). MADERA SUDAMERICA OFICINA DE COMERCIO INTERNACIONAL EN MADERAS TROPICALES. Obtenido de http://www.maderasdesudamerica.com/yesquero-jequitiba-cariniana-sp-/
- Tavares, W., Santos, R., Souza, H., & Junior, S. (2015). Diversidade de Leucaena Benth, Neptunia Lour e Macrosamanea Britton & Rose ex Britton & Killip (Leguminosae-Mimosoideae) no Herbário IAN (Embrapa Amazônia Oriental). *ALICE*. Obtenido de http://www.snib.mx/iptconabio/rtf.do?r=SNIB-J001-J001-ND&v=1.1
- The Nature Conservancy. (2002). Un Enfoque en la Naturaleza: Evaluaciones Ecologicas Rapidas. The Nature Conservancy, 8-13.
- Tropicos. (6 de agosto de 2010). *Tropicos.org. Missouri Botanical Garden*. Obtenido de http://sweetgum.nybg.org/science/vh/specimen_details.php?irn=3313353
- Turner, I. (1996). Species loss in fragments of tropical rain forest: a review of the evidence. Journal of Applied Ecology, 200 - 205.

- UEIA. (2014). Recuperado el 24 de 07 de 2017, de Catálogo virtual de flora del Valle de Aburrá: https://catalogofloravalleaburra.eia.edu.co/
- UICN, PNUMA & WWF. (1991). Cuidar la tierra: Estrategia para el futuro de la tierra. Suiza: Gland.
- UNESCO. (2003). Patrimonio Inmaterial.
- UNESCO. (s.f.). Patrimonio Cultural Inmaterial.
- Universidad de Córdoba. (2011). El cultivo del plátano (Musa AAB Simonds): Ecofisiología y manejo cultural sostenible. Montería: Zenú.
- Universidad Nacional, Instituto de Ciencias Naturales, CVS . (2007). Diagnóstico Ambiental y Ecológico y Plan de Manejo Humedales Rio San Jorge y Rio Sinú. Montería.
- Universidad Nacional, Instituto de Ciencias Naturales, CVS. (2007). Diagnóstico Ambiental y Ecológico y Plan de Manejo Humedales Rio San Jorge. Montería.
- Universidad Pontificia Javeriana de Colombia. (2012). Entre la supervivencia y la Resistencia. Revista Javeriana.
- UNODOC y SIMCI. (2014). Cultivo de coca estadísticas Municipales censo 31 de diciembre de 2013. Colombia.
- URIBE, M. (2001). Cestería en calceta de plátano en las localidades de Turbo y Apartadó en el departamento de Antioquia, cestería en calceta de plátano en Prado, Sevilla, departamento del Magdalena y cestería en junco en la laguna de Fúquene en el departamento de Cundinama. Bogotá: Artesanías de Colombia S.A, Ministerio de Industria Comercio y Turismo.
- Valderrama, E., & Linares, É. (2008). Uso y manejo de leña por lla comunidad campesina de San José de Suaita (Suaita, Santander, Colombia). Revista Colombia Forestal, 19-34.
- Valderrama, M. M. (2002.). Monitoreo y Estadistica Pesquera en la Cuenca del río Sinú con Participación Comunitaria. Informe Final periodo marzo 2002. Montería.
- Vantommer, D. P., Déon, G., Chichignoud, M., Detienne, P., & Parant, B. (2005). Atlas de maderas tropicales de America Latina. Association technique internationale des bois tropicaux, Organización International de las Maderas Tropicales (OIMT).
- Vargas, W. G. (2002). Guía ilustrada de las plantas de las montañas del Quindío y los Andes Centrales. Quindio: Universidad de Caldas.
- Vaughan, T. J. (2000). Mammalogy. Toronto: Brooks Editions.

- Vazquez, A. (2005). Maderas comerciales en el Valle de Aburrá. (A. M. Aburrá, Ed.) Medellin.
- Villao, F. (2006). NOMBRE DEL PROYECTO: BIOPROSPECCIÓN, IDENTIFICACIÓN Y EVALUACIÓN DE LA VEGETACIÓN UTILIZADA COMO MEDICINAL DEL CENTRO CIENTÍFICO RÍO PALENQUE (CCRP) ECUADOR. Ecuador.
- Villarreal, H. Á. (2006). Manual de Metodos para el Desarrolo de Inventarios de Biodiversidad. Bogota D.C: Instituto de Investigacion de Recursos Biologicos Alexander Von Humboldt.
- Watson, L. D. (09 de Marzo de 1992). The grass genera of the world. Obtenido de The grass genera of the world: http://delta-intkey.com/grass/
- Williams, L. (1981). The useful plants of Central America. Ceiba.
- Zarco, V. Valdez, J. Ángeles, G & Castillo, O. (2010). Estructura y diversidad de la vegetación arbórea del parque estatal de agua blanca, Macuspana, Tabasco. . Trópico húmedo, 1-17.